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Automatic code documentation generation has been a crucial task in the field of software engineering. It not

only relieves developers from writing code documentation but also helps them to understand programs better.

Specifically, deep-learning-based techniques that leverage large-scale source code corpora have been widely

used in code documentation generation. These works tend to use automatic metrics (such as BLEU, METEOR,

ROUGE, CIDEr, and SPICE) to evaluate different models. These metrics compare generated documentation

to reference texts by measuring the overlapping words. Unfortunately, there is no evidence demonstrating

the correlation between these metrics and human judgment. We conduct experiments on two popular code

documentation generation tasks, code comment generation and commit message generation, to investigate

the presence or absence of correlations between these metrics and human judgments. For each task, we repli-

cate three state-of-the-art approaches and the generated documentation is evaluated automatically in terms

of BLEU, METEOR, ROUGE-L, CIDEr, and SPICE. We also ask 24 participants to rate the generated docu-

mentation considering three aspects (i.e., language, content, and effectiveness). Each participant is given Java

methods or commit diffs along with the target documentation to be rated. The results show that the ranking

of generated documentation from automatic metrics is different from that evaluated by human annotators.

Thus, these automatic metrics are not reliable enough to replace human evaluation for code documentation

generation tasks. In addition, METEOR shows the strongest correlation (with moderate Pearson correlation

r about 0.7) to human evaluation metrics. However, it is still much lower than the correlation observed be-

tween different annotators (with a high Pearson correlation r about 0.8) and correlations that are reported in

the literature for other tasks (e.g., Neural Machine Translation [39]). Our study points to the need to develop
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specialized automated evaluation metrics that can correlate more closely to human evaluation metrics for

code generation tasks.

CCS Concepts: • Software and its engineering → Software creation and management; Documenta-

tion;

Additional Key Words and Phrases: Code documentation generation, evaluation metrics, empirical study
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1 INTRODUCTION

During software maintenance and development, program comprehension is the main activity for
developers [51]. High-quality documentation such as code comments, commit messages, and re-
lease notes can help developers better understand programs [13]. Unfortunately, due to tight
project schedules and other reasons, documentation is often missing, or incomplete. Therefore,
many techniques are proposed to generate the documentation automatically. These techniques
relieve developers from writing documentation and help them understand existing software.

Earlier works usually exploit manually-crafted templates [36] and Information Retrieval tech-
niques [16, 17] to assemble key terms into the documentation. These techniques usually rely on
heuristics and stereotypes to select the information that should be included in the documentation.
Then, they evaluate the generated documentation through human evaluation in terms of expres-
siveness (readable and understandable), content adequacy (important information about the class
reflected in the documentation), and conciseness (extraneous information in documentation) [36].
However, the scale of these evaluations tends to be small—usually no more than a few hundred
sentences examined by a small number of raters. Thus, it can be difficult to draw firm conclusions
about the overall quality of the generated documentation.

In recent years, there is an emerging interest in building deep learning models to generate code
documentation. These techniques take advantage of neural networks and the large available open
source code repositories [20, 50] to capture lexical and syntactical features from source code. At the
same time, various automatic metrics such as BLEU [39], ROUGE [27], METEOR [4], CIDEr [48],
and SPICE [2] in the Natural Language Processing (NLP) domain are adopted to evaluate code
documentation models. Generally, these metrics measure different models by comparing overlap-
ping text between the reference and the generated text. The model can achieve higher scores if
there are more overlapping words.

Some works evaluate the quality of models through automatic metrics accompanied by a human
study, in which programmers are asked to rate various aspects of the generated contents or nat-
uralness of the documentation. For example, Jiang et al. [23] and Hu et al. [20] asked developers
to give scores by comparing the semantic similarity between the generated documentation and
the reference text. Wei et al. [50] asked developers to score different documentation from three as-
pects: the similarity of generated comments and references, naturalness (grammatical correctness
and fluency of the generated comments), and informativeness (the amount of content carried over
from the input code to the generated comments, ignoring fluency of the text). Because doing user
studies is time-consuming, costly, and relying on subjective judgments, some works only compare
different models through automatic metrics [19, 49] without human evaluation.

Since practical considerations have forced the field to rely on automated metrics, it is crucial to
determine how well these metrics compare to human judgments. A reliable automatic metric can
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serve as a proxy for human evaluation which is considerably more expensive and time-consuming.
Judging whether, and to what extent, automatic metrics concur with the human evaluation has not
been sufficiently established in existing studies.

To figure out whether automated metrics are reliable and can indeed replace human judgment in
the domain of automatic code documentation generation, we explore the correlation between five
automatic metrics and six human evaluation metrics for code documentation generation tasks. The
automatic metrics used in this article are BLEU, METEOR, ROUGE-L, CIDEr, and SPICE which are
widely used in various documentation generation works [19, 20, 23, 32, 49]. We investigate the hu-
man evaluation metrics used in previous studies and select six widely used metrics. These metrics
are used to evaluate models from three aspects, including Language-related (measures natural lan-
guage features and ignore the documentation’s contents), Content-related (measures the amount
of contents carried from the input code to the generated documentation), and Effectiveness-related

(evaluate whether generated documentation is useful or helps developers understand programs).
Each aspect contains two metrics: Naturalness and Expressiveness for the Language-related as-
pect; Content Adequacy and Conciseness for the Content-related aspect; Usefulness (evaluate how
useful the documentation is) and Code Understandability (evaluate to what extent the generated
documentation can help developers understand programs) for the Effectiveness-related aspect. In
this article, we conduct experiments on two documentation generation tasks, the code comment
generation task and the commit message generation task. For each task, we first replicate three
state-of-the-art approaches (i.e., Hybrid-DeepCom [20], Code2Seq [1], and Re2Com [50] for code
comment generation task; NMT [23], NNGen [32], and PtrGNCMsg [30] for commit message gener-
ation task). Then, we evaluate them by using automatic metrics and human evaluation metrics. We
recruit 24 evaluators to score 200 randomly sampled comments and commit messages, respectively.
Then, we analyze the correlation between different automatic and human evaluation metrics.

Our study aims at answering the following research questions:

RQ1: What are the results of state-of-the-art approaches on automatic metrics and hu-

man evaluation metrics?

We investigate this RQ to compare the generated documentation from automatic metrics and
human evaluation metrics. The automatic metrics mainly evaluate generated documentation by
counting the number of overlapping N-grams between it and human-written reference text. The
human evaluation metrics are computed based on user study participant feedback; each participant
is asked to give a score for each documentation with respect to a given source code/diff.

RQ2: What are the correlation inside human evaluation metrics and automatic evalua-

tion metrics, respectively?

From the experiments in RQ1, we present the overall scores of documentation generated by differ-
ent approaches. Another important question is whether automatic metrics or human evaluation
metrics are consistent in evaluating the generated documentation. We measure the Kendall τ cor-
relation and Pearson r correlation to explore whether these metrics are concordant while scoring
different approaches.

RQ3: Do automatic metrics such as BLEU, METEOR, ROUGE-L, CIDEr, and SPICE corre-

late with human judgment on generated documentation?

In neural machine translation literature, automatic metrics have been shown to correlate well
with human judgment and can replace human raters [9]. In this RQ, we propose to establish the
correlation between automatic metrics and human evaluation metrics. According to the corre-
lation, we can quantify the extent of automatic metrics reflecting the human perspectives and
find the most relevant automatic metrics to human judgments. We follow Coughlin et al. [9] and
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compute the Pearson’s correlation r and Kendall’s correlation τ between automatic and human
evaluation metrics to explore whether automatic metrics can reflect human judgments on gener-
ated documentation.

Our interpretation of τ and r is based on Hinkle et al.’s scheme [18]: negligible correlation
(|τ/r | < 0.3), low correlation (0.3 ≤ |τ/r | < 0.5), moderate correlation (0.5 ≤ |τ/r | < 0.7), high
correlation (0.7 ≤ |τ/r | < 0.9), and very high correlation (0.9 ≤ |τ/r | ≤ 1).

