
A Large-Scale Empirical Study of Open Source License Usage:
Practices and Challenges

Jiaqi Wu

The State Key Laboratory of

Blockchain and Data Security,

Zhejiang University

Hangzhou, Zhejiang, China

jiaqiwu@zju.edu.cn

Lingfeng Bao
∗

The State Key Laboratory of

Blockchain and Data Security,

Zhejiang University

Hangzhou, Zhejiang, China

lingfengbao@zju.edu.cn

Xiaohu Yang

The State Key Laboratory of

Blockchain and Data Security,

Zhejiang University

Hangzhou, Zhejiang, China

yangxh@zju.edu.cn

Xin Xia

Huawei

China

xin.xia@acm.org

Xing Hu

The State Key Laboratory of

Blockchain and Data Security,

Zhejiang University

Hangzhou, Zhejiang, China

xinghu@zju.edu.cn

ABSTRACT

The popularity of open source software (OSS) has led to a significant

increase in the number of available licenses, each with their own

set of terms and conditions. This proliferation of licenses has made

it increasingly challenging for developers to select an appropriate

license for their projects and to ensure that they are complying with

the terms of those licenses. As a result, there is a need for empirical

studies to identify current practices and challenges in license usage,

both to help developers make informed decisions about license

selection and to ensure that OSS is being used and distributed in

a legal and ethical manner. Moreover, the development of new

licenses might be required to better meet the needs of the open

source community and address emerging legal issues.

In this paper, we conduct a large-scale empirical study of license

usage across five packagemanagement platforms, i.e.,Maven,NPM,

PyPI, RubyGems, and Cargo. Our objective is to examine the cur-

rent trends and potential issues in license usage of the OSS com-

munity. In total, we analyze the licenses of 33,710,877 packages

across the selected five platforms. We statistically analyze licenses

in package management platforms from multiple perspectives, e.g.,

license usage, license incompatibility, license updates, and license

evolution. Moreover, we conduct a comparative study of various

aspects of core packages and common packages in these platforms.

Our results reveal irregularities in license names and license incom-

patibilities that require attention. We observe both similarities and

differences in license usage across the five platforms, with Cargo

∗
*Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MSR ’24, April 15–16, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0587-8/24/04

https://doi.org/10.1145/3643991.3644900

being the most standardized among them. Finally, we discuss some

implications for actions based on our findings.

KEYWORDS

OSS Licenses, Empirical Study, Package Management Platform

ACM Reference Format:

Jiaqi Wu, Lingfeng Bao, Xiaohu Yang, Xin Xia, and Xing Hu. 2024. A Large-

Scale Empirical Study of Open Source License Usage: Practices and Chal-

lenges. In 21st International Conference on Mining Software Repositories (MSR

’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3643991.3644900

1 INTRODUCTION

The use of open source software (OSS) has become increasingly

prevalent in recent years due to its many benefits, such as cost

savings, flexibility, and the ability to collaborate with a large com-

munity of developers. OSS licenses that comply with the Open

Source Definition [5] play an important role in ensuring the sus-

tainability of the OSS community [23, 34] because they provide

legal terms and conditions under which the software can be used,

modified, and distributed by others, while also protecting the rights

of the original creator.

However, the variety of OSS licenses is constantly expanding,

with many organizations and individuals developing their own

licenses to cater to specific needs and situations. There are currently

over 450 different licenses in existence, according to the SPDX

license list [38] which is maintained by the Linux Foundation’s

SPDX project. This comprehensive list comprises commonly found

licenses and exceptions used in free and open or collaborative

software, data, hardware, or documentation. Each license contains

its own set of terms and conditions, posing a great deal of challenges

and complexities for software developers and businesses.

Moreover, the reuse of OSS components or modules to construct

a software system can be a cost-effective approach for businesses

to minimize software development expenses [19, 32]. However,

integrating third-party OSS components can easily trigger legal

https://doi.org/10.1145/3643991.3644900
https://doi.org/10.1145/3643991.3644900


MSR ’24, April 15–16, 2024, Lisbon, Portugal Jiaqi Wu, Lingfeng Bao, Xiaohu Yang, Xin Xia, and Xing Hu

risks [47, 48]. Various OSS software and tools employ distinct li-

censes, failing to adhere to the respective obligations during the

integration of third-party OSS components can result in license

incompatibility issues [24].

Many previous studies have investigated license usage in OSS

software, but most of them were not conducted in the data of the

package management platform [22, 31, 34, 41]. Instead, compared

with the data from other environments such as GitHub which are of-

ten personal projects and class projects [26], the data from the pack-

age management platform are often more mature. Meloca et al. [33]

studied the use of non-OSI-approved licenses in package manage-

ment platforms. They investigated the usage, impact, and adoption

of non-OSI-approved licenses in three package management plat-

forms (i.e., NPM [3], RubyGems [4], and CRAN [1]), and found that

most of the non-OSI-approved licenses were related to the absence

of a license. Their study only focused on non-OSI-approved licenses

and not on more OSI licenses, while they categorized the absence

of licenses as non-OSI-approved licenses without further differ-

entiation studies. Qiu et al. [36] conducted an empirical study on

NPM [6] data to investigate the prevalence of dependency-related

license violations and conducted a preliminary questionnaire on the

authors of packages detected as having dependency-related license

violations. However, their study was conducted only on NPM, and

the content and scope of the questionnaire were too small to be

statistically significant.

In this paper, we conduct a large-scale empirical study to inves-

tigate the usage of OSS licenses by building a large dataset, which

contains the metadata of all packages in five popular platforms, i.e.,

Maven [3], NPM [6], PyPI [2], RubyGems [4], and Cargo [7]. For

each version of a package, we extract its metadata including the

declared license information, release time, its dependencies, etc.

The constructed dataset consists of a total of 33,710,877 versioned

packages across the selected five platforms.

We design an algorithm to accurately extract the license infor-

mation for each versioned package. Our algorithm is capable of

distinguishing SPDX licenses, unspecified licenses, and incomplete

licenses. A SPDX license means a license that clearly and unambigu-

ously provides the full name or identifier of the license in the SPDX

license list. Unspecified licenses refer to licenses that do not provide

any licensing information or provide information that cannot be

identified. Incomplete licenses, on the other hand, are licenses that

do not provide the full name of the license but provide only a partial

name without specifying the version, for example, “BSD” or “GNU

GPL”.

In this study, we statistically analyze the license usage of pack-

age management platforms from multiple perspectives. First, we

analyze basic information about license usage across the selected

platforms, such as the ratio of SPDX licenses and license type pref-

erences. Our findings reveal a high percentage of unspecified and

incomplete licenses, and each platform exhibits its own unique pref-

erences in license usage, as well as some commonalities. Second,

we investigate license changes and find that the license change

ratio is not high. We also study license changes between single

and multi-licenses as well as license changes with different restric-

tions. Third, we check incompatibility issues in packages across

different platforms with two tools (i.e., LiDetector [50] and License-

compatibility [29]). We find that the incompatibility rate is below

8% for all platforms and that the clause most likely to cause incom-

patibility is Sublicense, which pertains to the ability of developers to

grant/extend a license to the software. Fourth, we analyze license

evolution with the temporal information of packages to determine

the life cycle and popularity of each license and the evolution of the

most popular licenses over time. We find that the annual growth

rate of distinct licenses has slowed and that Apache-2.0 is on track

to overtake MIT as the most popular license. Finally, we identify

the core packages for different platforms by building a dependency

graph of the packages and analyze the differences in license us-

age between the overall packages and the core packages. We find

more license incompatibility in core packages on platforms other

than Cargo, which in general is the most standardized package

management platform for licenses.

We make the following contributions in our study:

• We conduct a statistical analysis of the usage of licenses in the

current open-source landscape, based on data from five package

management platforms. We examine the preferences of different

package management platforms for different licenses. We provide

a replication package [14] to foster future work, in line with good

research practices.

• We track the trends in the usage of different licenses over time,

as well as the evolution in the usage of licenses over time across

the five package management platforms.

• We examine the results of license incompatibility among the

overall and popular versioned packages in the five package man-

agement platforms, and analyze the terms that are most likely to

cause license incompatibility.

