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In recent years, applying deep learning to detect semantic code clones has received substantial attention from

the research community. Accordingly, various evaluation benchmark datasets, with the most popular one as

BigCloneBench, are constructed and selected as benchmarks to assess and compare different deep learning

models for detecting semantic clones. However, there is no study to investigate whether an evaluation bench-

mark dataset such as BigCloneBench is properly used to evaluate models for detecting semantic code clones.

In this article, we present an experimental study to show that BigCloneBench typically includes semantic

clone pairs that use the same identifier names, which however are not used in non-semantic-clone pairs. Sub-

sequently, we propose an undesirable-by-design Linear-Model that considers only which identifiers appear

in a code fragment; this model can achieve high effectiveness for detecting semantic clones when evaluated

on BigCloneBench, even comparable to state-of-the-art deep learning models recently proposed for detect-

ing semantic clones. To alleviate these issues, we abstract a subset of the identifier names (including type,

variable, and method names) in BigCloneBench to result in AbsBigCloneBench and use AbsBigCloneBench

to better assess the effectiveness of deep learning models on the task of detecting semantic clones.
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1 INTRODUCTION

Code clones [32] (in short as clones in the rest of this article) are similar code snippets that share the
same semantics but may differ syntactically to various degrees. There is a common agreement that
clones should be detected and managed [20, 34] for three main reasons. First, clones unnecessarily
increase system size. As a system increases in size, more software maintenance efforts are needed.
Second, changes to a code segment, such as fault fixing, need to be made to its clones as well,
thereby increasing maintenance efforts. Also, if changes are performed inconsistently, faults could
be introduced. Third, duplicating a code snippet that contains faults leads to fault propagation.

To detect and manage clones, researchers have established a common taxonomy to group clones
into multiple types [2, 32], which encompass semantic clones, the most difficult-to-detect ones.
Type I-III clones are clone pairs that differ at token and statement levels. Type-IV clones are code
snippets with similar functionalities but with different implementations. To clarify the differences
between Type-III and Type-IV clones, previous work [39] divides these two types into the fol-
lowing four categories based on their syntactical similarity (sorted from the easiest to most dif-
ficult to detect): Very-Strong Type-III, Strong Type-III, Moderately Type-III, and Weak Type-III/
Type-IV. The two most difficult-to-detect categories of clones, i.e., Moderately Type-III and Weak
Type-III/Type-IV, are referred to as semantic clones [2, 32]. Semantic clones are difficult to detect
because they are quite different in implementations, and are not amenable for detection based on
the lexical and structural information [45, 48].

Since the emergence of clones as a research field, various traditional approaches [15, 16, 33, 36]
have focused on detecting and analyzing Type-I to Type-III clones but have had limited suc-
cess with semantic clones (i.e., Moderately Type-III and Weak Type-III/Type-IV clones). With-
out prior knowledge, these approaches cannot identify semantic clones being dissimilar in
lexical/syntactical-level implementations (e.g., bubble sort and quick sort) without considering
functional behaviors of code snippets. For example, SourcererCC [36] treats the source code under
analysis as tokens and compares subsequences to detect clones. SourcererCC is a typical lexical-
based approach that considers the similarity only in the lexical level of code snippets and ignores
the structural information. Deckard [15] uses only the structural information without considering
lexical information of code snippets.

Based on a large labeled dataset such as BigCloneBench [39] (one of the most popular bench-
marks), deep learning approaches [45, 46, 48, 49] have been proposed to detect semantic clones in
recent years. In the rest of this article, we refer a deep learning architecture before training as a deep
learning approach, and refer a deep learning model after training as a deep learning model. Existing
research has taken great efforts on proposing complicated deep learning approaches [44, 45, 48, 49]
to improve detection effectiveness with respect to evaluation metrics (e.g., precision and recall) on
BigCloneBench. These approaches usually split the dataset into the training and validation/test
sets. Their experimental results show that deep learning approaches can effectively detect seman-
tic clones by learning features from big data without manually extracting features. Deep learning
approaches perform well on detecting semantic clones because the deep learning approaches can
learn the semantic information in semantic clones from the training set.

Despite the quality of a labeled dataset being highly critical for these deep learning approaches,
there exists no study for investigating limitations of BigCloneBench when being used to assess and
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compare different deep learning approaches for detecting semantic clones, in the face of various
data quality issues increasingly reported for other software engineering tasks [1, 26]. If researchers
do not pay attention to data quality issues in the dataset, the reported effectiveness of models on
the dataset is not convincing [1, 26]. For example, code duplication issues exist (resulted from iden-
tical and similar files) in both the training/validation and test sets used to train and assess deep
learning approaches for source code [1]. Code duplication affects all evaluation metric values, and
the effects observed by end-users are often significantly worse than the effects reported by eval-
uations conducted based on the dataset. Here is another example to illustrate the impact of the
dataset on a deep learning approach. As the keynote presentation in Frontiers in AI and Robotics
(FAIR 2020) [37], some deep learning approaches distinguish dogs and wolves based on the sur-
rounding background instead of their different looks, leading to the model’s poor effectiveness on
new data. Although many research efforts have found the limitations of the dataset used by them,
there is no study to investigate the limitations of BigCloneBench when used as the benchmark to
assess and compare different deep learning approaches on semantic clone detection.

To fill this gap of lacking empirical investigation, in this article, we conduct an experimental
study to find that many semantic clone pairs from BigCloneBench use the same identifier names,
which, however, are not used in non-clone pairs. Based on this finding, we hypothesize that deep
learning approaches can achieve high metric values on BigCloneBench by considering only the
identifier name information. To validate this hypothesis, we develop an undesirable-by-design ap-
proach to detect semantic clones by utilizing only the identifier name information. This approach
is undesirable purposely because code segments from a semantic clone pair can have quite different
identifier names by definition and in practice, and detecting whether code segments are semantic
clones shall be independent of how the identifier names in these code segments are named. We
find that even this undesirable approach can achieve high effectiveness comparable to the effec-
tiveness of state-of-the-art approaches on BigCloneBench. Note that the undesirable model trained
on OJClone [27] fails to effectively detect semantic clones in OJClone, another major evaluation
dataset popularly used by the research community.

To alleviate the identified issue in BigCloneBench, we abstract a subset of the identifier names
in BigCloneBench to better assess the effectiveness of deep learning approaches (we denote the
resulting new dataset as AbsBigCloneBench) that have less reliance on the identifier name informa-
tion. Our experimental results show that the undesirable approach fails to detect semantic clones
on AbsBigCloneBench effectively. However, the state-of-the-art approaches used in our experi-
ments still perform well on AbsBigCloneBench by learning semantic features such as the lexical
and structural information from code snippets.

We also empirically assess the cross-effectiveness of deep learning approaches on Big-
CloneBench and AbsBigCloneBench. We conduct an experiment to explore whether models
trained with BigCloneBench (or AbsBigCloneBench) are also effective on AbsBigCloneBench (or
BigCloneBench). The experimental results show that models trained with AbsBigCloneBench per-
form well when applied on BigCloneBench. However, models trained with BigCloneBench cannot
be effectively applied to AbsBigCloneBench for detecting semantic clones. These results indicate
that models trained with BigCloneBench fail to detect semantic clones if the identifier names are
changed.