The contributions of our work are shown as follows:

— We replicate and evaluate state-of-the-art approaches on two documentation generation
tasks, comment generation and commit message generation. To evaluate the generated doc-
umentation, we conduct a survey that asks 24 annotators to give Likert scores from six as-
pects. In addition, we also calculate automatic metrics including BLEU, METEOR, ROUGE-L,
CIDEr, and SPICE.

— We investigate the correlation inside automatic metrics and human evaluation metrics. We
find high correlation between Content-Related and Effectiveness-Related metrics.

— We present the Pearson the correlation between automatic metrics and human evaluation
metrics. METEOR is more correlated (with moderate Pearson correlation r about 0.7 and
Kendall correlation τ about 0.5) to human evaluation metrics than other automatic metrics.
Although it achieves a relatively high correlation, it is weaker when compared to correlation
between different annotators (Pearson correlation r about 0.8 and Kendall correlation τ
about 0.7).

The remainder of this article is organized as follows. In Section 2, we provide background knowl-
edge of automatic documentation generation and evaluation metrics. In Section 3, we introduce
the methodology to conduct the experiments and survey. In Sections 4 and 5, we introduce the
details of state-of-the-art models and evaluation metrics we used in this article. Then, we present
answers the answers to the three research questions. We give the discussion and threats to validity
in Sections 6 and 7. Finally, we conclude the whole study and summarise future work in Section 8.

2 BACKGROUND

2.1 Automatic Documentation Generation

Code documentation is the essential information for developers during the program comprehen-
sion. It exists in all phases of the software development cycle, e.g., comments, commit messages,
and release notes. For instance, code comments are used to describe the functionality of programs.
Commit messages are helpful for developers to understand the software evolution. However, much
code documentation is incomplete [26], which costs time and efforts when understanding the soft-
ware. Therefore, automatic documentation generation is a crucial task to help developers under-
stand programs. This task aims at giving natural language descriptions for the source code or
other software artifacts. Generally, these generated descriptions should reflect programs’ intent.
Recent studies [19, 22, 50] formulate this task as a translation process that translates program-
ming language into natural language. Hence, evaluation metrics used in NMT are exploited in
documentation generation. In this article, we mainly explore whether these metrics can reflect
human perspectives on code documentation.

2.2 Commit, diff, and Commit Messages

The commit message generation task aims at generating a commit message according to the diff of
a change. When developers submit a code change to the version control system like Git, they can
enclose a message to describe the change and/or the reason for the change. The changes can be rep-
resented by diff which can be generated by the git diff command in Git. The commit messages help
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understand the purpose of the code changes and even the evolution of software. Unfortunately,
developers often submit low quality or even empty commit messages [11]. Recently, several meth-
ods have been proposed to generate commit messages for code changes automatically.

2.3 Evaluation Metrics

The evaluation metrics used in the documentation generation task mainly consists of two cat-
egories: automatic metrics and human evaluation metrics. Automatic metrics such as BLEU [39],
METEOR [4], and ROUGE-L [27] are widely used in many NLP tasks, e.g., machine translation [47]
and text summarization [40]. These metrics are directly used to measure code documentation gen-
eration approaches when machine translation models are exploited to solve this task. They are
designed to measure the semantic similarity between the generated documentation and references
considering the overlapping n-grams between them.

Human evaluation metrics generally ask human annotators to score generated documentation
from different aspects. Some works ask human participants to compare the semantic similarity
between the generated documentation and the reference (i.e., human-written documentation) [20,
23]. If the two sequences are semantic similar, the generated documentation will achieve a high
score. In this case, the human annotators evaluate the generated documentation without the source
code. Hence, human annotators can not judge whether the generated documentation describes the
source code accurately and whether it helps understand the programs without the source code.

Other works ask human annotators to judge the documentation from various aspects such as
naturalness and content given the input source code. Moreno et al. [36] asked 22 programmers
to judge the content adequacy, conciseness, and expressiveness of automatically generated sum-
maries for 40 classes. Similarly, Mcburney et al. [35] asked participants to answer questions, in-
cluding a summary’s accuracy, content adequacy, and conciseness. Liu et al. [32] ask participants
to score the semantic similarities between generated commit messages and references given the
commit diffs. Wei et al. [50] evaluated different techniques from three metrics, naturalness, in-
formative, and similarity. These human evaluation results can illustrate developers’ perspectives
on the generated documentation. Recently, Stapleton et al. [45] asked human annotators to com-
plete the code comprehension task and code writing task given the comment generated by Leclair
et al. [25]. Their results show that the BLEU and ROUGE are uncorrelated to code comprehension.
However, their work is only tied to a particular model for code comment generation tasks and can
not judge the models’ ranking. Besides, they do not give a correlation between these automatic
metrics and human evaluation metrics on models’ evaluation.

In this article, we explore whether automatic metrics and human evaluation metrics are consis-
tent with ranking different approaches to documentation generation. In addition, we also give the
correlation between them that helps researchers to better understand and utilize them.

2.4 Motivating Examples

Figure 1 illustrates an example in which the generated comment (by Re2Com [50]) has high auto-
matic scores (ROUGE-L: 65.87%) because the overlapping N-gram “attempts to transition the entry
from” contributes positively to the automatic metric scores. However, we ask six developers how
useful the reference text and the generated comment are with respect to the source code. We find
that all of them think the usefulness of the generated comment is minimal, whereas the reference
text is much more useful.

Another example is shown in Figure 2 in which the generated commit message (by NNGen [32])
has low automatic scores (BLEU: 7%) since there are few overlapping words between it and the
reference text. However, human annotators think it is very helpful for the diff ’s understandability
because it succinctly explains the change of the import statement clearly.
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Fig. 1. An example of generated comment with high automatic scores. Reference is the human-written doc-

umentation and Generated comments by Re2Com is the machine-generated documentation by Re2Com [50].

Fig. 2. An example of generated commit message with low automatic scores.

We can observe that for this example there is a huge gap between automatic evaluation results
and human perspectives. Therefore, the correlation between automatic metrics and human evalu-
ation metrics for code documentation generation tasks require further exploration.

3 METHODOLOGY

In this section, we describe our methodology for evaluating the quality of the generated documen-
tation. It mainly contains two phases, i.e., model replication and survey. In phase 1, we replicate
three state-of-the-art techniques for each task (comment generation and commit message gener-
ation) and evaluate them using automatic metrics. After obtaining the generated documentation,
we use a survey that asks participants to score each generated documentation with respect to a
piece of code/diff. In this study, we conducted an IRB-approved human study involving 24 evalua-
tors that have more than three years of studying/working experience in the software development
process to complete human evaluation. Among the 24 evaluators, 15 evaluators are professional de-
velopers and nine evaluators are graduate students in computer science. Each participant is asked
to complete surveys for the two tasks. Each case is scored by six annotators and we use the average
score of the six annotators as the final score for each case. In the following subsections, we present
the details of our experiments and survey.
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3.1 Experiments Details

In this section, we replicate state-of-the-art models by re-running the source code provided by the
authors of the code documentation generation tools. It mainly includes three steps, i.e., dataset
selection, model training, and automatic evaluation.

3.1.1 Dataset Selection. For the code comment generation task, we use the cross-project dataset
provided by Hu et al. [20]. It consists of more than 8,000 projects in the training set and 971 projects
in the test set. After processing, it consists of 455 k and 5 k <Java method, comment> pairs in
training and test sets, respectively.

For commit message generation task, we use the dataset provided by Liu et al. [32]. This dataset
is derived from Jiang et al. [23]. Liu et al. [32] removed trivial messages from the original dataset.
It consists 26 K, 3 k, and 3 k commits in training, validation, and test sets, respectively.