2 EXPERIMENT SETUP

2.1 Dataset

In this study, we select five package management platforms, i.e.,

Maven, NPM, PyPI, RubyGems, and Cargo. All these platforms

are popular and provide convenient APIs or data dumps to collect

their versioned package metadata. We collect the metadata of all

the versioned packages for each platform as follows:

• Maven: We get a completeMaven package list fromMaven’s

official website [9]. For each package in the list, we download

the pom.xml file that contains its metadata.

• NPM: We get the complete NPM package list through the node.js

mirror service [10], and then crawl the metadata of each package.

• PyPI: We collect all the metadata of packages from a dataset

hosted on the Google Big Query [11].

• RubyGems: We get the metadata of all packages from the weekly

dump of the RubyGems.org PostgreSQL data [12].

• Cargo: We get the package metadata from its daily database

dump [8].

The metadata of Maven, NPM and PyPI is in JSON format, and

the metadata of RubyGems and Cargo is in PostgreSQL database

file format. Figure 1 shows two examples of metadata and the con-

tents have been partially adjusted to show. The cut-off date for

all platforms is unified on December 31, 2022. Based on the col-

lected metadata, we extract the following fields for each versioned

package, i.e., name, version, license, dependencies, and release time.

However, the license information may not be included in the POM



A Large-Scale Empirical Study of Open Source License Usage: Practices and Challenges MSR ’24, April 15–16, 2024, Lisbon, Portugal

Table 1: Overall statistics of five platforms.

Platform #Package #Versioned Package

Maven 513,939 10,288,841

NPM 2,182,959 29,750,552

PyPI 485,223 4,413,827

RubyGems 188,807 1,427,793

Cargo 103,850 709,755

"name": "be-plugin-antd-theme",
"version": "1.0.0",
"license": "MIT",
"time": "2022-09-15T03:35:20.759Z",
"dependencies": {

"antd-pro-merge-less": "^3.0.11",
"rimraf": "^3.0.0",
"serve-static": "^1.14.1",
"slash2": "^2.0.0"

}

(a) NPM.

"name": "django-modeltranslation",
"version": "0.7.3"
"license": "New BSD",
"upload_time": "2014-01-04 23: 46: 04.877961 UTC", 
"classifiers": [

"Framework :: Django",
"License :: OSI Approved :: BSD License",
"Operating System :: OS Independent",

],
"requires": [

"django(>=1.3)"
]

(b) PyPI.

Figure 1: Sample metadata for NPM and PyPI.

file inMaven, or it may be provided in the form of comments rather

than in a specific field. We discovered that the officialMaven repos-

itory [13] has marked licenses for most repositories. Unfortunately,

there is currently no accessible API to fetch this information. Fur-

thermore, the time details are absent from the gathered Maven

metadata. Due to these reasons, we have excludedMaven from cer-

tain aspects of analyses, which has little impact on the findings of

our study. Table 1 shows the overall statistics for the five platforms.

2.2 License Extraction

In this study, we focus on versioned packages with license infor-

mation. The metadata of all five platforms contain corresponding

license fields for extracting license information. In addition, we con-

duct further searches from other fields that may contain licenses

such as classifier field in PyPI as a supplement. Please refer to our

replication package [14] for specific search methods.

Meanwhile, the provided license names from metadata may not

always follow the standard format or identifiers listed in the SPDX

license list, sometimes even being hidden within a block of text.

For instance, the package multipy==0.16 in PyPI has a license field

with the content “Revised 3-clause BSD” which corresponds to the

SPDX license with the full name “BSD 3-Clause ‘New’ or ‘Revised’

License” and the identifier “BSD-3-Clause”.

However, some off-the-shelf tools, such as Lidetector [50] and

ScanCode [15], necessitate specific clauses or full license identifiers

as input, which is not readily available in metadata information.

Since metadata lacks license term details, we propose an algorithm

to extract license information from metadata, which is as follows:

Building a license pool: We first build a license pool that contains

all the SPDX licenses we collected. The license pool contains the

standard full names and identifiers of 469 licenses in the SPDX

License List [38] for version 3.20.

Our license extraction algorithm is designed to search for licenses

from a pile of complex texts (e.g., the classifier field of PyPI in Fig-

ure 1b) and map non-standard customary full names or identifiers

of licenses to their standardized formats in license pool.

Extracting licenses: We implement the extraction algorithm based

on the AC (Aho-Corasick) automaton [17] and regular expression

matching. AC automaton, an efficient multi-pattern string matching

License Name 
Matching

AC Automaton 
Matching

Regular Expression 
Matching

Data Preparation

Invalid Characters 
Filtering

License Info.
Extraction

License Verification

Name Edge Detection

Version Matching

License Extraction 
Result

A SPDX License

Incomplete License

Unspecified License

Match Failure 

Metadata

License 
Pool 

Figure 2: Overview of License Extraction.

algorithm, can match multiple pattern strings in a large text string

at the same time.

Given a textual description, our algorithm uses the AC automa-

ton and regular expression to match licenses. More specifically, our

algorithm inputs names of all SPDX licenses in the license pool

into an AC automaton. For each SPDX license, it is divided into

two parts: the name and the version, and all versions of the same

name would be aggregated into a set. For example, the version set

of the Mozilla Public License has four versions, i.e., 1.0, 1.1, 2.0, and

2.0-no-copyleft-exception. If the licence has no version, the version

set is empty. For the matched results, we conduct edge detection

which aims to check if the match is part of other words to avoid

false positives, e.g., detecting “MIT” from “commit”. If a license

name is successfully matched, the version is matched in subsequent

content.

In addition, we use regular expressions as a supplementary aid

to accurately extract licenses, especially for abbreviated formats

and those including subsequent versions. For example, in the case

of “AGPLv3+”, the AC automaton cannot pass “edge detection” and

cannot extract “+”. After extracting the possible license name, it is

still necessary to enter this name into the AC automaton to confirm

that it is indeed the name of a particular SPDX license, and the

possible version also needs to be detected in the corresponding

version set.

Our license extraction algorithm has three outcomes, i.e., an

SPDX license identifier, incomplete (unspecified version or unavail-

able version), or unspecified (empty input or failing to match a

license in the pool). For example, for an input string “Licensed un-

der the LGPLv3+”, our approach can extract the license name as

‘LGPL’ and the version as ‘3.0+’, indicating that the version can be

later than 3.0. So, the result is “LGPL-3.0-or-later”. In addition, We

use the term license series to describe incomplete licenses, such as

the BSD series.

In the packagemetadata, multiple licenses may be declared simul-

taneously. For instance, in PyPI, pygatt==4.0.4 declares its license as

“Apache 2.0 and MIT”. Our license extraction algorithm attempts to

search for all existing licenses and stores them in a string separated

by a delimiter.

To test the capability of the extraction algorithm, we randomly

selected 20,000 non-empty license records per platform, resulting

in a total of 100,000 license records. After removing duplicates, we



MSR ’24, April 15–16, 2024, Lisbon, Portugal Jiaqi Wu, Lingfeng Bao, Xiaohu Yang, Xin Xia, and Xing Hu

Table 2: Extraction Failure Rate of License Extraction.

Platform % Extraction Failure

Maven 1.17

NPM 3.17

PyPI 1.55

RubyGems 1.99

Cargo 2.59

were left with 1,407 license information records. We manually anno-

tated these 1,407 license information and then inputted them into

the extraction algorithm. The verification was manually conducted

by the first author after sampling the metadata. Given the input

length was generally not more than 100 characters and the high

similarity, manual identification was not overly challenging. We

verified a total of 100,000 data points, which took approximately 4

hours. After verification, the extraction algorithm achieves 97.14%

accuracy and 95.24% recall for SPDX license names, and 95.56% ac-

curacy and 88.11% recall for incomplete license names. This shows

that our license extraction algorithm has high reliability.