This article makes the following main contributions:

• Assessment. We design an undesirable-by-design approach named Linear-Model, which
can achieve high effectiveness on BigCloneBench by utilizing only the identifier name
information. Thus, deep learning approaches with high effectiveness evaluated on Big-
CloneBench may not really be effective in general. Researchers need to pay attention to
the identifier naming in BigCloneBench when using BigCloneBench to assess and compare
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deep learning approaches for detecting semantic clones. We abstract the identifier names
in BigCloneBench to produce AbsBigCloneBench, which can be used to better assess the
effectiveness of deep learning approaches on the task of detecting semantic clones. The ex-
perimental results show that abstracting the identifier names for BigCloneBench can help
better assess the effectiveness of an approach on the task of detecting semantic clones. Re-
searchers should strive to assess the effectiveness of their approaches on datasets that do and
do not abstract the identifier names, respectively, in order to provide a more comprehensive
view of approach effectiveness.
• Training. The models trained on AbsBigCloneBench have less reliance on the identi-

fier name information. Through cross-experiments between BigCloneBench and AbsBig-
CloneBench, we find that the models trained with AbsBigCloneBench are also effective on
BigCloneBench, but the models trained with BigCloneBench are not effective on AbsBig-
CloneBench.

The remainder of this article is structured as follows. Section 2 introduces the preliminary. Sec-
tion 3 details the undesirable-by-design approach named Linear-Model. Sections 4 and 5 describe
the experiments and result analysis, respectively. Section 6 introduces related work. Section 7 dis-
cusses our work. Finally, Section 8 concludes.

2 PRELIMINARY

In this section, we first introduce the problem definition of code clone detection. Then, we detail
the construction of BigCloneBench. Finally, we introduce the motivating examples of this article.

2.1 Problem Definition

Given two code snippets Ci and Cj , we set their label yi, j to 1 if (Ci ,Cj ) is a clone pair or −1
otherwise. Then a set of training data of n code snippets {C1, . . . ,Cn} can be represented as D =
{(Ci ,Cj ,yi, j )|i, j ∈ [1,n], i < j}. Our goal is to train a Linear-Model to learn a function ϕ that maps
any code snippet C to a feature vector v so that for any pair of code snippets (Ci ,Cj ), the cosine
similarity si, j of the two feature vectors vi and vj is as close to the corresponding label yi, j .

We use Equation (1) to calculate the cosine similarity of two vectors of the same dimension:

Cosin Similarity(u,v) =
u ·v

‖u‖‖v ‖
(1)

Thus, we have the following equation (Equation (2)):

si, j =
ϕ(Ci ) · ϕ(Cj )

‖ϕ(Ci )‖‖ϕ(Cj )‖
(2)

where si, j ∈ [−1, 1].
To determine whether a pair of code snippets (Ci ,Cj ) is a clone pair or not during inference, we

need to set a threshold value σ such that (Ci ,Cj ) is a clone pair if si, j ≥ σ . We choose σ empirically
based on the validation set.

2.2 BigCloneBench Dataset

2.2.1 Construction of BigCloneBench. BigCloneBench is mined from a big-data inter-project
repository IJaDataset 2.0 [13]. It covers 10 functionalities. For each functionality, its mining steps
are mainly divided into seven steps. (1) Select Target Functionality. The authors of BigCloneBench
(in short as authors in the rest of this section) select a commonly needed functionality in open-
source Java projects as its target functionality. (2) Identify Possible Implementations. The authors
review Internet discussion (e.g., Stack Overflow) and API documentation (e.g., JavaDoc) to identify

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 62. Pub. date: July 2022.



Assessing and Improving an Evaluation Dataset for Detecting Semantic Code Clones 62:5

the common implementations of the target functionality. (3) Create Specifications. The authors
create a specification of the functionality. (4) Create Sample Snippet. After obtaining the possible
implementations and a specification of the functionality in the second and third steps, the authors
then create a sample snippet, which will be used to later search for code snippets. (5) Search for
Code Snippets. The authors search for possible code snippets for the target functionality based
on the sample snippet. When searching for similar code snippets to the sample snippet, to avoid
introducing too many dissimilar code snippets and causing a lot of manual annotation burden,
from the sample snippet, the authors identify the keywords and source code patterns intrinsic
to the sample snippet with respect to implementing the functionality. Although searching with
source code patterns may result in code snippets with dissimilar identifier names to a certain
extent, searching with keywords may result in code snippets most of which have similar identifier
names. (6) Build Candidate Set. Based on the resulting code snippets in the search result from
the fifth step, the authors obtain the candidate possible code clone snippets. (7) Manual Tagging.
Finally, the authors manually confirm the candidate code snippets.

2.2.2 Typifying the Clone Types in BigCloneBench. After the authors manually mark whether
two code snippets are clone pairs, the clone types of the clone pairs are automatically marked.
Type-I normalization includes the removal of comments and a strict pretty-printing. Type-II nor-
malization expands Type-I normalization to include the systematic renaming of identifier names
and replacement of literals with default values. To identify Type-III and Type-IV clones, the authors
measure the syntactical similarity of the clones using a line-based metric after full normalization,
including the removal of comments, a strict pretty-printing, the renaming of all identifier names
to a common value, and the change of all literal values to a common value.

Although the authors use an abstract technique to distinguish between semantic clones
(Type-IV) and non-semantic clones, it is not guaranteed that semantic clones do not rely on the
identifier names. In the fifth step of the previous section, to avoid introducing a large number of
false positives, the authors search for the clone code based on the same keywords and source code
patterns. This process will lose a lot of true positives (i.e., code snippets with dissimilar identifier
names), so the semantic clones in BigCloneBench are highly dependent on the identifier names.

2.3 Motivating Example

2.3.1 Analyzing BigCloneBench. We carefully read clone pairs in BigCloneBench and OJClone.
We find that many clone pairs from BigCloneBench use the same identifier names, which are not
used in non-clone pairs. However, this observation does not exist in OJClone. In addition, we fur-
ther collect identifier names statistics by the Jaccard similarity coefficient to evaluate the similarity
of the identifier names among different functionalities of two datasets. The Jaccard similarity co-
efficient is used to measure the similarity between two sets of data. It compares members for two
sets to see which members are shared and which are distinct. The value varies from 0 to 1. The
higher the value, the more similar the two sets. It is calculated as follows:

J (X ,Y ) =
|X ∩ Y |

|X ∪ Y |

where X and Y are two sets, |X ∩ Y | is the size of the intersection of X and Y, and |X ∪ Y | is the
size of the union of X and Y.

To evaluate the similarity of the identifier names among different functionalities, we first get the
Top 20 frequent identifier names in each functionality. Then, we compute the Jaccard similarity
coefficient for every two functionalities, namely, J (Fi , Fj ) in which Fi and Fj are sets of Top 20 used
identifier names in functionalities i and j. At last, we get the average Jaccard similarity coefficient
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Table 1. Top 20 Frequent Identifier Names of Each Functionality on BigCloneBench

Functionality Top 20 frequent identifier names

Web Download InputStreamReader BufferedReader readLine URL url close

IOException openStream line toString in InputStream append

openConnection int getInputStream reader substring add length

Secure Hash (MD5) getInstance MessageDigest digest update getBytes NoSuchAlgorithm

Exception length md toString append toHexString i

UnsupportedEncodingException StringBuffer md5 hash reset

password encode text

Copy a File close FileOutputStream IOException File FileInputStream String int

write out read in InputStream copy IOUtils size FileChannel

getChannel exists OutputStream length

Decompress Zip getName File close isDirectory IOException FileOutputStream out in

ZipArchiveEntry InputStream length entry IOUtils mkdirs

getParentFile FileInputStream getNextEntry write exists copy

FTP Authenticated Login login connect FTPClient IOException disconnect getReplyCode

FTPReply isPositiveCompletion ftp logout setFileType reply

BINARY_FILE_TYPE password changeWorkingDirectory

enterLocalPassiveMode FTP close isConnected File

Bubble Sort i length j temp a bubbleSort tmp sort n swapped size list t print k get

field permut Index_value addLast

Init. SGV With Model setContents ScrollingGraphicalViewer viewer setEditPartFactory

setRootEditPart createControl ScalableFreeformRootEditPart SWT

GraphicalViewer setEditDomain shell run Shell Composite

getContents parent getShell open flush getWorkbench

SGV Selection Event Handler ISelectionChangedListener selectionChanged SelectionChangedEvent

addSelectionChangedListener event getSelection viewer setContents

setEditPartFactory setRootEditPart setContextMenu

setSelectionProvider Composite IStructuredSelection instanceof SWT

getFirstElement getSite parent createControl

Create Java Project(Eclipse) create setOutputLocation setNatureIds JavaCore setRawClasspath

IProjectDescription open Path IJavaProject getWorkspace Resources

Plugin IClasspathEntry setDescription NATURE_ID getProject

CoreException getFullPath getDescription javaProject IProject

SQL Update and Rollback executeUpdate rollback commit SQLException close

prepareStatement PreparedStatement setAutoCommit Connection

getConnection setString createStatement next setInt sql ResultSet

conn executeQuery log stmt

among different functionalities J . The details to get the average Jaccard similarity coefficient are
shown in Algorithm 1.