3.1.2 Model Training. For the code comment generation tasks, we replicate three state-of-the-
art techniques, including Hybrid-DeepCom, Code2Seq, and Re2Com. We follow the source code
provided by the authors and use the same parameters. We retrain these three models and get the
generated documentation.

In particular, the Code2Seq model is proposed to conduct “extreme code summarization” that
generates a method name instead of a sentence of natural language (i.e., comment). Therefore, we
modify the corresponding part of the model (i.e., the generator module of method names) to enable
it to generate code comments instead of method names (Code2Seq is often used in generating code
comments in literature [7].

For the commit message generation task, we replicate another three models, i.e., NMT, NNGen,
and PtrGNCMsg. As Liu et al. [32] provide the generated commit messages of NMT and NNGen,
we reuse the given results. Then, we retrain the PtrGNCMsg model with the same dataset as the
other two models.

We conduct all experiments on a Linux server with the NVIDIA Tesla T4 GPU with 16 GB
memory. During the training, we keep the original hyperparameters provided by the authors (e.g.,
model structures and training strategies) to reproduce their experiments.

3.1.3 Automatic Evaluation. After obtaining the generated documentation, we compute the
overall scores of BLEU, METEOR, ROUGE, CIDEr, and SPICE by the tool NLG [42]. To get the
correlation between the human evaluation and automatic evaluation, we need to compare scores
for each generated documentation. Thus, we compute BLEU, METEOR, ROUGE, CIDEr, and SPICE
scores for each documentation.

3.2 Survey

3.2.1 Survey Design. Our human evaluation survey aims at scoring each documentation. Ac-
cording to the previous studies, we exploit human evaluation metrics from three aspects, includ-
ing Language-related, Content-related, and Effectiveness-related. The detailed descriptions of these
metrics are shown in Section 4.

Participants are shown a task description and the criteria details at the start of the survey. Par-
ticipants should give scores (on a scale between 1 and 5) for each documentation by reading the
given cases. The criteria details are described in Table 2.

Then, we present two examples with the recommended scores and show the explanation for rec-
ommended scores. We present an example that consists the documentation given a specific Java
method in Figure 3. For each case, participants could view the Java method/diff, along with four
pieces of documentation. One piece of documentation is the ground truth reference and the other
three pieces of documentation are generated by different techniques. Then, participants are asked
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Fig. 3. An Example with recommended scores we gave to the participants in the survey study.

Fig. 4. Length distribution of the selected samples. Blue lines represent 90% of cases’ length. Figure 4(a) and

(b) are distributions of code lengths and comment lengths for the comment generation task; Figure 4(c) and

(d) are distributions of diff lengths and commit message lengths for the commit message generation tasks.

to score the documentation by reading the given Java methods/diffs and their corresponding docu-
mentation. Note that the participants do not know who/what generated the documentation. They
give scores by reading and understanding Java methods or diffs, and compare their understanding
with the generated documentations.

Participants are allowed to search the Internet for related information and unfamiliar concepts.

3.2.2 Cases Selection. We randomly select 200 cases and four corresponding documentation for
each task, in which one documentation is the ground truth reference text and the other three are
generated by different approaches. The length distribution of selected cases is shown in Figure 4.
The average lengths of code, comment, diff, and commit messages are 54.41, 11.61, 65.81, and 6.84,
respectively. For the comment generation task, most cases (90%) have less than 120 tokens in Java
methods and 18 words in comments. For the commit message task, most cases (90%) have less than
90 tokens in diffs and 12 words in commit messages.

3.2.3 Participant Selection. In this study, we invited 24 participants with a combination of grad-
uate computer science students and professional industrial developers.

3.2.4 Survey Procedure. We invite 24 evaluators to participate in our user study; all of these
participants have more than three years of studying/working experience in the software develop-
ment process and are familiar with Java programming language. Each annotator scores 50 cases
for the comment generation task and 50 cases for the commit message generation task. Each case
is rated by six annotators and participants are asked to complete the survey independently. Then,
we compute the average score for each case. We do not limit the amount of time for evaluators to
complete the user study.

We recommend that participants rest for at least half an hour for every half hour annotation.
On average, participants cost 1.35 minutes to give their rating for one case.
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Table 1. A Summary of the Evaluation Metrics Considered in this Study

Metric Proposed to evaluate Underlying idea

BLEU [39] Machine translation n-gram precision
METEOR [4] Machine translation n-gram with synonym matching
ROUGE-L [27] Document Summarization n-gram recall
CIDEr [48] Image description generation t f -id f weighted n-gram similarity
SPICE [2] Image description generation Scene-graph synonym matching

3.3 Replication Package

All the data and source code used in our study is publicly available.1

4 EVALUATION METRICS

In this section, we introduce the evaluation metrics used in this article, including three automatic
metrics and six human evaluation metrics from three aspects.

4.1 Automatic Metrics

In this article, we select five automatic metrics (i.e., BLEU, METEOR, ROUGE-L, CIDEr, and SPICE)
that are often used in the automatic evaluation of software documentation generation tasks. A
summary of metrics investigated in our study is given in Table 1. The scores of BLEU, METEOR,
ROUGE-L, and SPICE are in the range of [0,1] and usually reported in percentages. The higher the
score, the closer the generated documentation is to the reference. If the generated documentation
is completely equal to the reference, these scores become 100%. But CIDER is not between 0 and 1,
and thus it is reported in real values. These scores range from 1 to 100 as a percentage value. All
automatic metrics are computed by scripts provided by pycocoevalcap.2

4.1.1 BLEU. BLEU [39] is one of the most common metrics used to evaluate machine transla-
tion tasks. It is usually used to measure the textual similarity between candidate hypotheses and
the reference. Generally, it calculates the modified n-gram precisions of a generated sequence to
the reference. Then, it measures the average modified n-gram precision. Since there are different
implementations of BLEU scores, we select the most commonly used implementation proposed
by Papineni et al. [39] in software document generation. This implementation is widely used in
software documents generation evaluation [20, 23, 32].

4.1.2 METEOR. METEOR is proposed by Banerjee et al. [4] and is widely used to evaluate
machine translation techniques. It evaluates translation hypotheses by aligning them to reference
translations and calculating sentence-level similarity scores. Different from the BLEU score, it is a
recall-oriented method that reflects how much the translated results cover the entire contents of
the references. In this article, we use the most recently released version, namely, METEOR 1.5 [10],
to evaluate the quality of the generated documents.

4.1.3 ROUGE-L. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is pro-
posed by Lin et al. [27] and used to evaluate the quality of generated summaries. It evaluates
the content adequacy by counting n-grams in the reference summaries that appear in generated
summaries. It is also widely used in evaluating the quality of the generated software documents.
Among different ROUGE scores, ROUGE-L is the most widely used metric in documentation gen-
eration tasks. It is calculated by using the longest common subsequence and F-measure.

1https://github.com/xing-hu/DocEvaluation.
2https://pypi.org/project/pycocoevalcap/.
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Table 2. Criteria Details and Possible Answers used in the Human Evaluation Study

Criteria Description Possible Answers (on a scale between 1 and 5)

Language-related
Naturalness

Ignoring the content, considering the
grammaticality and fluency of the
documentation

1. Is very unfluent or has many grammatical errors that can
hinder the reading of generated documentation
2. Is unfluent or has grammatical errors that can hinder the
reading of generated documentation
3. Is somewhat fluent and has some grammatical errors that
can not hinder the reading of generated documentation
4. Is fluent and has little grammatical errors that can not
hinder the reading of generated documentation
5. Has no grammatical error and very fluent

Expressiveness
Ignoring the content, considering the
readability and understandability of
the documentation’s description

1. Is very hard to read and understand
2. Is hard to read and understand
3. Is somewhat readable and understandable
4. Is easy to read and understand
5. Is very easy to read and understand

Content-related
Adequacy

Considering the amount of contents
carried from the source code/diff to
documentation

1. Is missing a lot of very important information that can
hinder the understanding of the source code/diff
2. Is missing some very important information that can
hinder the understanding of the source code/diff
3. Is missing some information but the missing information
is not necessary to understand the source code/diff