2.3 Incompatibility Detection Algorithm

In this study, we want to investigate the license compatibility issues

in the selected platforms. To improve the credibility of the results

and to show the results under different license incompatibility

definitions, we used two tools for testing. License-compatibility [29]

maintains that two licenses can be considered compatible as long

as there are no explicit conflicts. On the other hand, Lidetector [50]

argues that compatibility should encompass broader factors, such

as the requirements and restrictions of the licenses, as well as the

consistency in meeting each term’s conditions, which are as follows:

• LiDetector leverages a learning-based approach to automati-

cally identify meaningful license terms from an arbitrary license

text [50]. Then, it applies Probabilistic Context-Free Grammar

(PCFG) to infer the attitude of the current license text with re-

spect to the rights and obligations in the license terms. Finally, it

detects license incompatibilities by comparing the attitude of all

licenses with respect to the same terms.

• License-compatibility is an OSS tool from Libraries.io [29], a

software versioned package indexing platform, that provides a

license compatibility matrix, along with semantic analysis. The

tool uses metadata from OSS licenses and the SPDX standard to

detect compatibility between two or more licenses.

The differing methodologies indeed yield varying results for the

same example. For instance, Lidetector deems Apache-2.0 incom-

patible with MIT due to Apache-2.0’s additional obligations, po-

tentially causing MIT compliers to violate Apache-2.0. Conversely,

License-compatibility considers Apache-2.0 compatible with MIT.

Both perspectives are valid based on their respective definitions of

incompatibility, and we aim to examine this from both angles.

We use a dataset provided by the LiDetector tool as a test set

to check the capability of LiDetector and License-compatibility.

This dataset from [50] consists of 200 projects randomly selected

from 1,846 popular GitHub projects with more than 1,000 stars

and has been manually validated and cross-validated by authors

Table 3: Statistics of license usage on different platforms.

Maven NPM PyPI RubyGems Cargo

%SPDX License 28.71 85.73 71.16 64.34 97.27

%Unspecified License 56.38 13.8 15.41 34.61 2.73

%Incomplete License 14.91 0.47 13.43 1.05 0.0009

%Multi-licenses 1.15 0.81 4.14 0.46 28.39

Degree of licence restriction
0

20

40

60

80

Pe
rc

en
ta

ge
 o

f u
se

 fr
eq

ue
nc

y(
%

)

13.14

27.43

59.43

4.95 4.04

91.01% distinct licenses 
% licenses

permissiveweak copyleftstrong copyleft

(a) Ratio and Usage of Licenses.

0 20 80 100

Maven

npm

PyPI

RubyGems

Cargo

40 60
Percentage of use frequency(%)

strong copyleft weak copyleft permissive

(b) Percentage on five platforms.

Figure 3: The usage of different types of licenses.

and lawyers. After testing, we find that LiDetector achieves a pre-

cision of 81.46%, a recall of 78.85%, and an F1-score of 0.8, while

License-compatibility which only detects SPDX license in dataset

achieves a precision of 73.55%, a recall of 79.17%, and an F1-score of

0.76. After testing, both of these tools have a good ability to detect

incompatibilities.

3 EXPERIMENT RESULTS

In order to comprehensively investigate license data among the

five package management platforms, we formulate and address the

following five research questions:

• RQ1.What is the status quo of license usage among five pack-

age management platforms, and what are their similarities and

differences?

• RQ2. How often do the licenses change in the version updates

of the package? How does it change?

• RQ3. How common is the issue of license incompatibility be-

tween a versioned package and its direct dependencies, and what

are the main terms that cause such incompatibilities?

• RQ4. What is the temporal evolution in the use of licenses?

Which licenses are more popular?

• RQ5.What are the differences in license usage between the over-

all packages and the more popular packages, as well as among

the popular versioned packages on five platforms compared hor-

izontally?

3.1 RQ1 – License Usage

Motivation and Approach. In the initial phase of our research, we

seek to gain a comprehensive understanding of the overall status

of packages on package management platforms, which enable us to

quickly discern the characteristics and differences among packages

on these platforms.

We count the percentage of versioned packages with SPDX, Un-

specified and Incomplete licenses. Furthermore, we classify ver-

sioned packages with SPDX licenses into single-license and multi-

license versioned packages since the versioned packages withmulti-

licenses tend to have more complex licensing terms and are more

likely to pose legal risks. We are also interested in licenses with



A Large-Scale Empirical Study of Open Source License Usage: Practices and Challenges MSR ’24, April 15–16, 2024, Lisbon, Portugal

different degrees of authorization restrictions. Hence, we use com-

monly used criteria to divide licenses into three categories, i.e.,

strong copyleft, weak copyleft, and permissive.

Strong copyleft licenses require derivative works or modifica-

tions of the licensed software to be distributed under the same

copyleft license terms. Weak copyleft licenses require derivative

works or modifications of the licensed software to be distributed

under compatible copyleft license terms. Permissive licenses al-

low users to incorporate the licensed software into proprietary or

closed-source projects without being required to release the source

code of those projects. We used license category data from TLDR-

Legal [16], a well-known website that provides brief summaries of

open source software licenses.

Finding 1-1: There is a high proportion of versioned packages

with unspecified or incomplete licenses.

Table 3 presents the number of versioned packages and the

percentage of versioned packages with SPDX licenses, unspecified

licenses, incomplete licenses, and multi-licenses. As shown in the

table, unspecified licenses exist more or less in the versioned pack-

ages from all five platforms. The main component for unspecified

licenses is the lack of a license. For example, 55.09% of versioned

packages in Maven lack licenses. This is because Maven does not

require specifying license information in the POM file. The licenses

for these libraries may have relevant information elsewhere but

are not included in the metadata we collect. On the other hand,

Cargo has the lowest proportion of unspecified licenses (2.73%).

The other three platforms also have a significant number of ver-

sioned packages with unspecified licenses, posing a high risk of

legal disputes.

The percentage of incomplete licenses in Maven and PyPI is

significantly higher than in the other three platforms, which do

not exceed 2%. Specifically, Maven has 14.91% incomplete licenses,

while PyPI has 13.43%. Although an incomplete license provides

information about the type of license in comparison to a unspec-

ified license, there still exists considerable legal risk due to the

uncertainty of the specific version and terms of the license.

For the versioned packages with multi-licenses, Cargo has the

highest proportion (i.e., 28.39%), which far exceeds the other four

platforms. We find a clear dominant license combination in multi-

licenses in NPM and Cargo. In NPM, the combination of EPL-2.0

and GPL-2.0-only accounts for 64.84%, while in Cargo, the com-

bination of MIT and Apache-2.0 accounts for 96.03%. It’s worth

noting that the combination of EPL-2.0 and GPL-2.0-only is con-

ditionally compatible, while MIT and Apache-2.0 are compatible.

Cargo puts a lot of emphasis on software license selection and

normalization, while MIT and Apache-2.0, two of the most popular

licenses, are compatible and complementary in their combination

and are therefore chosen by most Cargo’s versioned packages.

Finding 1-2: Permissive licenses have a high usage percentage of

over 90%. GPL-3.0-only, MPL-2.0, and MIT are the most commonly

used licenses for each of the three levels of restriction, respectively.

Figure 3 shows the statistics on the usage of licenses with dif-

ferent types of restrictions. We find a total of 236 distinct SPDX

licenses in our data, including 23 strong copyleft licenses, 48 weak

copyleft licenses, 104 permissive licenses and 61 licenses with un-

clearly defined restrictions. We ignore the 61 unclassified licenses as

they constitute only 0.21% of all packages. Although the number of

permissive licenses is only 104, accounting for 59.43% of all licenses

classified, its usage rate is very high, making up 91.01% across the

five platforms. The usage rates of the two copyleft licenses are less

than 5%.

Table 4 shows detailed statistics on the specific use of the three

types of licences within the scope of SPDX licences in our aggre-

gated data for the five platforms. Among the strong copyleft licenses,

GPL family licenses appear very frequently, and the most used one

is the GPL-3.0-only license, with 37.61% usage rate. Among the

weak copyleft licenses, the most used one is the MPL-2.0 license

with 23.98% usage. Among the permissive license, the MIT license

is the most widely used among permissive licenses, with a usage

rate of 61.80%. The utilization of different licenses stems from the

fact that permissive and copyleft licenses have their own strengths

and weaknesses, and their selection often hinges on the specific

objectives pursued.

Finding 1-3: Cross-platform comparisons show some commonal-

ities and differences in the use of licenses.