The Jaccard similarity coefficient among different functionalities of BigCloneBench is 0.038,
it indicates the huge differences in the identifier names among different functionalities in Big-
CloneBench. For better illustration, Table 1 shows the top 20 frequent identifier names in each
functionality. For example, programs in functionality “copy a file” usually use “file” related iden-
tifier names, but rarely used in other functionalities. On the other hand, the Jaccard similarity
coefficient of OJClone is 0.469, indicating that about half of the frequent identifier names are the
same among different functionalities. The difference of the Jaccard similarity coefficients between
the two datasets indicates that the identifier name similarity among different functionalities in OJ-
Clone is much higher than that in BigCloneBench. The reason for the difference is the different con-
struction of the two datasets. The programs of OJClone come from a programming environment
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Fig. 1. Semantic clone pair with the similar identifier names from BigCloneBench.

ALGORITHM 1: Jaccard Similarity Coefficient Statistics

1: procedure Jaccard(D) � D is the dataset
2: ls ← list()
3: for f in f unctionalities do

4: l ← dict() � Count list of identifier names in a functionality
5: for c in codes do � codes are all snippets belong to f
6: s ← set() � s is the set of identifier names in code
7: for id in identi f iernames do

8: if id not in s then

9: s .add(id)
10: if id in l then l[id] ← l[id] + 1
11: elsel[id] ← 1

12: top ← l .most_common(20) � Top 20 identifier names
13: ls .add(top)

14: sum, cnt ← 0, 0
15: for Fi , Fj in ls and i � j do

16: Ji j ← compute Jaccard(Fi , Fj )

17: sum← sum + Ji j

18: cnt ← cnt + 1
19: return sum/cnt

where students write solutions from scratch for various problems. Therefore, even for different
problems, programmers may define the same identifier names. For example, students typically de-
fine the loop variable as i when implementing a single loop and define multiple loop variables
as j,k when implementing nested loops. However, BigCloneBench is mined from a large open-
source repository where the identifier names are more related to a specific functionality. Thus, the
identifier names of code snippets that do not belong to the same functionality are quite dissimilar.

The two code snippets in Figure 1 are numbered 21,754,660 and 23,677,114, respectively, in Big-
CloneBench. These two code snippets are labeled as semantic clones in BigCloneBench. From the
figure, we can find that although they are labeled as semantic clones, their identifier names are
very similar, such as “File”, “FileInputStream”, “FileOutputStream”, “IOException”, “fis”, and “fos”.

Based on the preceding finding, we hypothesize that deep learning approaches can achieve high
metric values on BigCloneBench by considering only the identifier name information. Abstracting
the identifier names in BigCloneBench may provide a different lens for researchers to assess the
effectiveness of deep learning approaches on the task of detecting semantic clones.
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Fig. 2. Semantic clone pair from Stack Overflow post “Remove digits from a number in Java”.

2.3.2 An Example of Semantic Clone Pair with the Different Identifier Names in Real World. The
previous section analyzes in detail that the semantic clones in BigCloneBench are highly dependent
on the identifier names. Many research efforts [45, 48] have pointed out that semantic clones are
difficult to detect because semantic clones may be different in lexical implementation. Figure 2
shows an example of semantic clone pairs from Stack Overflow post “Remove digits from a number
in Java.”

3 UNDESIRABLE-BY-DESIGN MODEL

In this section, we first introduce the overall structure of our proposed undesirable-by-design
approach named Linear-Model and then explain the technical details of Linear-Model and max
pooling [31].

3.1 Approach Overview

Figure 3 shows the architecture of Linear-Model. To process a code snippet, we first use Javalang1

to parse code snippets into ASTs, as shown in Figure 4. Then we traverse all the nodes in the
AST and remove the node duplicates determined based on their IDs (e.g., “MethodDeclaration”,
“copy”, “FormalParameter”). Here we use Depth-First-Search (the way to traverse AST does not af-
fect the traversal result). Finally, the set of the node IDs that we get is “MethodDeclaration”, “copy”,
“FormalParameter”, “src”, “ReferenceType”, “String”, “dest”, and “IOException”. State-of-the-art ap-
proaches use the program information from AST nodes, including the lexical and structural infor-
mation (represented as terminal nodes identified with dashed-line boxes). Therefore, for Linear-
Model, we also leverage the sets of the traversed node IDs from ASTs to get the same lexical
information as other state-of-the-art approaches. Still we use only little structural information of
AST (e.g., “ForStatement” and “IfStatement”) for Linear-Model. A detailed explanation for Linear-
Model is shown in the next section. Then we use PACE (proposed by Yu et al. [48]) to initialize
the embeddings of node IDs before feeding the vectorized node IDs into Linear-Model with a max-
pooling layer. To detect clones, Linear-Model uses two linear matrices in parallel to process a pair
of code snippets simultaneously. The two linear matrices share the same parameters. Linear-Model
takes the output of the max-pooling layer as the feature vector of a code snippet and calculates
the cosine similarity of the two vectors. At last, Linear-Model is trained through gradient descent
back-propagation to minimize the MSE loss function:

∑

i

∑

j

(si, j − yi, j )
2 (3)

si, j and yi, j are the cosine similarity and the corresponding label of a pair code snippets, respec-
tively. In summary, Linear-Model learns to make the cosine similarity of non-clone pairs as close
to −1 as possible and the cosine similarity of clone pairs as close to 1 as possible.

1https://github.com/c2nes/javalang.
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Fig. 3. Overall architecture.

Fig. 4. An example of a code snippet, its AST, and the traversal node IDs of the AST.

3.2 Linear Operation and Max Pooling

Figure 5 shows the linear operation of Linear-Model, where there are n tokens in the set of node
IDs, and the encoding length of each token is d . Linear-Model uses a d ×m matrix for the linear
operation, and then obtains a n ×m matrix. After the linear operation, the number of tokens in the
set of node IDs is the same as before. Then max pooling is applied to each dimension in the output
vectors; each dimension corresponds to one feature detector, thereby reducing a set of node IDs
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Fig. 5. Linear operation.

with any number of tokens to a 1 ×m vector. Linear-Model uses only little structural information
of AST as Linear-Model knows only which statements (e.g., “ForStatement” and “IfStatement”)
appear in source code, but Linear-Model does not know the relationship among these statements.
In addition, Linear-Model does not consider the sequential information of source code as it tries
to see only which tokens appear in the source code.

Formally, there is 1 matrix with the set of node IDs represented by Wset ∈ R
n×d , where n and

d respectively represent the number of tokens in the set of node IDs and the vector dimension of
each token; then the output of Linear-Model is

Woutput =Wset ·Wl inear + b (4)

whereWoutput ∈ R
n×m ,Wl inear ∈ R

d×m ,b ∈ Rm .
Note that Linear-Model uses only one simple linear layer. It does not use a hidden layer to

capture the hidden features.