4. Is missing little information but the missing information is
not necessary to understand the source code/diff
5. Is not missing any information

Conciseness
Considering the amount of unnece-
ssary information contained in
documentation

1. Has a lot of unnecessary information
2. Has more unnecessary information
3. Has some unnecessary information
4. Has little unnecessary information
5. Has no unnecessary information

Effectiveness-related
Usefulness

Considering whether the documen-
tation is useful for developers

1. Is totally useless
2. Is useless
3. Is somewhat useful
4. Is useful
5. Is very useful

Understandability
Considering whether the documen-
tation is helpful for developers to
understand the source code/diff

1. Is totally unhelpful to understand the source code/diff

2. Is unhelpful to understand the source code/diff

3. Is somewhat helpful to understand the source code/diff

4. Is helpful to understand the source code/diff

5. Is very helpful to understand the source code/diff

4.1.4 CIDEr. Consensus-based Image Description Evaluation (CIDEr) is a consensus
based evaluation protocol for image captioning [48]. It measures the similarity of a generated
sentence against a set of ground truth sentences written by humans. It considers the frequency of
n-grams in the reference sentences by computing the TF-IDF weighting for each n-gram. CIDErn

score for n-gram is computed using the average cosine similarity between the candidate sentence
and the reference sentences. The final result is calculated by combining the scores for different
n-grams (up to 4).

4.1.5 SPICE. Semantic Propositional Image Caption Evaluation (SPICE) [2] is a princi-
pled metric for automatic image caption evaluation that compares semantic propositional content.
Different from other metrics that are sensitive to n-gram overlap, SPICE hypothesizes that seman-
tic propositional content is an important component of human caption evaluation. SPICE measures
how well caption generators recover objects, attributes, and the relations between them.

4.2 Human Evaluation Metrics

Generally, human evaluation metrics include three aspects, Language-related, Content-related, and
Effectiveness-related. The scores of them are on a scale from 1 to 5 in which 1 means the worst and
5 means the best.
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4.2.1 Language-related. Language-related metrics measure the generated documents consider-
ing the natural language features and ignoring the documentation’s contents. It usually evaluates
the generated sentences according to grammaticality and fluency. We select two metrics, namely,
Naturalness and Expressiveness, to measure whether generated sentences are fluent and expres-
sive.

— Naturalness [50]: measures the generated documentation considering fluency and
grammaticality.

— Expressiveness [36, 37]: measures how readable and understandable the generated
documentation.

4.2.2 Content-related. Content-related metrics measure generated documentation by consider-
ing the amount of contents carried from the input code to the generated documentation, ignoring
the fluency of the text. We follow Sridhara et al. [44] and Mcburney et al. [35] to evaluate generated
documentation by Content adequacy and Conciseness.

— Content adequacy [35, 44]: measures whether generated documentation misses some essen-
tial information that can hinder understanding the method.

— Conciseness [35, 44]: measures whether generated documentation contains unnecessary
information.

4.2.3 Effectiveness-related. Effectiveness-related metrics are used to evaluate whether generated
documentation is useful or helps developers understand programs.

— Usefulness [35]: is used to evaluate how useful the documentation is. For example, a com-
ment can be marked as useful if it provides any useful information (e.g., implementation
details and potential call risk) for developers.

— Code Understandability [43]: is used to evaluate to what extent the generated documentation
can help developers understand programs.

5 MODELS

This section presents details of different models used in the two tasks. For each task, we select
three state-of-the-art approaches and evaluate the documentation generated by them.

5.1 Comment Generation Models

5.1.1 Hybrid-DeepCom [20]. Hybrid-DeepCom is an approach that learns lexical and syntacti-
cal information at the same time while generating Java comments. It first converts the Abstract

Syntax Tree (AST) into a sequence by a special sequential method, Structure-based Traversal

(SBT). To address the vocabulary challenge, it splits identifiers into subtokens according to the
camel naming convention. Then, it exploits two Recurrent Neural Networks (RNNs) to encode
code tokens and AST sequences and uses the attention mechanism to fuse the lexical and structural
information.

5.1.2 Code2Seq [1]. Code2Seq is proposed to encode source code by leveraging the syntac-
tic structure of programming languages. The source code is represented as a set of compositional
paths over its AST. Each path is encoded into a vector by the Long Short Term Memory (LSTM),
and tokens (terminals’ values) are encoded into sub-tokens embeddings. This work is applied to
two tasks: code summarization (i.e., predict a Java method’s name given its body) and code cap-
tioning (i.e., predict a natural language sentence that describes a C# snippet). In this article, we use
it to generate code comments for Java methods.
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5.1.3 Re2Com [50]. Re2Com is another state-of-the-art approach to generating code comments
for Java methods. Different from previous studies, it integrates IR techniques and neural networks.
Re2Com mainly consists of two modules: a Retrieve module and a Refine module. It first exploits
the Retrieve module to retrieve similar code snippets and their comments from the training set. The
model then takes code snippets, similar code snippets, and retrieved comments (i.e., exemplars) as
input and then generates comments. Re2Com leverages the advantages of IR-based techniques and
neural networks.

5.2 Commit Message Generation Models

5.2.1 NMT [23]. Neural Machine Translation (NMT) is neural networks that model the
translation process from a source language sequence to a target language sequence. Jiang et al. [23]
adopt the NMT algorithm to the commit message generation task. The model mainly consists of
an Encoder and a Decoder. To deal with long diff sequences, they integrate the attention mecha-
nism [3] into the NMT. They use the Theano-based framework Nematus to implement the NMT
model. In this article, we reuse the results provided by Liu et al. [32].

5.2.2 NNGen [32]. NNGen leverages the nearest neighbor (NN) algorithm to produce commit
messages. Compared to the NMT model, the NNGen is more straightforward and faster. It first
selects top-k training diffs with the highest similarity scores by calculating the cosine similarity
between the new diff vector and each training diff vector. Then, it selects the nearest neighbor
with the highest BLEU-4 score from top-k training diffs. Finally, NNGen outputs the message of
the nearest neighbor as the final result.

5.2.3 PtrGNCMsg [30]. Because the software developers are free to create any identifiers they
like, the Out-of-Vocabulary (OoV) problem in modeling source code is more serious than that
in the NLP tasks. Liu et al. [30] propose a PtrGNCMsg approach that is based on the pointer-
generator network [41] to deal with the OoV issue while translating diffs into commit messages. It
is an adapted version of the attentional RNN Encoder-Decoder model. While generating commit
messages, PtrGNCMsg can either copy words from diffs or generate words from the vocabulary.
In this way, it can generate more accurate commit messages with OoV identifiers by copying them
from diffs.

6 RESULTS

6.1 RQ1: Comparison of Results of the Automatic Evaluation and Human Evaluation

We first compare the results from the automatic evaluation and human evaluation. Table 3 and
Table 5 summarize the overall performance of different approaches in terms of automatic and
human scores.