We conduct a comparative analysis of license usage across dif-

ferent package management platforms. Similarities in license usage

are observed among the various platforms. As depicted in Table 5,

the combined usage rate of the MIT license and the Apache-2.0

license exceeds 70% in all package management platforms, and even

surpass 85% in RubyGems and Cargo. Among the SPDX licenses of

the four platforms, both licenses are in the top two in usage, while

in the SPDX licenses of NPM, the MIT license is in the first place

and the ISC license squeezes the Apache-2.0 license into third place.

However, some variations in license preference are also observed

among the different package management platforms. Regarding the

preference for license types among the five platforms, two points are

particularly prominent. First, the weak copyleft license of Maven

has a high usage rate of 9.59%, with LGPL-2.1-only accounting for

5.67%, while the other four platforms’ weak copyleft licenses are

used at less than 5%. Second, PyPI has a significantly higher usage

proportion of strong copyleft licenses, which is more than twice

that of the second-place platform.

In NPM, the ISC license breaks the dominance of the MIT and

Apache-2.0 licenses and ranks second in usage rate. However, the

ISC license is not commonly seen in other package management

platforms and is based on the BSD 2-term license, with only three

lines of content, making it a very permissive license.

3.2 RQ2 – License Change

Motivation and Approach. License changes for open source soft-

ware can have significant impacts on both the software project and

its users [37, 43]. Additionally, license changes can cause compati-

bility issues with other software or versioned packages [25, 45, 48],

particularly if the new license is not compatible with existing li-

censes in use. In this RQ, we examine cases where licenses are



MSR ’24, April 15–16, 2024, Lisbon, Portugal Jiaqi Wu, Lingfeng Bao, Xiaohu Yang, Xin Xia, and Xing Hu

Table 4: The top five most popular licenses of the three types of licenses in all data.

Rank Strong Copyleft Weak Copyleft Permissive

1 GPL-3.0-only (37.61%) MPL-2.0 (23.98%) MIT (61.80%)

2 AGPL-3.0-only (17.51%) LGPL-2.1-only (21.41%) Apache-2.0 (19.89%)

3 GPL-2.0-only (15.60%) LGPL-3.0-only (19.71%) ISC (15.47%)

4 GPL-3.0-or-later (11.42%) EPL-2.0 (17.61%) BSD-3-Clause (1.61%)

5 GPL-2.0-or-later (7.74%) LGPL-3.0-or-later (3.26%) BSD-2-Clause (0.46%)

Table 5: The top five most popular licenses among the five platforms.

Rank Maven NPM PyPI RubyGems Cargo

1 Apache-2.0 (59.42%) MIT (60.27%) MIT (54.64%) MIT (70.51%) MIT (51.22%)

2 MIT (23.78%) ISC (18.66%) Apache-2.0 (20.03%) Apache-2.0 (18.25%) Apache-2.0 (36.10%)

3 LGPL-2.1-only (5.66%) Apache-2.0 (13.22%) GPL-3.0-only (6.14%) GPL-2.0-only (2.72%) GPL-3.0-only (2.45%)

4 GPL-3.0-only (2.97%) BSD-3-Cause (1.41%) AGPL-3.0-only (3.79%) GPL-3.0-only (1.78%) MPL-2.0 (1.69%)

5 BSD-3-Clause (1.33%) GPL-3.0-only (1.14%) GPL-3.0-or-later (2.34%) BSD-3-Cause (1.09%) BSD-3-Cause (1.20%)

Table 6: Licence changes on different platforms.

Platform #Modification #Addition #Deletion %Change

Maven 38,161 14,611 10,091 0.64%

NPM 156,315 45,015 16,151 0.79%

PyPI 44,063 10,616 4,217 1.50%

RubyGems 14,544 10,765 962 2.12%

Cargo 7,688 844 31 1.41%

Table 7: Changes between Single and Multiple Licenses.

Platform # S→M # M→S # M→M # S→S

Maven 596 (1.7%) 404 (1.2%) 234 (0.7%) 33,934 (96.5%)

NPM 8,388 (5.9%) 8,047 (5.6%) 75 (0.1%) 126,913 (88.5%)

PyPI 3,940 (11.5%) 3,849 (11.2%) 633 (1.8%) 25,978 (75.5%)

RubyGems 287 (2.1%) 61 (0.4%) 53 (0.4%) 13,445 (97.1%)

Cargo 2,249 (37.8%) 784 (13.2%) 104 (1.8%) 2,810 (47.3%)

S means single-license, M means multiple-licenses

changed in versioned packages, including changes in the number

of licenses and the degree of restrictions.

Finding 2-1: License changes are rare. The percentages of license
changes are slightly higher in PyPI, RubyGems, and Cargo.

Table 6 presents the number and percentage of different types

of license changes across five platforms. We divide license changes

into three types, i.e. Addition (a license is newly added in a package),

Deletion (a license is removed from a package), andModification (the

license of a package is changed). We find that license changes are

relatively rare between the updates of packages (i.e., only 0.86%). In

fact, the percentage of license changes will be higher because some

developers may change the source code without indicating whether

the change involves the license header [28]. PyPI, RubyGems, and

Cargo have a slightly higher proportion of license changes, but

the data volume for these three package management platforms is

relatively small.

Finding 2-2: The transitions between single and multi-licenses in

Cargo and PyPI are more frequent than in the other platforms.

Table 8: Changes of License Restrictiveness.

Platform #More Permissive #More Restrictive #No Change

Maven 1,474 (15.8%) 753 (8.1%) 7,106 (76.0%)

NPM 4,439 (7.2%) 4,988 (8.1%) 52,350 (84.7%)

PyPI 2,504 (22.0%) 1,707 (15.0%) 7,179 (63.0%)

RubyGems 467 (25.1%) 328 (17.6%) 1,066 (57.3%)

Cargo 547 (26.4%) 501 (24.2%) 1,026 (49.5%)

Table 7 shows the number of license changes in terms of sin-

gle and multiple licenses. There are four types of changes in the

table. The majority of the changes are from single license to sin-

gle license. As shown in the table, the data in Cargo is signifi-

cantly different from the data in the other platforms, with 37.82%

of the changes from single to multiple licenses. 90.52% of these

multi-license changes are a combination of MIT and Apache-2.0.

These two licenses are also the most targeted choices (72.64%) when

changing from multiple licenses to a single license. In addition, the

transitions between single and multiple licenses in PyPI exceed the

average, with both accounting for over 10% of the total.

We observe that most addition-type changes involve adding new

licenses on top of the existing ones without altering the original

licenses. Similarly, the majority of deletion-type changes remove a

portion of the original licenses while retaining another part. How-

ever, this is not the case in NPM. our statistical analysis shows

that 91.18% of license changes in NPM involve transitions between

Apache-2.0 and a combination of GPL-2.0-only and EPL-2.0, which

is an exception to the general pattern we observe.

Finding 2-3: The degree of restriction of licenses changes less in

NPM and more in Cargo.

As shown in Table 8, we find that there are considerable num-

bers of license changes with different restrictions. The direction of

license changes of NPM is relatively the most stable, with 84.74%

of license changes being made under equally restrictive licenses.

On the other hand, Cargo has the highest percentage of changes

in both the more restrictive and more permissive directions, indi-

cating a wider range of changes in terms when changing licenses.

We find that the most frequent combination of license changes

that changes the degree of restriction in Cargo is Apache-2.0 and



A Large-Scale Empirical Study of Open Source License Usage: Practices and Challenges MSR ’24, April 15–16, 2024, Lisbon, Portugal

Table 9: Incompatibility detection results for overall ver-

sioned packages.

Tools Maven NPM PyPI RubyGems Cargo

LiDetector 7.33% 4.14% 3.29% 7.17% 7.81%

License-Compatibility 6.33% 3.60% 3.04% 6.71% 7.72%

GPL-3.0. In fact, as the two popular licenses, Apache-2.0 is con-

sidered forward-compatible with GPL-3.0, and the community of

developers emphasizes open source and licensing norms, leading

to frequent consideration of license changes and conversions.