4 EXPERIMENTAL STUDIES

In this section, we describe the state-of-the-art approaches and datasets that we use in our exper-
imental studies. According to Yu et al. [48] and Wei et al. [45], more than 98% of clone pairs in
BigCloneBench [39] are semantic clones, and clone pairs in the OJClone dataset [27] belong to at
least Type-III clones. Both datasets are widely used in detecting semantic clones via deep learn-
ing [45, 46, 48, 49]. Therefore, we conduct experiments on BigCloneBench and OJClone to explore
whether and why “effective” approaches (assessed on BigCloneBench) based on deep learning are
not really effective in general. We also conduct experiments on AbsBigCloneBench to address that
abstracting a set of identifier names in BigCloneBench can help better assess the effectiveness of
deep learning approaches on BigCloneBench for tasks of detecting semantic clones. In addition,
we also design cross-experiments, i.e., (1) train models on BigCloneBench and test them on Abs-
BigCloneBench; and (2) train models on AbsBigCloneBench and test them on BigCloneBench.

We conduct the experiments to answer the following research questions:

• RQ1: Can the undesirable-by-design Linear-Model (by utilizing only a subset of the identifier
names) achieve high effectiveness on BigCloneBench?
• RQ2: How effective are state-of-the-art approaches and Linear-Model on AbsBig-

CloneBench?
• RQ3: How effective are state-of-the-art approaches and Linear-Model on the cross-

experiments?

We address RQ1 to point out that for the task of detecting semantic clones, the approaches based
on deep learning assessed to be effective on BigCloneBench may not be really effective in general.
We then address RQ2 to get an improved evaluation dataset named AbsBigCloneBench, which is
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Table 2. Percentage of Clone Types in BigCloneBench

Clone Type T1 T2 VST3 ST3 MT3 WT3/T4

Ratio 0.46% 0.06% 0.05% 0.19% 1.01% 98.23%

derived from BigCloneBench. Experimental results show that AbsBigCloneBench is more desirable
for differentiating state-of-the-art approaches and the undesirable approach. At last, we address
RQ3 to show that models trained with AbsBigCloneBench are also effective on BigCloneBench.

4.1 State-of-the-art Approaches

In this article, we select three state-of-the-art approaches of detecting semantic clones, includ-
ing ASTNN [49], TBCCD [48], and FA [44]. In addition, to illustrate the impact of the identifier
names in datasets, we design an undesirable-by-design approach named Linear-Model to detect
semantic clones by utilizing only the identifier name information. Linear-Model is detailed in
Section 3.

4.1.1 ASTNN. ASTNN [49] is an AST-based neural network for source code representation. It
encodes the small statement trees split from entire trees and captures both lexical and structural
knowledge of statements. Then, it applies a bidirectional RNN to produce the representation of
the entire AST from the representation vectors of statements.

4.1.2 TBCCD. TBCCD [48] is recent work for semantic clone detection. It exploits the tree-
based convolutional neural network to detect semantic clones. In addition, TBCCD includes a
position-aware character embedding technique to eliminate the impacts of unseen code tokens.

4.1.3 FA. FA [44] uses graph neural networks for detecting semantic clones. FA first adds edges
to the program’s AST to form a graph named FA-AST. Then FA applies two different types of graph

neural networks (GNNs) on FA-AST to measure the similarity of code pairs. As FA is customized
for the Java language, we do not replicate it on OJClone, which is in the C language.

4.2 Datasets

We conduct experiments on two public datasets (the other two datasets are variants of these two
datasets): BigCloneBench [40] and OJClone [27]. They are widely used benchmarks for clone de-
tection [48, 49, 51]. Table 3 shows the detailed information of the two datasets that we use.

4.2.1 BigCloneBench. BigCloneBench is a large clone detection benchmark proposed by
Svajlenko et al. [39]. BigCloneBench is mined from IJaDataset [13] and confirmed by three ex-
perts. IJaDataset [13] contains a total of 25,000 subject systems and 365M LOC. BigCloneBench
covers 10 functionalities and contains six million tagged true clone pairs, and 260,000 tagged false
clone pairs. Unlike the common taxonomy that groups clones into four types, BigCloneBench di-
vides the Type-III clone type into weak, medium, strong, and very strong. Table 2 describes the
proportion of each clone type in BigCloneBench. Semantic clone pairs (i.e., Moderately Type-III
and Weak Type-III/Type-IV) account for more than 98% among all types of clone pairs. Therefore,
many approaches exploit BigCloneBench to assess the effectiveness of approaches for detecting
semantic clones.

We use the BigCloneBench dataset to answer our RQ1.

4.2.2 OJClone. OJClone is another widely used benchmark to assess the effectiveness of ap-
proaches for detecting semantic clones. OJClone2 was proposed by Mou et al. [27]. OJClone is

2http://poj.openjudge.cn.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 62. Pub. date: July 2022.

http://poj.openjudge.cn


62:12 H. Yu et al.

Table 3. Overall Information of BigCloneBench and OJClone

Datasets Language Code snippet %Clone pair AVG Len

BigCloneBench Java 9,134 13.7 28.60
OJClone C 7,500 6.7 32.25

derived from programming assignments submitted by students. It was originally used for code
classification tasks. Later, CDLH [45], TBCCD [48], and ASTNN [49] used the OJClone dataset
for the task of detecting semantic clones. As code snippets submitted by students while solving
a specific problem share the same functionality, true clone pairs in OJClone are at least Type-III
clones. Following state-of-the-art approaches, we also select the first 15 problems of the OJClone
dataset in which each problem contains 500 solutions. In OJClone, two different code solutions that
solve the same programming problem are considered as a true clone pair; otherwise, they are con-
sidered a false clone pair. Compared with the state-of-the-art approaches on the OJClone dataset,
the undesirable-by-design Linear-Model proposed in this article is obviously invalid. Compared
with BigCloneBench, OJClone can effectively assess the effectiveness of approaches for detecting
semantic clones based on deep learning. In agreement with the experimental results, the Jaccard
similarity of the identifier names among the different problems of OJClone that we analyze shows
that OJClone is little dependent on the identifier names.

We use the OJClone dataset to answer our RQ1.

4.2.3 AbsBigCloneBench. AbsBigCloneBench is abstracted from BigCloneBench. AbsBig-
CloneBench abstracts a subset of the identifier names in BigCloneBench, such as type, variable,
and method names, and retains other tokens such as operators, basic types, and member variables.
According to the definition of clone type [2, 32, 35], the abstraction of AbsBigCloneBench will not
change the labeling of semantic clones and non-semantic clones in BigCloneBench.

We use AbsBigCloneBench to answer our RQ2 and RQ3. We aim to illustrate that abstracting
a subset of identifier names in BigCloneBench can assist BigCloneBench to more effectively as-
sess the effectiveness of approaches for detecting semantic clones based on deep learning. Models
trained on the AbsBigCloneBench dataset are also effective on the BigCloneBench dataset.

4.2.4 Over-AbsBigCloneBench. Over-AbsBigCloneBench is mentioned in Section 5.2.1. Like
Mou et al. [27] and Yu et al. [48], we also explore the effectiveness of each approach when only
non-terminal AST nodes are retained. In Figure 4, the terminal nodes are identified with dashed-
line boxes. Over-AbsBigCloneBench remains only the tokens in solid-line boxes. This article does
not emphasize Over-AbsBigCloneBench because the abstraction of Over-AbsBigCloneBench will
change the labeling of semantic clones and non-semantic clones in BigCloneBench.

We use Over-AbsBigCloneBench to show that state-of-the-art approaches on such an over-
abstraction dataset are also more effective than Linear-Model (Table 5).