6.1.1 Results on Automatic Metrics. The experimental results of the two documentation gener-
ation tasks are shown in Table 3. We follow previous studies [1, 20, 23, 30, 32, 50] to calculate the
gap between the documentation generated by different methods and the ground truth. The gap is
measured by BLEU, METEOR, ROUGE-L, CIDEr, and SPICE. According to articles [2, 10, 27, 39, 48]
that propose these metrics, BLEU and METEOR return scores at the corpus level, whereas ROUGE-
L, CIDEr, and SPICE return average scores from each case. Thus, we give the standard devia-
tion (shown in the brackets) for ROUGE-L, CIDEr, and SPICE. We can observe that these metrics
are different in reflecting the ability of different models. For the code comment generation task,
Re2Com outperforms the other two approaches considering BLEU, METEOR, and ROUGE-L. How-
ever, Hybrid-DeepCom performs best in terms of CIDEr and Code2Seq performs best in terms of
SPICE. For the commit message generation task, NNGen performs the best among all approaches.
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Table 3. Comparison Results of Different Approaches on Automatic Metrics

Approaches BLEU(%) METEOR(%) ROUGE-L(%) CIDEr SPICE(%)

Comment Generation Task

Hybrid-DeepCom 21.01 15.87 33.10 (0.31) 1.85 (3.40) 21.41 (0.33)
Code2Seq 15.56 14.43 30.77 (0.26) 1.34 (2.57) 22.13 (0.28)
Re2Com 21.06 16.04 36.20 (0.30) 1.70 (3.34) 21.75 (0.35)

Commit Message Generation Task

NMT 14.19 12.99 23.66 (0.29) 1.06 (2.34) 18.07 (0.33))
NNGen 16.42 14.03 27.17 (0.33) 1.37 (2.74) 20.58 (0.34)

PtrGNCMsg 12.31 11.94 24.45 (0.28) 1.10 (2.29) 17.38 (0.30)

Fig. 5. The bias analysis of human evaluation.

6.1.2 Results on Human Evaluation Metrics. In this article, we ask participants to score each
documentation on a 5-point Likert scale. We analyze the results from human annotators.

(1) Bias detection. Human evaluation is typically treated as the gold standard for assessing the
performance of automatic evaluation metrics. However, quality assessment is known to be a com-
plex tasks with low levels of agreement between annotators [14]. Thus, we analyze the bias and
consistency among different annotators.

We first analyze the agreement levels among annotators by using Cohen’s Kappa (κ). Figure 5(a)
illustrates the average Cohen’s Kappa scores of each participant with others. According to Fleiss
et al. [12], kappas over 0.75 are excellent, 0.40–0.75 are fair to good, and below 0.40 are a poor. For
the comment generation task, annotators P1 and P16 have poor agreement (κ < 0.4) with others.
For the commit message generation task, annotators P2, P13, and P16 have a poor agreement (κ <
0.4) with others. We follow Liu et al. [29], and we exclude their responses from the analysis below.

Then, we analyze the bias introduced by reference text. While comparing the generated doc-
umentation and reference text, the quality of reference text should be guaranteed to have good
quality. In this article, comments and commit messages written by developers are taken as a refer-
ence text. To ensure the correlation is more reliable, we exclude reference text that achieves low
scores from annotators from the analysis below. We compute the average human evaluation scores
(after normalizing personal bias) of the reference text that is shown in Figure 5(b). Two reference
comments achieve low scores from annotators. For reference commit messages, 18 references have
low scores. These low-quality reference texts may introduce bias while computing the correlation.
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Table 4. The Average Kendall Correlation (τ ) and Pearson Correlation (r ) Among Human Evaluators

Metrics
Naturalness Expressiveness Adequacy Conciseness Usefulness Understandability

τ r τ r τ r τ r τ r τ r
Comment Generation 0.47 0.51 0.44 0.49 0.72 0.81 0.66 0.74 0.71 0.79 0.71 0.78

Commit Message Generation 0.58 0.74 0.57 0.71 0.66 0.76 0.66 0.75 0.66 0.74 0.65 0.74

Table 5. Comparison Results of Different Approaches on Human Evaluation

Approaches
Language-related Content-related Effectiveness-related

Naturalness Expressiveness Adequacy Conciseness Usefulness Understandability

Comment Generation Task

Hybrid-DeepCom 4.60 (4.65) 4.21 (4.28) 2.57 (2.54) 2.51 (2.47) 2.26 (2.22) 2.12 (2.12)
Code2Seq 4.42 (4.46) 4.01 (4.04) 1.48 (1.41) 1.53 (1.48) 1.32 (1.24) 1.28 (1.19)
Re2Com 4.52 (4.57) 3.41 (4.26) 3.21 (3.26) 3.07 (3.11) 2.80 (2.90) 2.71 (2.78)

Reference 4.73 (4.80) 4.19 (4.63) 4.45 (4.56) 4.31 (4.41) 4.28 (4.40) 4.22 (4.33)

Commit Message Generation Task

NMT 4.41 (4.49) 4.21 (4.3) 2.44 (2.46) 2.45 (2.5) 2.14 (2.15) 2.11 (2.12)
NNGen 4.46 (4.51) 4.27 (4.32) 2.57 (2.61) 2.56 (2.60) 2.28 (2.30) 2.23 (2.26)

PtrGNCMsg 3.53 (3.61) 3.41 (3.48) 2.66 (2.71) 2.68 (2.71) 2.42 (2.46) 2.39 (2.42)

Reference 4.68 (4.77) 4.61 (4.72) 4.02 (4.25) 4.00 (4.21) 3.85 (4.05) 3.76 (3.98)

Reference means the human-written documentation. Scores in brackets mean the results removing bias.

For example, an uninformative reference text could result in a high BLEU score if an approach does
generate similar, uninformative, documentation. This, in turn, would result in a low score for the
generated documentation given by the human evaluators. The low score from evaluators together
with the high BLEU score, will lower the correlation. Thus, we exclude cases whose reference text
has low quality.

(2) Annotators Correlation. To compare the human evaluation consistency, we compute the
Kendall Correlation and Pearson correlation among annotators after removing bias. Table 4 shows
the correlation among annotators. For the comment generation task, annotators have low correla-
tion (in terms of Kendall and Pearson correlations) on Naturalness and Expressiveness. Annotators
have high Kendall and Pearson correlations in evaluating the Adequacy, Conciseness, Usefulness,
and Understandability of generated comments except for the Kendall correlation on the Concise-

ness. For commit message generation task, annotators have moderate Kendall correlations (0.5 ≤
τ < 0.7) but high Pearson correlation (0.7 ≤ |r | < 0.9) on evaluating all human evaluation metrics.

(3) Human Evaluation Results. The human evaluation results of these approaches are shown
in Table 5. The scores in brackets are results without bias analyzed above and scores outside
brackets are raw results with bias. After removing bias, the Language-Related results of all code
comment generation approaches improve compared to results with bias. For Content-Related

and Effectiveness-Related metrics, the results of Re2Com and Reference improve whereas Hybrid-
DeepCom and Code2Seq decrease after removing bias. In addition, all results of the commit mes-
sage generation task improve after removing bias.

For the comment generation task shown in Table 5, Hybrid-DeepCom performs the best while
considering the Language-related metrics. It means the text generated by Hybrid-DeepCom
is much more fluent and has fewer grammar errors. The three models’ Naturalness is more
than 4, indicating that all models can generate fluent and grammatical comments. Considering
Content-related and Effectiveness-related metrics, Re2Com achieves the best performance and
significantly outperforms Hybrid-DeepCom and Code2Seq. The text generated by the Re2Com
model expresses more content information (e.g., keywords and code structure) of Java methods.
Besides, comments generated by Re2Com are more useful and helpful in code understanding than
those generated by others.
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Fig. 6. Distribution of different metrics. Figure 6(a) and (b) are distributions of automatic metrics and hu-

man evaluation metrics for comment generation task, respectively; Figure 6(c) and (d) are distributions of

automatic metrics and human evaluation metrics for commit message generation task.

For the commit message generation tasks, NNGen performs the best on Language-related met-
rics, whereas PtrGNCMsg performs the best on Content-related and Effectiveness-related metrics.
The performance of PtrGNCMsg is much worse than the NMT model and the NNGen model con-
sidering Language-related metrics. But in terms of Content-related and Effectiveness-related metrics,
it slightly outperforms other models. The messages generated by PtrGNCMsg contain more OoV
words, although this article exploits the pointer mechanism to alleviate this issue. OoV words have
negative impacts on naturalness and expressiveness. However, the pointer mechanism helps with
the content information selection that contributes to code understandability.