3.3 RQ3 – License Incompatibility

Motivation and Approach. Not all open source software licenses

are compatible with each other [42, 47, 49]. Incompatible licenses

may lead to legal issues and potential conflicts between different

open source projects [35, 44]. In this RQ, we want to investigate the

license incompatibility in versioned packages. Given the technical

difficulties of detecting license incompatibilities in passing depen-

dencies, we will only consider license incompatibilities in direct

dependencies.

Given a versioned package in our dataset, we can get its direct

dependencies in its metadata information. For example, each record

in the PyPI metadata has a dependencies field. For range-based de-

pendency requirements, we select the latest package version that

meets the requirement. Thus, we can get a license set by combining

the versioned package license and the licenses of its direct depen-

dencies. Then, we use the license incompatibility detection tools

in Section 2.3 to identify compatibility issues between each pair

of licenses in the set. Furthermore, the LiDetector algorithm can

extract license terms and analyze attitudes toward them. So, we can

obtain more detailed information about specific terms that cause in-

compatibility results. Note that we exclude the versioned packages

without direct dependencies or SPDX licenses in this analysis.

Finding 3-1: The incompatibility rate of versioned packages for

all five platforms is below 8%, with the highest incompatibility

rate in Cargo and the lowest incompatibility rate in PyPI.

Table 9 shows the license incompatibility ratios detected by the

two tools across five platforms. LiDetector detected more compati-

bility issues than License-compatibility. We manually examine the

inconsistent results between the two tools and find that the incom-

patibilities detected by License-compatibility are basically covered

by LiDetector. The two main reasons are ❶ License-compatibility

does not cover some of the latest licenses added to the SPDX li-

cense list, e.g., BSL-1.0. ❷ Lidetector has a stricter definition of

license incompatibility. For example, License-compatibility consid-

ers that there is no incompatibility between MPL-2.0 and GPL-3.0,

but Lidetector disagrees.

As shown in Table 9, the proportion of license incompatibility in

Maven, RubyGems and Cargo is much higher than that in NPM

and PyPI. The incompatibility rate in Cargo is the highest, with an

average result of 7.77%, and the incompatibility rate in PyPI is the

lowest, with an average result of 3.17%. The highest incompatibility

rate does not exceed 8%, indicating that the data in the package

management platform is relatively more standardized compared to

other studies conducted on Github projects [47, 50].

Table 10: The five terms that cause themost incompatibilities

on different platforms.

Terms Maven NPM PyPI RubyGems Cargo

%Sublicense 82.95 56.21 44.31 84.37 40.56

%Hold Liable 4.16 11.61 15.46 6.85 16.83

%Distribute 3.87 11.19 15.21 5.26 16.29

%Place Warranty 2.91 6.16 9.89 2.13 14.77

%Commercial Use 1.74 4.21 4.54 0.66 4.57

Finding 3-2: The most common type of license incompatibil-

ity arises from combining permissive licenses with GPL family

licenses.

LiDetector categorizes license terms based on tldrlegal [16],

which is a platform that provides simplified versions of well-known

license terms. There are 23 types of terms, including 11 right terms

and 12 obligation terms. Table 10 shows the five terms that cause

the most license incompatibilities among all the data.

The sublicense term describes the ability of developers to grant/extend

a license to the software; and the hold liable term describes the war-

ranty and if the software/license owner can be charged for damages;

and the distribute term describes the ability to distribute original

or modified (derivative) works; and the Place Warranty term de-

scribes the ability to place warranty on the software licensed; and

the Commercial Use term describes the ability to use the software

for commercial purposes.

These terms, which encompass the most significant concerns for

users when using OSS, are all right terms that involve the autho-

rization of the user or licensee and protect most of the rights of the

holder. The most frequent incompatible term across five platforms

is Sublicense, which is far ahead of other terms. Most incompati-

bilities are caused by the mixture of permissive licenses and GPL

family licenses.

3.4 RQ4 – Temporal Evolution

Motivation and Approach. As the open-source community con-

tinues to grow and expand, new licenses are introduced every year,

each representing a collection of new terms [46]. At the same time,

some licenses are becoming less popular over time and may even-

tually disappear. The emergence and disappearance of licenses can

in some sense reflect the evolution of open-source software, so

we pay attention to the usage of licenses on package management

platforms in different periods.

Based on the metadata we extract from the five platforms, we

are unable to locate the release time information for versioned

packages inMaven. However, it is possible that this information

is available in other sources. So in this RQ, we focus on the other

four platforms. The earliest release dates on the four platforms

are different, with the earliest release information appearing in

NPM, PyPI, RubyGems, and Cargo in 2010, 2005, 2009, and 2014,

respectively.

By utilizing the temporal information, we analyze the overall

usage and annual changes of licenses on each platform. For a specific

time period, we analyze the most popular licenses during that

period. For a specific license, we analyze its earliest appearance

time and latest usage time on the platform to determine whether it

becomes more popular over time.



MSR ’24, April 15–16, 2024, Lisbon, Portugal Jiaqi Wu, Lingfeng Bao, Xiaohu Yang, Xin Xia, and Xing Hu

2005 2007 2009 2011 2013 2015 2017 2019 2021
Year

0

50

100

150

200
Nu

m
be

r o
f l

ice
ns

e 
ty

pe
s u

se
d

npm
PyPI
RubyGems
Cargo
All

Figure 4: Number of distinct licenses used each year.

2005 2007 2009 2011 2013 2015 2017 2019 2021
Year

0

5

10

15

20

25

Nu
m

be
r o

f l
ice

ns
es

Birth
Extinction

Figure 5: Number of new and extinct licenses.

Finding 4-1: The annual growth rate of the number of distinct

licenses is decreasing. The gap in quantity between newly emerging

and extinct licenses is gradually narrowing every year.

Figure 4 shows the number of distinct licenses used each year.

During the five-year period from 2011 to 2016, the number of li-

censes increased essentially linearly, with an average increase of

more than 20 licenses per year. This indicates the booming develop-

ment of the open source software. After 2016, the increase in OSS

licenses began to slow down. Existing licenses already meet most

of the needs of open source software.

We consider the year of a license’s birth as its first appearance

and the year of a license’s extinction if no packages use it during

a year (except 2022). Figure 5 shows the annual number of new

and extinct licenses. The birth and extinction of licenses can reflect

the trend of license evolution in the field of open-source software.

We find that in recent years the number of new licenses is fluctu-

ating down, while the number of extinct licenses is fluctuating up.

Some licenses with unsuitable terms are gradually falling out of

use, and more attention is being paid to popular licenses whose

terms are designed to meet the needs of the people. After years of

evolution, the currently popular licenses largely meet the various

term requirements of users. The trend of licenses is to increase

the reuse rate of each license rather than freely increasing their

numbers. This highlights the importance of designing licenses that

are flexible and can be widely adopted.

Finding 4-2: Apache-2.0 is trending to gradually replace MIT as

the most popular license.

60

50

40

30

20

10

0

2005 2007 2009 2011 2013 2015 2017 2019 2021
Year

70

80

Pe
rc

en
ta

ge
of

lic
en

se
s(

%
)

npm 
PyPI
RubyGems 
Cargo

MIT
Apache-2.0

Figure 6: Evolution of MIT and Apache-2.0.

2005 2007 2009 2011 2013 2015 2017 2019 2021 2023
Year

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f l
ice

ns
es

(%
)

npm
PyPI
RubyGems
Cargo

(a) Incomplete licenses.

2005 2007 2009 2011 2013 2015 2017 2019 2021 2023
Year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f l
ice

ns
es

(%
)

npm
PyPI
RubyGems
Cargo

(b) Unspecified licenses.

Figure 7: Evolution of the proportion of incomplete licenses

and unspecified licenses over time.

We collate the most popular batch of licenses for each platform

during each period. The top three in NPM are MIT, ISC and Apache-

2.0, and the share of MIT and ISC decreases year by year, while the

share of Apache-2.0 increases year by year. In the history of PyPI,

the GPL and BSD series of licences used to have a high percentage,

but in recent years they have been gradually dominated by MIT and

Apache-2.0, and in 2022 the top three licences in terms of popularity

are MIT, Apache-2.0 and GPL-3.0-only. There is very little change in

the popularity of licences in RubyGems and Cargo. In RubyGems,

Apache-2.0 became the most popular licence in 2022, and before

that the top three were basically MIT, Apache-2.0 and GPL-2.0-only.