4.3 Experimental Setting

For the BigCloneBench dataset, we use the same data as CDLH [45] and TBCCD [48], including
9,134 code snippets in total. We divide the dataset into the training set, validation set, and test set
according to the ratio of 8: 1: 1. Specifically, we randomly select 913 code snippets to construct the
test set, 913 code snippets to construct the validation set, and the remaining 7,308 code snippets
to construct the training set. Finally, we get 913×912

2 = 416,328 pairs in the test and validation

sets, respectively, and 7,308×7,307
2 = 26,699,778 pairs in the training set. Since the training set is

enormous, we randomly select 300,000 pairs as the training set.
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Table 4. Comparison of Different Approaches
on BigCloneBench and OJClone

Approach
BigCloneBench OJClone

P R F1 P R F1

ASTNN 0.93 0.94 0.93 0.98 0.98 0.98
TBCCD 0.94 0.95 0.95 0.99 0.99 0.99

FA 0.98 0.94 0.96 – – –
Linear-Model 0.91 0.94 0.93 0.70 0.71 0.70

P and R represent Precision and Recall, respectively. (The FA is

customized for Java programs and cannot be used to detect clones

written in C. Therefore, its results on OJClone are neglected.)

OJClone has a total of 7,500 code snippets. We also divide the training set, validation set, and
test set according to the ratio of 8: 1: 1. We randomly select 750 code snippets to construct the test
set and 750 code snippets to construct the validation set. The remaining 6,000 code snippets are
used to construct the training set. We have 750×749

2 = 280,875 pairs in the test and the validation

sets, and 6,000×5,999
2 = 17,997,000 pairs in the training set; since the training set is enormous, finally

we randomly select 300,000 pairs as the training set.
Our sampling of the training set is completely random. We construct the training set, validation

set, and test set according to 8:1:1 since this sampling is consistent with existing related work [44,
48, 49]. We replicate ASTNN, TBCCD, and FA by running the source code that they provide.

The parameters for training Linear-Model are as follows: m is 100, the number epochs that
we train Linear-Model is 10, the optimizer is SGD, and the batch size is 1. The threshold of
Linear-Model for prediction is determined with the validation set. We use TensorFlow3 to imple-
ment Linear-Model. Our code for Linear-Model and the dataset of AbsBigCloneBench are publicly
available.4

5 RESULTS

This section shows our experimental results and analysis.

5.1 RQ1: Can the Undesirable-by-design Linear-Model Achieve High Effectiveness on

BigCloneBench by Utilizing only A Subset of the Identifier Names?

5.1.1 Precision and Recall on BigCloneBench and OJClone. To assess the aforementioned hy-
pothesis, we compare Linear-Model, an undesirable-by-design approach, with state-of-the-art ap-
proaches for detecting semantic clones, i.e., ASTNN, TBCCD, and FA. Table 4 shows the Precision,
Recall, and F1 score of different approaches on BigCloneBench and OJClone.

Table 4 shows that Linear-Model can achieve equivalent effectiveness to other approaches. Both
Linear-Model and ASTNN have achieved 0.93 F1 score on the BigCloneBench dataset. We can see
that even this undesirable approach can achieve equally high effectiveness comparable to state-of-
the-art approaches on BigCloneBench.

However, the results of Linear-Model on OJClone are quite different from those on Big-
CloneBench. This undesirable approach cannot effectively detect semantic clones on OJClone. De-
sirable approaches (i.e., TBCCD, ASTNN, FA) reported by existing literature still perform well
on both BigCloneBench and OJClone datasets. According to the analysis in their papers, these

3http://www.tensorflow.org.
4https://github.com/yh1105/AbsBigCloneBench.
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approaches can detect semantic clones by capturing both the lexical and structural information in
the source code.

Experimental results show that Linear-Model can effectively detect semantic clones in Big-
CloneBench, whereas all metrics are worsened on OJClone dramatically, and the F1 score of Linear-
Model is 0.70, about 0.23 lower than that on BigCloneBench. Due to the great differences among
top used identifier names in different functionalities of BigCloneBench, Linear-Model can achieve
equivalent effectiveness as other approaches by learning these identifier names. For OJClone, it is
difficult for Linear-Model to effectively learn the similarity among code snippets by learning the
identifier names in source code, thus failing to detect semantic clones. However, state-of-the-art
approaches can learn other features, e.g., structural features in programs.

5.1.2 Researchers Need to Pay Attention to the Identifier Names in BigCloneBench When Using

BigCloneBench to Assess and Compare Deep Learning Approaches for Detecting Semantic Clones.

We design an undesirable-by-design linear model named Linear-Model to detect semantic clones
by utilizing only the identifier name information. This model is undesirable because code snippets
from a semantic clone pair can have quite different identifier names by definition, and detecting
whether code snippets are semantic clones can be independent of how the identifiers in these
code snippets are named. Therefore, it is unreasonable to use Linear-Model to detect semantic
clones because Linear-Model detects semantic clones by looking at only which tokens appear in
the code snippets. As shown in Table 4, the huge difference of the identifier names among different
functionalities in BigCloneBench helps Linear-Model achieve high effectiveness on the task of
detecting semantic clones. However, when the difference disappears (e.g., OJClone), Linear-Model
fails to detect semantic clones.

When researchers use the BigCloneBench dataset to assess the effectiveness of their approaches,
they should pay attention to mitigating the impact of the identifier names. The next section illus-
trates that the abstraction technique for a subset of the identifier names in BigCloneBench can
help better assess the effectiveness of approaches for detecting semantic clones. We introduce the
abstraction technique in detail in the next section. In summary, we find that

� Finding 1. An undesirable Linear-Model can achieve high effectiveness based on the iden-
tifier name information on BigCloneBench but fails to effectively detect semantic clones
in OJClone. It is problematic to directly use only BigCloneBench to assess the effective-
ness of approaches for detecting semantic clones, calling for further improvement before
being used.

5.2 RQ2: How Effective are State-of-the-art Approaches and Linear-Model on

AbsBigCloneBench?

To alleviate the issue in BigCloneBench discussed in RQ1, in this section, we abstract a subset
of the identifier names in BigCloneBench to better assess the effectiveness of deep learning ap-
proaches. We denote the dataset after abstracting the identifier names as AbsBigCloneBench, such
that the identifier names among code snippets with different functionalities in AbsBigCloneBench
are much more similar. This section first compares the Recall, Precision, and F1 score of Linear-
Model and state-of-the-art approaches on Over-AbsBigCloneBench. Next, we introduce how we
modify BigCloneBench to get AbsBigCloneBench. Then, we compare the Recall, Precision, and F1
score of Linear-Model and the state-of-the-art approaches on AbsBigCloneBench. Finally, we dis-
cuss why AbsBigCloneBench is more desirable than BigCloneBench for assessing the effectiveness
of deep learning approaches.
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Table 5. Comparison of Different Approaches
on Over-AbsBigCloneBench

Approach Precision Recall F1 ΔF1

ASTNN 0.80 0.67 0.73 –0.20
TBCCD 0.62 0.71 0.66 –0.29

FA 0.77 0.76 0.77 –0.19
Linear-Model 0.42 0.25 0.44 –0.49

The experimental results and Jaccard similarity coefficient show that abstracting the identifier
names in BigCloneBench can help better assess the effectiveness of an approach for detecting
semantic clones.

5.2.1 Recall, Precision, and F1 Score of Different Approaches on Over-AbsBigCloneBench. Like
Mou et al. [27] and Yu et al. [48], to further explore the impacts of code tokens on clone detection,
we first conduct an experiment on AST without the lexical information. Noticing that the lexical
information is located in the terminal nodes of the ASTs, we remove all terminal nodes from the
ASTs to generate partial ASTs. We feed state-of-the-art approaches with partial ASTs for this exper-
iment. We apply the traversed text from partial ASTs as input for Linear-Model to detect semantic
clones. Figure 4 shows that the terminal node is identified with dashed-line boxes. For the experi-
ment on Over-AbsBigCloneBench, a partial AST used for state-of-the-art approaches includes only
identifiers with solid-line boxes, and the text used for Linear-Model is “MethodDeclaration”, “For-
malParameter”, “ReferenceType”, and “IOException”. As all the code token information is removed,
the partial AST mainly contain the structural information, the text traversed from ASTs contain
only little structural information (e.g., ForStatement and IfStatement). Table 5 shows that when
more information in the dataset is removed (all terminal node information is removed), the state-
of-the-art approaches are more effective than Linear-Model by capturing the program’s structural
information. However, if we remove all code tokens (remove all terminal nodes and keep only
non-terminal nodes in the program’s AST), this removal will lose a lot of semantic information in
the program.