From Table 5, we can find that documentation generated by different approaches achieve almost
equivalent results to human-written documentation (i.e., Reference) in Language-Related aspects.
In other words, generated documentation is easy to read and understand, and human annotators
are hard to distinguish generated documentation from reference text considering the naturalness
and expressiveness. This is a “milestone” for automated approaches as they can generate fluent,
grammatical, and expressive documentation which is important in text generation tasks [46]. The
next milestone is the achievements on the Content-Related and Effectiveness-Related aspects. To
achieve this “milestone”, the generated documentation should be semantic correct and consistent
with the source code or commits.

6.1.3 Distribution of Different Metric Scores. We represent the distribution of different met-
ric scores using the Kernel Density Estimate (KDE) plot. Shown as in Figure 6(a), BLEU and
METEOR scores have similar distribution except for the second peak (BLEU is around 0.8 and
METEOR is around 0.5). Compared to BLEU, METEOR, and SPICE the distribution of ROUGE-L has
less variance, and its peaks are around 0.2 and 0.9. The commit message generation task is shown in
Figure 6(c); BLEU, METEOR, ROUGE-L, and SPICE share similar peak positions at around 0.1 and
1.0, respectively. We can observe that automatic metrics tend to give a relatively low or a relatively
high score, causing two peaks in Figure 6(a) and (c). Different from automatic metrics, the distribu-
tion as shown in Figure 6(b) and (d) of human evaluation metrics is quite different. Content-related

and Effectiveness-related metrics have a similar distribution. Peaks of Content-related metrics and
Effectiveness-related metrics are around 1.5 and 2, respectively, for both tasks. However, the peaks
of Language-related metrics are much higher than other metrics.

Summary of RQ1: We replicate the state-of-the-art approaches for documentation gen-
eration and evaluate them in terms of automatic and human evaluation metrics. We also
analyze the bias in the annotated data and the correlation between annotators can reach
0.81 in Pearson Correlation and 0.72 in Kendall Correlation.
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Fig. 7. Kendall and Pearson correlation results for comment generation task and commit message generation

task. Bordered area shows correlations between human ratings and automatic metrics, the rest shows corre-

lations among the metrics. Blue colour of circles indicates positive correlation, while red indicates negative

correlation. The size of circles denotes the correlation strength.

6.2 RQ2: Correlation inside of Human Evaluation or Automatic Evaluation Metrics

In this RQ, we explore the metric correlation inside of human evaluation or automatic evaluation.
The part outside the box of Figure 7 shows the Kendall and Pearson correlation results among
evaluation metrics for comment generation task and commit message generation task.

6.2.1 Human Evaluation Metrics Consistency. For the comment generation task, Naturalness

and Expressiveness have moderate Kendall correlation and high Pearson correlation between them.
In addition, Language-related metrics (i.e., Naturalness and Expressiveness) negligibly correlate to
other metrics (τ |r < 0.3). Considering the high scores of the naturalness and expressiveness in
Table 5, we find that most comment generation models can generate fluent and grammatical com-
ments. In other words, we can not measure the quality of different models only by considering
whether the generated comments are fluent and grammatical or not. For Content-Related metrics
(i.e., Adequacy and Conciseness) and Effectiveness-Related metrics (i.e., Usefulness and Understand-

ability), they have a high or very high correlation between each other.
For the commit message generation task, Naturalness and Expressiveness have high Kendall cor-

relation (τ : 0.76) and a very high Pearson correlation (r : 0.95) between them. Naturalness and
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Expressiveness have low Kendall correlations (with 0.34 ≤ τ < 0.44) with other metrics. In addi-
tion, Naturalness has low Pearson correlation and Expressiveness has a moderate Pearson correla-
tion with other metrics. The correlation between Content-related metrics and others are similar to
the comment generation task. We can find that generated documentation with exhaustive content
and less useless information is much more useful for developers. In other words, the more informa-
tion is carried from the input source code/commit diff, the more useful and helpful the generated
documentation is.

6.2.2 Automatic Metrics Consistency. Among these five automatic metrics (i.e., BLEU, METEOR,
ROUGE-L, CIDEr, and SPICE), SPICE has the lowest correlation with others. SPICE has moderate
Kendall correlation and high Pearson correlation with other automatic metrics on the two tasks.
Other automatic metrics have high correlation (with τ |r > 0.7) from each other. SPICE evaluates
the similarity of candidate and reference text by comparing the semantic relations in scene graphs
instead of N-gram overlappings. It causes the lower correlation between SPICE and other auto-
matic metrics. Automatic metrics (except SPICE) are generally based on n-gram overlaps between
the two sentences, thus, they achieve a high correlation. Particularly, CIDEr almost perfect Pearson
correlates to BLEU (with r : 0.98 and r : 0.99) for comment generation task and commit message
generation task, respectively.

Summary of RQ2: For human evaluation metrics, we find that Content-Related metrics
(i.e., Adequacy and Conciseness) and Effectiveness-Related metrics (i.e., Usefulness and Un-
derstandability), the have high or very high correlation between each other. It means that
the more information is carried from the input source code/commit diff, the more useful
and helpful the generated documentation is. For automatic metrics, they have high corre-
lation from each other.

6.3 RQ3: Do Automatic Metrics Such as BLEU, METEOR, ROUGE-L, CIDEr, and SPICE

Correlate with Human Judgment on Generated Documentation?

In RQ2, we mainly explore correlations in human evaluation metrics and automatic metrics, re-
spectively. In this RQ, we further analyze the correlation between automatic metrics and human
evaluation metrics. This correlation reveals how much automatic metrics can reflect the human
perspective.

6.3.1 Correlation Between Automatic Metrics and Human Evaluation Metrics. Figure 8 illustrates
the relationship between automatic metrics and human evaluation metrics in comment generation
tasks via a Scatter plot. The data points of Language-Related scores are scattered close to 4–5 and we
can not find an obvious relationship between it and automatic metrics. When it comes to Content-

Related and Effectiveness-Related metrics, these points are scattered more regularly. We can ob-
serve a fairly even linear band of data points in the relationship between METEOR/ROUGE-L and
Content-Related/Effectiveness-Related metrics. The larger bandwidths of ROUGE-L and Content-

Related/Effectiveness-Related metrics indicate that ROUGE-L is less correlated to them. The scatter
plot of commit message generation task shown in Figure 9 is similar to Figure 8.

To further explore the detailed correlation between automatic metrics and human evaluation
metrics, we follow Coughlin et al. [9] and measure Kendall Correlation τ and Pearson Correlation
r [5]. The results are illustrated in the bordered area of Figure 7. Automatic metrics are weakly cor-
related to Language-related metrics (both Naturalness and Expressiveness). Specifically, they have
no correlation with the Naturalness for comment generation task (Pearson’s r < 0.1 and Kendall
τ < 0.1, p < 10−3). For Language-related metrics and Effectiveness-related metrics, the Kendall
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Fig. 8. Scatter plots of automatic metrics scores against the human evaluation metrics scores on code com-

ment generation task.

correlations between automatic metrics and them (varies from 0.43 to 0.54 ) are much lower than
those of human evaluators (varies from 0.66 to 0.71). Although the Pearson correlations between
automatic metrics and Language-related metrics and Effectiveness-related metrics are moderate,
they are also much lower than those of human evaluators (varies from 0.74 to 0.81). In addition,
we find that the METEOR achieves the strongest correlation to human evaluation metrics, whereas
BLEU has the weakest correlation with them. However, METEOR is often omitted by many code
documentation works [1, 32, 50]. According to Figure 7 shows above, METEOR (with Pearson’s r
about 0.7 and Kendall’s τ about 0.5, p < 10−3) should be included among the current widely used
metrics to measure the documentation generation task.

6.3.2 Correlations in Different Quality Levels. As suggested by Novikova et al. [38], we “bin”
our annotated data into three groups: bad, which comprises low ratings (≤2); good, comprising
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Fig. 9. Scatter plots of automatic metrics scores against the human evaluation metrics scores on commit

message generation task.

high ratings (≥4); and finally a group comprising neutral ratings. Then, we conduct a correlation
analysis between automatic metrics and human metrics in these three groups, respectively.