While in Cargo, MIT and Apache-2.0 have been the most popular

licences, with GPL-3.0-only replacing MPL-2.0 as the third most

popular licence in 2018. We document the evolution of MIT and

Apache-2.0 in different platforms in Figure 6. MIT and Apache-2.0

are both highly popular across all four platforms in recent years.

but Apache-2.0 is trending to gradually replace MIT as the most

popular license.

Finding 4-3: The incomplete licenses issue is improving year by

year in all four platforms. InNPM and PyPI, the issue of unspecified

licenses is still severe with no signs of improvement.

Figure 7 presents the trends of usage of incomplete licenses and

unspecified licenses over time. The issue of incomplete licenses has

been improving over time in four platforms. It has remained low in

proportion in the other three platforms except PyPI and disappeared

completely in Cargo after 2016. There is still a not-insignificant

percentage of incomplete licenses in PyPI, with 9.23% in 2022.

On the issue of unspecified licenses, the situations are getting

better in both RubyGems and Cargo, but they have never been

improved in PyPI, which has remained around 15%. And in NPM,



A Large-Scale Empirical Study of Open Source License Usage: Practices and Challenges MSR ’24, April 15–16, 2024, Lisbon, Portugal

the issues continued to improve until 2017, but became even more

severe after 2017.

After further analysis, we find that the reason for the high per-

centage of incomplete licenses in PyPI during the initial stages is

that most versioned packages use GPL or BSD series licenses. The

reason for the high percentage of unspecified licenses in NPM and

RubyGems during the initial stages is that most versioned packages

do not declare a license which is also the main reason why the

problem of unspecified licenses in NPM got worse after 2017.

We also observe that the proportion ofmultiple licenses inCargo

has gradually decreased in recent years, indicating that license

management in Cargo is also improving. As a smaller and shorter-

developed package management platform, the data from Cargo

is relatively well-distributed in the overall dataset. In addition, we

conduct a statistical analysis of license changes over time, and find

that the proportion of license changes on all four platforms has been

decreasing year by year in recent years, tending to be consistent,

with an average of about 0.4% in 2022.

3.5 RQ5 – Core Packages

Motivation and Approach. In the OSS community, some packages

are particularly popular and are often depended on by many other

packages. Such core packages usually have a high impact on the

packages that depend on them [31]. Therefore, we want to explore

the characteristics of these highly popular versioned packages.

For each platform, we construct a weighted directed graph based

on the dependencies among packages. In the dependency graph, a

node presents a package. If there exists one version of a package 𝐴

depends on one version of another package 𝐵, we construct an edge

from 𝐴 to 𝐵. Based on the constructed dependency graph, we use

the PageRank [20] algorithm to evaluate the influence of a package.

The more important a package is, the larger its PageRank value.

We consider a package as a core package if its PageRank value

belongs to the top 5%. Finally, we obtain 546, 2,177, 274, 390 and

440 core packages for Maven, NPM, PyPI, RubyGems, and Cargo,

respectively.

Finding 5-1: The license information of the core packages in

RubyGems is less standardized, while that in Maven and PyPI is

more standardized.

Table 11 shows the license usage of core versioned packages of

each platform. 87.84% of Maven’s core versioned package licenses

are unspecified, possibly because Maven does not require that the

POM file from which we collect information must have a license field.

The proportion of the unspecified licenses of the core versioned

packages in RubyGems has increased from 3.17% to 15.04%, which

is more non-compliant. Additionally, the percentage of incomplete

license names in the core versioned packages inMaven and PyPI

decreases by approximately 5%, and the percentage of incomplete

licenses in RubyGems and Cargo remained much lower than the

other three platforms, indicating a greater level of standardization

in the data. With respect to versioned packages with multiple li-

censes, the proportion in Cargo increases from 23.39% to 48.42%,

whereas the proportion for other platforms, whether in core or

overall versioned packages, does not exceed 5%, due to a higher

Table 11: Statistics on license usage of core versioned pack-

ages.

Maven NPM PyPI RubyGems Cargo

%Unspecified License 87.84 10.38 14.21 36.70 0.82

%Incomplete License 6.91 4.40 9.85 0.48 0.01

%Multi-License 0.90 4.74 1.45 0.85 48.42

%Strong Copyleft License 1.66 8.02 11.28 30.82 0.02

%Weak Copyleft License 24.12 4.92 9.10 5.37 0.94

%Permissive license 74.21 87.06 79.62 63.81 99.04

Table 12: Incompatibility detection results for core versioned

packages.

Tools Maven NPM PyPI RubyGems Cargo

LiDetector 8.44% 9.00% 3.99% 15.83% 0.25%

License-compatibility 7.48% 7.35% 3.48% 10.73% 0.23%

proportion of versioned packages that use bothMIT and Apache-2.0

licenses in Cargo’s core versioned packages.

Finding 5-2: The use of strong copyleft licenses is significantly
higher in RubyGems’s core versioned package, and significantly

lower in Cargo’s.

Regarding license restriction types, the proportion of strong

copyleft licenses in RubyGems’ core versioned packages increases

from 6.36% to 30.82%, more than twice as much as the second place

PyPI. More than 90% of licenses of many core packages are GPL-2.0-

only, such as rcfiles, rbt, and roebe in RubyGems. Conversely,

the proportion of permissive licenses in Cargo’s core versioned

packages rises to 99.04%. In Cargo’s core package, only two copyleft

licenses, GPL-3.0-only and MPL-2.0, are used slightly, and more

than 96% of the core repositories are using Apache-2.0 or MIT.

This result suggests that RubyGems’ core versioned package places

more emphasis on collaboration and sharing in the open source

community, while inCargo there is a preference for a free approach

to distributing software.

We have observed license alterationswithin core packages. Specif-

ically, the versioned packages forMaven, NPM, PYPI, RubyGems,

and Cargo exhibited license changes at rates of 0.55%, 0.81%, 0.14%,

0.12%, and 0.63% respectively. Notably, most platforms demon-

strated lower figures in comparison to the overall packages. Given

the limited number of results (Cargo had the fewest with only 219

results), we did not delve further into this aspect.

Finding 5-3: The percentage of incompatible licenses for Cargo’s

core package decreases significantly, while it increases in all other

four platforms.

We test for incompatibilities in the core versioned packages

and documented them in Table 12. Compared to the previous data,

the results of the two tools show that license incompatibilities are

occurring more in four platforms except Cargo. The percentage of

license incompatibilities has increased slightly in Maven and PyPI,

and are nearly twice as much in NPM and RubyGems as before.

In contrast, the phenomenon is most striking in Cargo, where

the percentage of incompatibilities in the core package drops very

sharply, approximately one thirtieth of the original. This indicates

that Cargo’s core versioned package manages licenses very well

and has very low incompatibilities. In addition, Sublicense is still



MSR ’24, April 15–16, 2024, Lisbon, Portugal Jiaqi Wu, Lingfeng Bao, Xiaohu Yang, Xin Xia, and Xing Hu

the most incompatible term, and the mix of components under the

permissive license and copyleft license is still the most important

point of concern in core versioned packages.

4 DISCUSSION

In this section, we first discuss several implications for action based

on the findings in our study, then describe the threats to validity.

4.1 Implications

Unspecified and incomplete licenses have a significant im-

pact on the license specification in the package management

platform. There is a high proportion of versioned packages with

unspecified or incomplete licenses (Finding 1-1). The lack of li-

censes is a major aspect of unspecified licenses and a more serious

issue than incomplete licenses because packages that lack explicit

licenses are typically assumed to retain all rights, which can exac-

erbate license incompatibility problems. Fortunately, we checked

that the incomplete licenses issue is improving year by year in all

four platforms, but the issue of unspecified licenses in NPM and

PyPI is still severe (Finding 4-3), which deserves further exploration

by researchers. For developers, using the license recommendation

tool [27] to select licenses for new projects or older projects with

missing licenses is a good option to reduce the legal risk. For the

platform, a reasonable screening of released packages can effec-

tively reduce the proportion of legal hazards. The issue of license

irregularities in package management platforms needs more at-

tention because developers often rely on platforms to make their

dependencies work easily and quickly.