5.2.2 How We Modify BigCloneBench to Get AbsBigCloneBench. Considering the common tax-
onomy of clone types [2, 32, 35], we abstract a subset of the identifier names in the source code
and obtain AbsBigCloneBench to better assess the effectiveness of deep learning approaches. In
particular, we abstract a subset of the identifier names, including type, variable, and method names
in the code snippets to obtain AbsBigCloneBench. The other tokens, such as operators, basic types,
and member variables are kept as the original ones to retain programs semantics. API invocations
are essential for implementing the functionality of programs, so we keep these API invocations in
AbsBigCloneBench. The abstraction technique is similar to Harer et al. [24] and Li et al. [9]. We dis-
cuss the abstraction technique used by Harer et al. and Li et al. in Section 6. Finally, our abstraction
technique abstracts the type names, variable names, and method name for a method in the code
snippets. Figure 6 shows an example of code snippet in BigCloneBench and AbsBigCloneBench.

After building the AbsBigCloneBench dataset, we compare the Jaccard similarity coefficient of
BigCloneBench and AbsBigCloneBench. The Jaccard similarity coefficients of the identifier names
among different functionalities in BigCloneBench and AbsBigCloneBench are 0.038 and 0.484,
respectively, indicating that AbsBigCloneBench is less dependent on the identifier names than
BigCloneBench.

5.2.3 Recall, Precision, and F1 Score of Different Approaches on AbsBigCloneBench. Simi-
lar to RQ1, we compare different approaches on AbsBigCloneBench to investigate whether
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Fig. 6. An example of code snippet in BigCloneBench and AbsBigCloneBench.

Table 6. Comparison of Different Approaches
on AbsBigCloneBench

Approach Precision Recall F1 ΔF1

ASTNN 0.94 0.82 0.93 0
TBCCD 0.92 0.96 0.94 –0.01

FA 0.96 0.95 0.96 0
Linear-Model 0.81 0.88 0.83 –0.10

ΔF1 score indicates the relative improvement (worsening)

compared to F1 scores on BigCloneBench in Table 4.

AbsBigCloneBench can be used as an evaluation dataset to assess the effectiveness of deep learn-
ing approaches on detecting semantic clones. The results are shown in Table 6, where ΔF1 is the
relative improvement (worsening) compared to the F1 on BigCloneBench in Table 4.

Table 6 shows a substantial decrease in both the Precision and the Recall of Linear-Model com-
pared to state-of-the-art approaches on AbsBigCloneBench. Compared to the results shown in
Table 4, the state-of-the-art approaches can achieve equivalent effectiveness on AbsBig-
CloneBench. Although the identifier names are abstracted, the approaches can perform well by
learning other semantic features such as the structural information from code snippets. How-
ever, it is limited for Linear-Model to learn other features while detecting semantic clones on
AbsBigCloneBench. As we abstract a subset of the identifier names, including type, variable, and
method names, the identifier names among code snippets with different functionalities in Abs-
BigCloneBench are much more similar than that in BigCloneBench. Therefore, Linear-Model may
recognize some false clone pairs in AbsBigCloneBench as true clone pairs, thus decreasing the
Precision on AbsBigCloneBench. On the other hand, it is also difficult for Linear-Model to learn
features in true clone pairs, so the Recall also drops substantially.

We also compare Precision-Recall (PR) curves and AUC values of different approaches on
BigCloneBench and AbsBigCloneBench, respectively. As shown in Figure 7, the AUC value of
Linear-Model on AbsBigCloneBench is substantially lower than that on BigCloneBench. The AUC
values of state-of-the-arts approaches on AbsBigCloneBench are almost the same as those on Big-
CloneBench. This result further shows that biases introduced from the subset of the identifier
names can be reduced by abstracting them.

5.2.4 Why Can AbsBigCloneBench Help BigCloneBench Better Assess the Effectiveness of Ap-

proaches for Detecting Semantic Clones? AbsBigCloneBench is derived from BigCloneBench by
abstracting a subset of the identifier names, including type, variable, and method names. The sub-
set of the identifier names can be totally different according to the definition of semantic clones.
As semantic clones are functionally similar, we keep API invocations essential for implementing
the functionalities of programs. After abstracting a subset of the identifier names, the Jaccard
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Fig. 7. PR curves and AUC of different approaches on BigCloneBench and AbsBigCloneBench.

similarity coefficient of AbsBigCloneBench improves to 0.484 from 0.038. The great improvement
demonstrates the great increase of the similarity of the identifier name usage among different
functionalities.

To show whether AbsBigCloneBench can be used to assess different deep learning approaches,
we first compare Linear-Model with other approaches on AbsBigCloneBench. Table 6 shows that
state-of-the-art approaches still perform well on AbsBigCloneBench, whereas the undesirable-by-
design Linear-Model has a substantial effectiveness decline. Additionally, instead of achieving
equivalent effectiveness to other approaches on BigCloneBench, Linear-Model is 0.10-0.13 lower
than others in terms of F1. The Precision-Recall curve and AUC value in Figure 7 also shows that
Linear-Model cannot detect semantic clones well on AbsBigCloneBench. The experimental results
show that AbsBigCloneBench can better differentiate state-of-the-art approaches and the undesir-
able approach in terms of their effectiveness demonstrated on the evaluation dataset.

In summary, after comparing the results of many deep learning approaches in BigCloneBench
and AbsBigCloneBench, we find that

� Finding 2. Desirably abstracting the identifier names for BigCloneBench can help dif-
ferentiate the state-of-the-art approaches and the undesirable approach in terms of their
effectiveness demonstrated on the evaluation dataset. Abstracting the identifier names
for BigCloneBench can help better assess the effectiveness of an approach for detect-
ing semantic clones. In other words, abstracting the identifier names for BigCloneBench
can help illustrate an approach’s reliance on the identifier names for detecting semantic
clones.
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Table 7. Comparison of Different Approaches
on the Cross-experiments

Approaches Precision Recall F1 Δ F1

Train: BigCloneBench Test: AbsBigCloneBench
ASTNN 0.69 0.63 0.66 –0.27
TBCCD 0.63 0.72 0.67 –0.28

FA 0.87 0.74 0.80 –0.16
Linear-Model 0.58 0.60 0.59 –0.34

Train: AbsBigCloneBenchTest: BigCloneBench
ASTNN 0.93 0.88 0.91 –0.02
TBCCD 0.91 0.92 0.92 –0.02

FA 0.95 0.92 0.94 –0.02
Linear-Model 0.75 0.70 0.73 –0.10

Δ F1 score indicates the relative improvement (worsening)

compared to F1 scores in Tables 4 and 6.

5.3 RQ3: How Effective are State-of-the-art Approaches and Linear-Model on the

Cross-experiments?

In this section, we conduct cross-experiments to explore whether models trained with Big-
CloneBench (AbsBigCloneBench) are also effective on AbsBigCloneBench (BigCloneBench). The
cross-experiments are divided into two groups: (1) train models on BigCloneBench and test them
on AbsBigCloneBench; (2) train models on AbsBigCloneBench and test them on BigCloneBench.
In the end of this section, we provide three practical assessment techniques to check whether a
dataset is reasonable for assessing the effectiveness of an approach for detecting semantic clones
based on deep learning.