The top part of Table 6 shows the correlations of automatic metrics and human ratings of code
comment generation task in different bins. We find that there are no generated comments with low
human ratings of Naturalness. The generated comments with high human rating scores and low
human rating scores of Effectiveness-Related metrics correlate significantly better with automatic
metrics than those with average human ratings. It shows that metrics are good in distinguishing
extreme cases, i.e., cases rated as clearly good or bad by the human judges, but do not perform well
for cases rated in the middle of the Likert scale. However, the Content-Related correlations in the
average bin are better than in the bad bin. The highest correlation in the bad bin barely reaches
r ≤ 0.26 (a very weak correlation). For the commit message generation task, the same pattern can
be observed for correlations.
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Table 6. Pearson Correlation Between Metrics and Human Ratings for Results from Different Bins
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BLEU - 0.05 0.13 0.12 0.16 0.18 0.20 −0.03 0.26 0.20 0.05 0.19 0.02 0.04 0.32 0.23 0.32 0.30
METEOR - −0.95 0.26 0.24 0.35 0.37 0.22 −0.03 0.37 0.30 0.07 0.18 0.06 0.11 0.43 0.31 0.35 0.32
ROUGE-L - −0.39 0.24 0.23 0.33 0.36 0.32 −0.04 0.33 0.24 0.01 0.13 0.07 0.11 0.38 0.28 0.29 0.25

CIDEr - −1.0 0.15 0.11 0.21 0.22 0.17 −0.07 0.30 0.19 0.07 0.17 0.04 0.07 0.36 0.29 0.30 0.28
SPICE - - 0.13 0.13 0.27 0.30 0.08 0.06 0.28 0.26 0.13 0.19 0.07 0.10 0.35 0.30 0.30 0.28
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BLEU 0.01 0.03 0.04 0.06 0.20 0.23 −0.19 −0.24 0.11 0.20 0.04 −0.02 0.24 0.34 0.47 0.42 0.35 0.39
METEOR 0.13 0.22 0.20 0.18 0.32 0.35 −0.02 0.07 0.15 0.27 0.13 0.05 0.26 0.38 0.60 0.60 0.49 0.48
ROUGE-L 0.11 0.04 0.13 0.11 0.28 0.32 −0.02 0.00 0.16 0.18 0.13 0.03 0.25 0.40 0.52 0.49 0.45 0.39

CIDEr −0.03 0.08 0.10 0.14 0.22 0.26 −0.22 −0.19 0.10 0.23 0.09 −0.02 0.25 0.35 0.52 0.48 0.40 0.44
SPICE 0.04 0.05 0.06 0.13 0.13 0.17 0.05 0.12 0.14 0.26 0.13 0.02 0.29 0.41 0.50 0.52 0.47 0.40

Fig. 10. The statistic information of Usefulness scores for Reference documentation (i.e., human-written

documentation).

Summary of RQ3: Among all automatic metrics, METEOR has the highest correlation
with human evaluation metrics (Pearson: 0.7 and Kendall: 0.5). Although this correlation
is good, it still has a great gap when compared to correlation between different annotators
(Pearson: 0.81 and Kendall: 0.72).

7 DISCUSSION

7.1 How do Developers Evaluate the Usefulness of the Code Documentation?

Although reference documentation achieves high usefulness scores (shown in Table 5), we find
that some cases have low-scored reference text. According to Novikova et al. [38], ratings less
than 2 (≤ 2) are regarded as low score ratings. As Figure 10 shows, 89 and 216 cases in the 1,200
labeled reference documentation (200 reference documentation labeled by six annotators) with
the usefulness score lower than 3 (i.e., 1–2) for comment generation task and commit message
generation task, respectively. It indicates that about 7.4% to 18% of human-written reference texts
are not deemed to be highly useful by other developers. To investigate the developers’ perspectives
on the usefulness of code documentation, we conduct an interview with 24 annotators again and
ask them how to evaluate the usefulness and why they give low scores for the documentation
usefulness.

According to annotators’ responses, we summarize three reasons that they score low usefulness
of code documentation:
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Fig. 11. A case with reference text receiving a low usefulness score in the survey.

Fig. 12. An example of generated commit message in which key information is wrong.

Reason 1. Code Understandability. The usefulness of code comment is depending on the
understandability of the source code. If the source code is hard to understand, the comment is
useful to help developers understand the source code. On the contrary, the comment is useless
and unnecessary if the source code is very easy.

Reason 2. Program Comprehension Improvement. According to annotators, a useful com-
ment should help improve code comprehensibility. In particular, it can tell developers the function-
ality and how to use a code snippet. If the comment misses such information, it would be useless
for developers.

Reason 3. Lack of Keywords. For some annotators, keywords are one of the most important
factors for them to rate the Usefulness. Comments are useful if all important keywords in the
source code are listed in them. In other words, the lack of keywords to illustrate what the programs
do in the code comments leads to a low scores (just like Figure 11).

In addition, the developers’ perspective on the commit message is different. According to their
responses, the reasons they give low scores for commit message usefulness are as follows:

Reason 1. Trivial Commit Messages. A useful commit message should include code change
details that explain what changed. Trivial commit messages such as “Create README.md” and “Fix
typo” are limited for developers to know the main content of commits. Therefore, trivial commit
messages obtain low usefulness scores.

Reason 2. Wrong Keywords. For annotators, keywords are essential for developers to read
commit messages. Only one wrong keyword may cause low usefulness scores. For example,
Figure 12 shows one case that contains the wrong keyword. The details included in the gener-
ated message “add cache to Travis build” is wrong; the correct one is “disable travis cache”. The
wrong detail leads to a low usefulness score.
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According to the annotators’ responses, key pieces of information are essential for the code doc-
umentation’s usefulness. Thus, the current automatic metrics should be improved by considering
the number of keywords that explain the source code or diff.

7.2 Code Documentation Generation vs. Neural Machine Translation (NMT)

Deep-learning-based documentation generation techniques are typically regarded as a kind of
translation task, translating from one (programming) language to another (natural) language [15].
Papineni et al. [39] reported that for the task of translating from Chinese to English, the BLEU
score and the human judgment is about 0.96 (the bilingual group). The correlation is much higher
than what our study finds for code documentation generation task.

We analyze the code documentation generation and NMT task (e.g., translating English to
French), and find that:

— Developers have different perspectives on code documentation. For example, they may judge
a commit message by considering “what” (what content is modified), “How” (how to mod-
ify), “Why” (why to modify). The human evaluation judgment has significant subjective
differences. However, current automatic metrics can not reflect these subjective differences.

— The corpus of code documentation generation is not aligned (i.e., each word in generated
sentence has a corresponding word in the source sentence [3]). The generated documenta-
tion is abstracted from the input software artifacts. In addition, the generated documentation
can describe the functionality of the source code or how to use the source code.

— There is only one reference when evaluating the generated documentation, whereas there
are multiple references in the NMT task. In the documentation, different words may describe
the same contents. Therefore, multiple references can be included while evaluating gener-
ated documentation.

7.3 Gap Between Machine-generated Documentation and Human-written

Documentation

In addition, we find that the results of generated documentation on Content-related and
Effectiveness-related metrics are significantly worse than the results for the reference text (with
p-value < 10−3). We further analyze the distribution of scores in the two aspects. The distribution
is shown in Figures 13 and 14. The scores of most human-written references vary from 3.5 to 4.5
indicate that references are more helpful for developers to understand the source code/diffs. As
expected, the generated documentation shows fairly low scores (most scores are less than 3). In
particular, most scores of comments generated by Code2Seq are lower than 2. It demonstrates that
many generated comments miss the most important information to describe the source code.

The results demonstrate a big gap between the machine-generated documentation and human-
written documentation considering the Content-related and Effectiveness-related aspects.