Irregularities in the licensing of core libraries need atten-

tion. In RubyGems’ core package, the proportion of the unspecified

licenses increases significantly (Finding 5-1). Given that the im-

pact of the core package is much greater than that of the overall

packages, this needs to be taken into account. Incompatibility test

results for the core package show an increase in incompatibility

percentages for all platforms except Cargo (Finding 5-3). As the

bottom of the dependency chain, every update of the core package

has a profound impact, and its license specification needs to be

guaranteed. Developers of core packages can use license incom-

patibility detection tools to detect the currently selected license

before releasing a new version of the package, and the develop-

ment of better incompatibility detection tools is a direction that

needs to be explored continuously, for example, a large language

model [21, 39, 40] has good text analysis capabilities and potential.

License changes are one of the most likely aspects of li-

cense incompatibility. On the one hand, developers tend to use

historical versions of licenses [41], but their dependency packages

may have changed; on the other hand, license changes often occur

with a large span of changing license restriction types (Finding 2-2)

and conversion from single to multiple licenses (Finding 2-3), which

can easily lead to license incompatibility. For developers who are

not sure of the package license, we recommend choosing a permis-

sive license such as MIT to reduce the risk. Our research shows that

more than 90% of the licenses in the package management platform

are permissive licenses (Finding 1-2), and it is more likely to create

hidden problems if the GPL family licenses are chosen (Finding 3-2).

Community guidance is important for the development

of licenses in package management platforms. Cargo, the

youngest of the package management platforms we studied, has

the best overall license performance in our statistics, with not only

the lowest percentage of unspecified and incomplete licenses (Find-

ing 1-1), but also the lowest incompatibility rate of core packages

(Finding 5-3). Rust, as the official language of Cargo, has always

been known for its high security, ensuring less technical debt and

more standardized license management in the Rust community.

Other platforms often overlook the importance of license specifi-

cations due to their lengthy development process. This negligence

leads to the accumulation of license defects, which are further ex-

acerbated by the interdependence of packages, thereby posing a

significant hidden risk. It requires developers to be more aware of

license regulations, as well as proper guidance from the authorities

to create a more regulated community atmosphere.

The trend of license evolution is important for researchers.

Although the number of new packages added each year is very

high, making the use of licenses more widespread, the trend of

increasing the variety of licenses is slowing down (Finding 4-1).

With unpopular licenses being phased out and popular licenses

becoming more widely used, analyzing the difference between

the two is a meaningful direction for research. We observe that

Apache-2.0 is becoming more popular than MIT license(Finding

4-2), possibly due to its compatibility with GPL-3.0. Developers can

switch between these licenses based on user obligations. Similarly,

Licenses with similar rights or obligations can serve as alternatives.

Hence, a study on license change or selection is valuable.

4.2 Threats to Validity

Internal validity. There are quite a few versioned packages with

missing licenses. For example, Maven has a high percentage of

missing licenses, possibly due to our data collection method. We

tested the SPDX licenses of package management platforms and

selected five representative ones with a high number of SPDX li-

censes. However, the license declaration of versioned packages may

contain noisy information, such as irregular names of licenses. Our

high-precision license extraction algorithm demonstrates reliable

handling of such cases, with iterative improvements based on the

dataset to accommodate additional license declaration scenarios.

Another threat is the results of license incompatibility detection.

Our license incompatibilities only focus on direct dependencies,

but according to recent study [51], there are also high levels of

license incompatibilities in indirect dependencies, so the true level

of license incompatibilities in package management platforms is

higher than our results. The two tools represent two incompatible

definitions, while also complementing each other’s lack of design

logic and precision. LiDetector may misidentify license terms as

it can only handle predefined types, while License-compatibility

may not process newer licenses. Therefore, more tools with good

text analysis capabilities can be taken a step further, such as large

language models.

External validity. The development time and popularity of differ-

ent package management platforms vary greatly, and our statistical

and discovery findings for the current platform may not be general-

izable to other platforms. To mitigate this threat, we carefully select



A Large-Scale Empirical Study of Open Source License Usage: Practices and Challenges MSR ’24, April 15–16, 2024, Lisbon, Portugal

data from five platforms. Among them, Maven, NPM, and PyPI are

the most popular and widely used platforms, with a large versioned

package network and corresponding programming languages that

are also the most popular languages on GitHub and used in various

fields. RubyGems and Cargo have relatively fewer users and ver-

sioned packages, but they have also gained a lot of popularity in

recent years. By selecting with different versioned package sizes, we

make our results more widely applicable. We believe that the study

of licenses for these five platforms can provide different insights

for open-source developers from multiple perspectives.

5 RELATEDWORK

We summarize related work from these perspectives:

License Incompatibility. Qiu et al. [36], conducting an empiri-

cal study of NPM, found that including packages licensed under

a copyleft license in a dependency network may result in highly

dependent-related licensing violations. Similarly, Makari et al. [30],

who studied the evolution, prevalence, and compliance of depen-

dent licenses in theNPM and RubyGems package ecosystems, found

that GPL dependencies were a major cause of incompatibility. Their

findings are consistent with our summary of the license’s incom-

patible provisions. In addition, Makari et al. [30], found that 3.1% of

NPM and 9.9% of RubyGems dependency packages were affected

by license incompatibility. The huge contrast between the license

incompatibilities of packages within the package management plat-

form and Github projects is something worth investigating.

License Usage. Moraes et al. [34], and Almeida et al. [18] both

surveyed developers, and their results consistently showed that

while developers were aware of the use of one license, they were

not very good at understanding multiple licenses. Meloca et al. [33]

observed that about 24% of the released packages used at least

one of the hundreds of non-OSI-approved licenses they detected,

most of which were lack of license. They also found that package

publishers preferred to use the same licenses that had been used

on historical releases, which is consistent with our Finding 2-1 that

license changes occur rarely.

License Changes. Vendome et al. [43] conducted a large-scale

empirical study of 16,221 Java projects on Github and found that

licensing changes are predominantly toward or between permis-

sive licenses, which is consistent with what we found in the license

change. German et al. [25] proposed a method to detect compati-

bility between licenses declared in packages and those declared in

source code, and to audit Fedora-12 software packages. Instead, we

focus in this article on compatibility between the licenses declared

in the package and the licenses of their dependencies.

Compared to previous studies [34, 47, 49], we focus on data in

package management platforms and empirically analyze license

usage on a large scale across five package management platforms.

Specifically, we statistically analyze SPDX licenses in package man-

agement platforms, and we believe that SPDX licenses can provide

a more comprehensive picture of license usage. In terms of research

perspective, we statistically analyze licenses in package manage-

ment platforms from multiple perspectives rather than a specific

aspect [31, 43, 47]. Our study covers license incompatibility, license

changes, license evolution, license characteristics of core packages,

license usage across platforms, andmore. Our study provides amore

comprehensive picture of license usage in package management

platforms.

6 CONCLUSION

In this paper, we conduct a large-scale comparative study of licenses

across five package management platforms, Maven, NPM, PyPI,

RubyGems, and Cargo, based on metadata from these platforms.

We statistically analyze the license usage of these package man-

agers from multiple perspectives. Our study shows that there are

still a lot of license irregularities in the package management plat-

forms. We find that the permissive license is the most used in any

platform, and that the MIT and Apache-2.0 licenses are particularly

popular. We also find that proportion of license incompatibility in

the core versioned package is higher than that in overall versioned

packages for all four platforms except Cargo, and that the most

common license incompatibility term is sublicense. We hope to

collect information on licenses for more platforms in the future

and analyze license usage over different time horizons to further

validate the validity of our approach.

7 ACKNOWLEDGMENTS

This research/project is supported by the National Key Research

and Development Program of China (No. 2021YFB2701102), the

National Science Foundation of China (No.62372398, No.62141222,

and U20A20173), the Fundamental Research Funds for the Cen-

tral Universities (No. 226-2022-00064), and Ningbo Natural Science

Foundation (No. 2023J292).