5.3.1 Different Models Trained on BigCloneBench and Tested on AbsBigCloneBench. Table 7
shows the different models on the cross-experiments in BigCloneBench and AbsBigCloneBench.
The F1 score and Δ F1 score (i.e., scores in the upper part) in Table 7 show that all models trained
on BigCloneBench do not work well on AbsBigCloneBench. The experimental results indicate
that these models are not effective on another dataset (i.e., AbsBigCloneBench) with different
identifier names (e.g., type, variable, and method names). Models trained on BigCloneBench do
not work well on AbsBigCloneBench because models trained on BigCloneBench can achieve con-
vergence quickly by using the identifier name information. Using BigCloneBench is limited for
all approaches (i.e., ASTNN, TBCCD, FA, and Linear-Model) to effectively learn the lexical and
structural information. Therefore, when the identifier names in the test set are different from the
training set, the state-of-the-art approaches cannot effectively detect semantic clones. In summary,
we find that

� Finding 3. Models trained on BigCloneBench are not effective on AbsBigCloneBench,
but models trained on AbsBigCloneBench (except Linear-Model) are still effective on
BigCloneBench. The experimental results of the cross-experiments suggest that AbsBig-
CloneBench provides a more comprehensive view of an approach’s effectiveness that is
less reliant on the identifier names than BigCloneBench.

5.3.2 Different Models Trained on AbsBigCloneBench and Tested on BigCloneBench. As shown
in Table 7, models (except Linear-Model) trained on AbsBigCloneBench still perform well on Big-
CloneBench. From the Δ F1 score in Table 7, we find that the results of Linear-Model have a sub-
stantial decline, i.e., 0.10 in terms of the Δ F1 score compared to other approaches (i.e., 0.01). As
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Linear-Model captures features from the identifier names, the effectiveness of Linear-Model de-
creases when the identifiers in the test set are different from the training set. However, the state-
of-the-art approaches show only a slight decrease. After abstracting the subset of the identifier
names in the training set, the state-of-the-art approaches mainly rely on the structural informa-
tion to learn functional similarities between semantic clone pairs. The effectiveness of the state-of-
the-art approaches would not be affected when applied to other datasets with different identifier
names. In summary, we find that

� Finding 4. Models trained on AbsBigCloneBench are also effective on BigCloneBench.

5.3.3 Three Dataset Properties. Tables 4 and 6 show that both AbsBigCloneBench and OJClone
can be used to better assess an approach’s effectiveness of detecting semantic clones than Big-
CloneBench. Here we propose three dataset properties to check whether a dataset can be used for
assessing the effectiveness of an approach based on deep learning. We denote the dataset (consist-
ing of the training, validation, and test sets) before abstraction as pre-abstraction dataset, and the
dataset (consisting of the training, validation, and test sets) after abstraction as post-abstraction

dataset. In addition, we use mixed dataset to denote a dataset that consists of the training and
validation sets from the pre-abstraction dataset and the test set from post-abstraction dataset.

• Property 1: Preserving effectiveness ranking of the given approaches assessed

across the pre-abstraction dataset and the post-abstraction dataset.
The relative effectiveness ranking of the given approaches assessed on the pre-abstraction

dataset shall be the same or similar as the ranking of the given approaches assessed on the
post-abstraction dataset.
• Property 2: Preserving effectiveness of the given approach assessed across the pre-

abstraction dataset and the mixed dataset. The effectiveness of the given approach as-
sessed on the pre-abstraction dataset shall be the same or similar as the effectiveness of the
approach assessed on the mixed dataset.
• Property 3: Achieving ineffectiveness with an undesirable approach assessed on the

post-abstraction dataset.
An undesirable approach (such as Linear-Model, which relies upon only the identifier

names) shall be ineffective on the post-abstraction dataset, performing worse than state-of-
the-art approaches assessed on the post-abstraction dataset.

6 RELATED WORK

In this section, we introduce the related work of identifier normalization, code clone detection,
and learning from big code.

6.1 Identifier Normalization in Software Engineering

The techniques of abstracting identifier names have been applied in many approaches based
on deep learning for software engineering tasks. In the task of vulnerability detection, Li
et al. [24] abstract identifier names to reduce their approach’s dependence on the identifier names.
Li et al. first remove the comment information in the given code snippets, then abstract away the
variable names in the code snippets, and finally abstract away the custom method names in the
code snippets. In addition to the variable and method names, Harer et al. [9] also abstract constants
in code snippets. Kim et al. [17] abstract formal parameter names, local variable names, data type
names, and method names to detect vulnerabilities. They normalize the method body by remov-
ing the comments, whitespaces, tabs, and line feed characters and converting all characters into
lowercase.
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In the task of code completion, Cummins et al. [5] automatically synthesize a large number of
OpenCL benchmarks by learning a character-level LSTM over valid OpenCL code. The goal of
the OpenCL benchmarks is to generate reasonable-looking code rather than synthesizing a pro-
gram that complies with a specification. To ease the task of synthesizing the OpenCL benchmarks,
Cummins et al. normalize the code by consistently renaming variables and method names. For
Python code, Bhoopchand et al. [3] use a token sparse pointer-based neural model that learns to
copy recently declared identifier names to capture long-range dependencies of the identifier names.
Bhoopchand et al. normalize the identifier names before feeding the resulting token stream to their
approach. Also, Bhoopchand et al. replace each identifier name with an anonymous identifier name
indicating the identifier group (class, variable, argument, attribute, or function) concatenated with
a random number that makes the identifier names unique in the scope of the identifier group.

In the task of clone detection, many researchers pay attention to the abstraction of identifier
names. Roy and Cordy [33] propose a tool to use flexible code normalization, which is not simply
limited to global replacement (e.g., replacement of all identifier and literal names), or simple ab-
straction (e.g., abstraction of loop bodies). Tool users can choose to normalize the specific parts
that the users expect to vary. Kamiya et al. [16] design multiple transformation rules (e.g., “Remove
namespace attribution”, “Remove template parameters”, and “Remove initialization lists”) for C++
code, and rules (“Remove package names”, “Supplement callees”, and “Separate class definitions”)
for Java code to abstract the identifier names. Although many approaches for code clone detection
have applied identifier abstraction techniques, they are all different from our application scenarios.
First, they are not based on deep learning. Second, they focus on improving the effectiveness of
clone detection through abstracting the identifier names, while we focus on assessing the effec-
tiveness of deep learning approaches for detecting semantic clones.

6.2 Code Clone Detection

Code clone detection is an important research problem in the field of software engineering. De-
tecting clones can help reduce the cost of software maintenance and prevent faults. Clones are
similar code snippets that share the same semantics but may differ syntactically to various de-
grees. One common taxonomy among researchers is to group clones into four types, i.e., Type-I to
Type-IV [2, 32, 35]. Type I-III clones are clone pairs that differ at the token and statement levels.
Type-I clones are identical code snippets in addition to variations in comments and layout. Apart
from Type-I clones, Type-II clones are identical code snippets except for different identifier names
and literal values. Apart from Type-II clones, Type-III clones are syntactically similar code snip-
pets that differ at the statement level. Apart from Type-III clones, Type-IV clones are functionally
similar code snippets with different implementations. The difference in the identifier names does
not affect the Type-II, Type-III, and Type-IV clones.

Many approaches have been proposed to detect clones. These approaches mainly measure the
similarity among code representations varying from lexical-based [16, 18, 28, 33, 36, 43], structural-
based [6–8, 15], and graph-based [19, 21, 25, 29] representations. CCFinder [16] and Sourcer-
erCC [36] detect clones according to the comparison of tokens. Deckard [15] detects clones by
comparing the structural similarity between the ASTs.