7.4 Usefulness vs. Understandability

According to the high correlation between Usefulness and Understandability shown in Figure 7
and the discussion of the Usefulness criteria in Section 7.1, many developers think Usefulness and
Understandability are equivalent. However, from the interview of annotators, we find that they
are not always equivalent.

— Implementation details are not always useful. Implementation details describe the algorithms
of code snippets and can improve the understandability of source code. However, some de-
velopers think them useless as they want more information on the “how to use” information.
If the documentation is just a “translation” of the source code, it is not useful
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Fig. 13. Distribution of the Content related and Effectiveness related results of comments generated by

different approaches.

Fig. 14. Distribution of the Content related and Effectiveness related results of commit messages generated

by different approaches.

— Source code is self-documenting. Sometimes, developers have no problem reading code espe-
cially for senior developers, and in fact, preferred it for finding more accurate information.
Thus, documentation (even understandable) is useless for them.

7.5 Implications

According to Figure 7, we can observe that Usefulness and Understandability are most relevant to
Adequacy. In other words, the Usefulness and Understandability of the generated documentation
depend on whether it contains enough useful information carried from the input. Therefore, we
can improve existing automatic metrics by considering the input source code. First, we should
identify tokens that are related to documentation in the input, such as identifiers and APIs in
the source code. Next, we compute the overlapping rate between generated documentation and
the identified tokens. Finally, we get the final score by integrating existing automatic metrics and
the overlapping rate. In this way, the improved automatic scores can illustrate the Adequacy metric,
thus improving the correlations.

8 THREATS TO VALIDITY

One threat to validity is that both the two code documentation tasks are based on Java datasets.
Although Java may not be representative of all programming languages, models we used in this
article can be easily applied to other programming languages.

The second threat to validity is our human evaluation. We cannot guarantee that each score
assigned to each case is fair. Besides, participants’ programming experiences may introduce bias
into the evaluation. To mitigate this threat, we evaluate each case by six human annotators, and
we use the average score of the six annotators as the final score for each case.

The third threat to validity is the amount of cases that practitioners evaluate. In this article,
each annotator evaluates 50 cases for each of the two tasks. Thus, each annotator evaluates 100
cases and each case contains four items. We follow Liu et al. [29] which give each annotator 100
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questions per dataset and each question contains 5 different responses. A Long-time labeling task
may lead to exhaustion of the annotators and then result in a decrease in the labeled data quality.
To alleviate this threat, we recommend that participants rest for at least half an hour for every half
hour annotation. In addition, we do not limit the amount of time for annotators to complete this
user study. Most practitioners complete the evaluation process in one week.

Another threat to validity is the replication of each model. To ensure that the experimental re-
sults are consistent with their articles, we reuse the generated documentation if it is provided [32].
If we cannot get the generated documentation, we retrain the models using the source code pro-
vided by the authors. In addition, we reuse the parameters provided by the authors and do not
conduct parameter tuning. The performance of deep learning models can be affected by tuning pa-
rameters. Thus, the quality of generated documentation by deep learning models may vary along
with parameters. We compare the results generated by models with parameters provided by orig-
inal articles. According to previous studies [1, 50], parameters used in their works are tuned and
best parameters are selected according to the performance. Therefore, reusing the provided param-
eters can ensure the quality of the generated documentation.

9 RELATED WORK

9.1 Code Comment Generation

Code comment is one of the most common code documentation and can help developers under-
stand what a program does. However, few software projects adequately comment on the code [44].
Therefore, recent research has made great efforts on the automatic generation of comments from
source code.

Traditional techniques mainly generate code comments by defining heuristic rules and tem-
plates. Sridhara et al. [44] propose Software Word Usage Model (SWUM) to capture key terms
in source code and then define different templates for different semantic segments in source code
to generate readable comments. Similarly, Mcburney et al. [35] use SWUM to capture keywords
in the source code and utilize PageRank to select important Moreno et al. [36] pre-define heuristic
rules to select information and generate comments for Java classes by combining the information.
Haiduc et al. [17] exploit IR techniques, Vector Space Model, and Latent Semantic Indexing to select
relevant terms from source code and assemble them into comments. These studies usually evaluate
their approaches through human evaluation, for example, Moreno et al. [36] ask 22 graduate stu-
dents to judge the content adequacy, conciseness, and expressiveness of automatically generated
summaries for 40 Java classes.

Recently, deep learning techniques are widely used to generate comments from source code.
Generally, they exploit neural networks with Encoder-Decoder architecture in which the Encoder
learns the representation of source code and the Decoder generates natural language descriptions
from the representation. Compare to the traditional techniques, these techniques do not need man-
ually selecting keywords and defining heuristic rules. Iyer et al. [22] propose to generate comments
for C# and SQL code snippets by an RNN equipped with an attention mechanism. Hu et al. [19, 20]
integrate the AST sequences into the Seq2Seq model to generate code comments for Java methods
and achieve better results. Leclair et al. [25] then propose to use multi-encoders to deal with the
AST sequences and the source code. Alon et al. [1] propose a novel technique Code2Seq that en-
codes AST paths and generates more accurate comments. Recently, researchers have taken advan-
tage of both the retrieval technique and the neural network [50, 53]. Wei et al. [50] propose Re2Com
that generates comments with the assistance of similar code snippets and their comments. Zhang
et al. [53] propose Rencos to combine the retrieval-based and NMT-based methods. Liu et al. [31]
propose a retrieval-augmented mechanism to generate comments for C projects. They propose a
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framework named HGNN to fuse the static graph and dynamic graph to capture graph informa-
tion. LeClair et al. [24] propose a graph-based neural architecture that better matches the default
structure of the AST to generate comments. In addition, reinforcement learning is also exploited
to improve the comment generation [49] by solving the exposure bias problem during generating
comments.

Although human evaluation is accurate and convincing, it is time-consuming and high costs.
Therefore, these studies usually use automatic metrics (e.g., BLEU and ROUGE) to evaluate on a
large-scale dataset.

9.2 Commit Message Generation

Rule-based approaches use pre-defined rules and templates to generate commit messages. Delta-
Doc [6] analyze the program’s control flow between different code versions and then use the tem-
plate “do Y Instead of Z” to generate the commit messages. ChangeScribe [8, 28] also fill a pre-
defined commit message template with extracted information from corresponding source code
changes and the abstract syntax trees.

Several retrieval base approaches were proposed for the effectiveness of information retrieval
techniques. Huang et al. [21] reuse the commit messages by measuring the syntactic similarity
and semantic similarity between changed code fragments. Different from Huang et al. [21], Liu
et al. [32] not only focus on code changes and generate commit messages directly from git diffs
based on the nearest neighbor algorithm.

Deep learning models have been used to generate commit messages for git diffs in recent
years. Jiang et al. [23] and Loyola et al. [33, 34] generate commit messages based on the at-
tentional encoder-decoder model, which is a classic method in Natural Language Processing.
PtrGNCMsg [30] uses a pointer-generator network to address the OoV problem. In addition to
solving the OoV problem, CODISUM [52] combines the structure and semantics of code to gener-
ate commit messages.

10 CONCLUSION

Developers spend a great deal of time on program comprehension during software maintenance
and development. To help developers better understand programs, researchers have proposed
various methods to automatically generate documentation. Specifically, many deep learning ap-
proaches have been proposed to learn the representation of source code and then generate code
documentation. They usually evaluate models’ performance by automatic metrics that are widely
used in the NLP domain. However, there is no study to explore whether these metrics are correlated
to human evaluation metrics.

In this article, we replicate and evaluate the state-of-the-art documentation generation ap-
proaches. Then, we analyze the correlation between the automatic results and human evaluation
results (based on ratings given by 24 user study participants). We find that documentation with
higher content adequacy and conciseness scores is much more useful and helpful for code un-
derstandability. Also, our study finds that among the automated metrics, METEOR is the most
correlated to human evaluation metrics. In future work, we will improve automatic metrics and
make them more correlated to human perspectives on code documentation generation.
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