Deep learning approaches [23, 47–49, 51] have recently received substantial attention for clone
detection. White et al. [47] propose to learn latent features for source code via a recursive auto-
encoder over ASTs. To detect Type-IV clones effectively, Wei et al. [45] formulate code clone
detection as a supervised learning task. They propose an end-to-end deep learning approach
named CDLH to learn hash codes from the lexical and structural information. Zhao et al. [51]
propose DeepSim to measure functional similarity. DeepSim encodes the program’s control flow
graph and data flow graphs into matrices and then uses them to train a deep learning model to
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compute the similarity between two code snippets. Yu et al. [48] propose TBCCD to detect seman-
tic clones using tree-based convolutional neural network capturing both the lexical and structural
information of code snippets.

6.3 Learning from Big Code

Large open-source software systems [42, 50] have arisen and been ubiquitous in recent years. They
provide billions of code tokens for various software engineering tasks, such as code clone detec-
tion [44, 48], bug fixes [30], and code summarization [10–12]. The availability of “Big Code” sug-
gests new data-driven approaches for learning statistical distributions from source code. These
approaches estimate distributional properties over large and representative software corpora.

Deep learning approaches have a powerful ability to generalize from “Big Code” and handle
noise in code examples. Various deep learning approaches have been proposed to address software
engineering tasks. Research in the “Big Code” area relies on a large corpora of code. However, a
few studies address issues with the “Big Code”. Allamani [1] describes the impact of code dupli-
cation on deep learning approaches, and finds that code duplication can cause the evaluation to
overestimate deep learning approaches. LeClair et al. [22] address the problem of identifier names
in summarizing source code by using a project dataset without words from source code.

7 DISCUSSION

In this section, we first discuss the implications and limitations of our work. Then we discuss why
we choose Linear-Model to compare with state-of-the-art approaches, and make clarification: we
do not emphasize that the identifier names of semantic clones should not be similar. Finally, we
show the effectiveness of SVM on BigCloneBench, OJClone, and AbsBigCloneBench.

7.1 Implications

7.1.1 Assessing the Effectiveness of Deep Learning Approaches for Detecting Semantic Clones. We
point out an essential issue in BigCloneBench, widely used in clone detection; other researchers
have not noticed this issue. We notice that BigCloneBench is used to assess the effectiveness of
many approaches based on deep learning. However, researchers do not notice that the undesirable-
by-design approach (Linear-Model) can still achieve high effectiveness on BigCloneBench due to
BigCloneBench’s substantial dependence on the identifier information. We point out this issue,
which has not been noticed by researchers before, and propose to alleviate this issue through ab-
stracting a subset of the identifier names. The experimental results also show that abstracting the
identifier names in BigCloneBench can help better assess the effectiveness of approaches for detect-
ing semantic clones based on deep learning. In addition, the models trained on AbsBigCloneBench
are also effective on BigCloneBench.

7.1.2 Possible Scenarios. Not only AbsBigCloneBench can be used to better assess the effective-
ness of approaches for detecting semantic clones, models trained on AbsBigCloneBench also have
meaningful application scenarios. For example, for the task of malware and vulnerability detec-
tion, approaches need to learn the behavioral characteristics of the malware and vulnerabilities;
such learning is not feasible when using only the identifier information. Assisting programming
learners to search for more diverse implementations can be another application scenario.

7.2 Limitations

BigCloneBench is mined from real world projects. In many real world projects, the identifier
names in the code snippets that belong to a semantic clone pair may be similar. If we abstract
the identifier names in BigCloneBench to result in AbsBigCloneBench, AbsBigCloneBench may be
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different from the real world scenario, and AbsBigCloneBench may also increase the difficulty of
detecting semantic clones. Here we argue that if an approach is assessed to be effective on AbsBig-
CloneBench with the identifier names abstracted away, the approach will still be effective in the
real world project (i.e., BigCloneBench).

7.3 Why Do We Choose Linear-Model to Compare with State-of-the-art Approaches?

We design an undesirable-by-design approach named Linear-Model to point out the negative im-
pact of the identifier names on semantic clone detection via deep learning. Section 3 introduces
the configuration of Linear-Model in detail. We ensure that Linear-Model does not consider the
sequential information of source code as it tries to see only which tokens appear in the source code.
Compared to Linear-Model, state-of-the-art approaches deeply capture the structural information
of a code snippet while detecting semantic clones. For example, TBCCD captures the structural in-
formation of a code snippet and a token’s position in the AST to detect semantic clones. CDLH uses
AST-based LSTM to capture both lexical and structural information of the code snippet. ASTNN
divides the AST of a code snippet into multiple subtrees; after the vector representation of the sub-
tree is obtained, the structural information of the code snippet is captured through the bidirectional
GRU. We choose the undesirable Linear-Model to assess whether it can perform well by using only
the identifier name information to detect semantic clones on BigCloneBench. Linear-Model can
be replaced by other deep learning approaches that utilize only the identifier name information.

7.4 Do We Emphasize That the Identifier Names of Semantic Clones Should

Not Be Similar?

Some researchers may argue that the identifier name information is meaningful for detecting se-
mantic clones in the real world scenarios. In this article, we are not saying that the identifier names
of two code snippets belonging to a semantic clone pair should not be similar; we just emphasize
that the identifier names of the semantic clone pair can be different, and the identifier names in the
code snippets can cause confusion when the effectiveness of deep learning approaches is assessed.
According to the common taxonomy of clone types [2, 32, 35], the identifier names can differ if
two code snippets belong to a semantic clone pair. AbsBigCloneBench can eliminate the impact of
the identifier name information on detecting semantic clones as much as possible, so abstracting
the identifier names in BigCloneBench can help better assess the effectiveness of deep learning
approaches on the task of detecting semantic clones.

7.5 Will a Traditional Machine Learning Approach Achieve Results

as Good as Linear-Model?

Before deep learning algorithms became popular, Support Vector Machine (SVM) [4, 38, 41]
were one of the most popular machine learning models. For the clone detection task, Jadon [14]
proposes to detect clones by SVM. We also compare the effectiveness of SVM (a non-deep learning
approach) on BigCloneBench and OJClone. We first perform lexical analysis on code snippets to
obtain the tokens of the code snippets. Similar to the text classification task with SVM, we stitch
two code snippets into a text and treat the clone detection task as a binary classification task. The
F1 score of SVM on BigCloneBench can reach 0.75, while reaching 0.11 on OJClone (the F1 score
of Linear-Model on BigCloneBench can reach 0.93, while reaching 0.70 on OJClone). The F1 scores
of SVM on BigCloneBench and OJClone are lower than Linear-Model; the reason is that SVM is
still inferior to Linear-Model in terms of the ability to capture features. One of the advantages of
a deep learning approach is that it captures hidden features. Consistent with Linear-Model, the
experimental results show that SVM works on BigCloneBench, but does not work on OJClone.
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8 CONCLUSION

In this article, we have found that the semantic clones in BigCloneBench heavily rely on the iden-
tifier name information. According to the definition of clone type, the identifier names of semantic
clones can be different. We have conducted an experimental study on BigCloneBench to compare
the effectiveness of an undesirable-by-design approach named Linear-Model and other state-of-
the-art deep learning approaches. The experimental results show that it is questionable to use only
BigCloneBench to assess the effectiveness of approaches for detecting semantic clones. To alleviate
the impact of the identifier names in BigCloneBench, we abstract a subset of the identifier names
in BigCloneBench to produce a new dataset named AbsBigCloneBench. The experimental results
show that abstracting the identifier names for BigCloneBench can help differentiate the state-of-
the-art approaches and the undesirable approach in terms of their effectiveness demonstrated
on the evaluation dataset. Models trained with AbsBigCloneBench are desirably less dependent
on the identifier names than those trained with BigCloneBench. In addition, models trained with
AbsBigCloneBench are also effective on BigCloneBench, but models trained with BigCloneBench
are not effective on AbsBigCloneBench.

We hope that our work can inspire future research on using deep learning for semantic clone
detection; researchers need to pay attention to whether using only the identifier name information
in the dataset can achieve good effectiveness. Researchers also need to pay attention to whether
similar problems exist in the used evaluation benchmarks for other software engineering tasks.
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