REFERENCES

[1] 1997. CRAN. https://cran.r-project.org/

[2] 2003. PyPI. https://pypi.org/

[3] 2004. Maven. https://maven.apache.org/

[4] 2004. RubyGems. https://rubygems.org/

[5] 2007. Open Source Definition. https://opensource.org/osd/

[6] 2010. NPM. https://www.npmjs.com/package/npm

[7] 2015. Cargo. https://crates.io/

[8] 2022. Cargo data source. https://static.crates.io/db-dump.tar.gz

[9] 2022. Maven data source. https://repo.maven.apache.org/maven2/.index/

[10] 2022. npm data source. https://replicate.npmjs.com/_all_docs

[11] 2022. PyPI data source. https://console.cloud.google.com/marketplace/product/

gcp-public-data-pypi/pypi?_ga=2.219857497.-1185994749.1670227125&

project=dataanalysis-368712

[12] 2022. RubyGems data source. https://rubygems.org/pages/data

[13] 2023. mvnrepository. https://mvnrepository.com/

[14] 2023. Replication Package. https://figshare.com/s/5f35cac93da06567b1ca

[15] 2023. ScanCode. https://github.com/nexB/scancode-toolkit

[16] 2023. tldrlegal. https://www.tldrlegal.com/

[17] Alfred V Aho and Margaret J Corasick. 1975. Efficient string matching: an aid to

bibliographic search. Commun. ACM 18, 6 (1975), 333–340.

[18] Daniel A Almeida, Gail C Murphy, Greg Wilson, and Michael Hoye. 2019. Inves-

tigating whether and how software developers understand open source software

licensing. Empirical Software Engineering 24 (2019), 211–239.

[19] Barry W. Boehm. 1987. Improving software productivity. Computer 20, 09 (1987),

43–57.

[20] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual

web search engine. Computer networks and ISDN systems 30, 1-7 (1998), 107–117.

[21] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural

information processing systems 33 (2020), 1877–1901.

[22] Massimiliano Di Penta, Daniel M German, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. 2010. An exploratory study of the evolution of software licensing. In Pro-

ceedings of the 32nd ACM/IEEE International Conference on Software Engineering-

Volume 1. 145–154.

[23] Karl Fogel. 2005. Producing open source software: How to run a successful free

software project. " O’Reilly Media, Inc.".

https://cran.r-project.org/
https://pypi.org/
https://maven.apache.org/
https://rubygems.org/
https://opensource.org/osd/
https://www.npmjs.com/package/npm
https://crates.io/
https://static.crates.io/db-dump.tar.gz
https://repo.maven.apache.org/maven2/.index/
https://replicate.npmjs.com/_all_docs
https://console.cloud.google.com/marketplace/product/gcp-public-data-pypi/pypi?_ga=2.219857497.-1185994749.1670227125&project=dataanalysis-368712
https://console.cloud.google.com/marketplace/product/gcp-public-data-pypi/pypi?_ga=2.219857497.-1185994749.1670227125&project=dataanalysis-368712
https://console.cloud.google.com/marketplace/product/gcp-public-data-pypi/pypi?_ga=2.219857497.-1185994749.1670227125&project=dataanalysis-368712
https://rubygems.org/pages/data
https://mvnrepository.com/
https://figshare.com/s/5f35cac93da06567b1ca
https://github.com/nexB/scancode-toolkit
https://www.tldrlegal.com/


MSR ’24, April 15–16, 2024, Lisbon, Portugal Jiaqi Wu, Lingfeng Bao, Xiaohu Yang, Xin Xia, and Xing Hu

[24] GR Gangadharan, Vincenzo D’Andrea, Stefano De Paoli, and Michael Weiss. 2012.

Managing license compliance in free and open source software development.

Information Systems Frontiers 14 (2012), 143–154.

[25] Daniel M German, Massimiliano Di Penta, and Julius Davies. 2010. Understanding

and auditing the licensing of open source software distributions. In 2010 IEEE

18th International Conference on Program Comprehension. IEEE, 84–93.

[26] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M

German, and Daniela Damian. 2016. An in-depth study of the promises and perils

of mining GitHub. Empirical Software Engineering 21 (2016), 2035–2071.

[27] Georgia M Kapitsaki and Georgia Charalambous. 2019. Modeling and recom-

mending open source licenses with findOSSLicense. IEEE Transactions on Software

Engineering 47, 5 (2019), 919–935.

[28] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N Slyn-

gstad, and Maurizio Morisio. 2009. Development with off-the-shelf components:

10 facts. IEEE software 26, 2 (2009), 80–87.

[29] librariesio. 2015. Check compatibility between different SPDX licenses for check-

ing dependency license compatibility. https://github.com/librariesio/license-

compatibility

[30] Ilyas Saïd Makari, Ahmed Zerouali, and Coen De Roover. 2022. Prevalence and

Evolution of License Violations in npm and RubyGems Dependency Networks. In

Reuse and Software Quality: 20th International Conference on Software and Systems

Reuse, ICSR 2022, Montpellier, France, June 15–17, 2022, Proceedings. Springer,

85–100.

[31] Yuki Manabe, Yasuhiro Hayase, and Katuro Inoue. 2010. Evolutional analysis

of licenses in FOSS. In Proceedings of the Joint ERCIM Workshop on Software

Evolution (EVOL) and International Workshop on Principles of Software Evolution

(IWPSE). 83–87.

[32] MDouglas McIlroy, J Buxton, Peter Naur, and Brian Randell. 1968. Mass-produced

software components. In Proceedings of the 1st international conference on software

engineering, Garmisch Pattenkirchen, Germany. 88–98.

[33] Rômulo Meloca, Gustavo Pinto, Leonardo Baiser, Marco Mattos, Ivanilton Polato,

Igor Scaliante Wiese, and Daniel M German. 2018. Understanding the usage,

impact, and adoption of non-osi approved licenses. In Proceedings of the 15th

International Conference on Mining Software Repositories. 270–280.

[34] Joao Pedro Moraes, Ivanilton Polato, Igor Wiese, Filipe Saraiva, and Gustavo

Pinto. 2021. From one to hundreds: multi-licensing in the JavaScript ecosystem.

Empirical Software Engineering 26 (2021), 1–29.

[35] Demetris Paschalides and Georgia M Kapitsaki. 2016. Validate your SPDX files

for open source license violations. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. 1047–1051.

[36] Shi Qiu, Daniel M German, and Katsuro Inoue. 2021. Empirical study on

dependency-related license violation in the javascript package ecosystem. Journal

of Information Processing 29 (2021), 296–304.

[37] Carlos Denner dos Santos. 2017. Changes in free and open source software li-

censes: managerial interventions and variations on project attractiveness. Journal

of Internet Services and Applications 8 (2017), 1–12.

[38] SPDX. 2023. SPDX License List. https://spdx.org/licenses/

[39] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-

shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 2022.

Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239

(2022).

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv

preprint arXiv:2302.13971 (2023).

[41] Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-

Vásquez, Daniel German, and Denys Poshyvanyk. 2017. License usage and

changes: a large-scale study on github. Empirical Software Engineering 22 (2017),

1537–1577.

[42] Christopher Vendome, Daniel MGerman,Massimiliano Di Penta, Gabriele Bavota,

Mario Linares-Vásquez, and Denys Poshyvanyk. 2018. To distribute or not to

distribute? why licensing bugs matter. In Proceedings of the 40th International

Conference on Software Engineering. 268–279.

[43] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano

Di Penta, Daniel German, and Denys Poshyvanyk. 2015. License usage and

changes: a large-scale study of java projects on github. In 2015 IEEE 23rd Interna-

tional Conference on Program Comprehension. IEEE, 218–228.

[44] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano

Di Penta, Daniel German, and Denys Poshyvanyk. 2017. Machine learning-based

detection of open source license exceptions. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). IEEE, 118–129.

[45] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano

Di Penta, Daniel M German, and Denys Poshyvanyk. 2015. When and why devel-

opers adopt and change software licenses. In 2015 IEEE international conference

on software maintenance and evolution (ICSME). IEEE, 31–40.

[46] ErikWittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the dynam-

ics of the JavaScript package ecosystem. In Proceedings of the 13th International

Conference on Mining Software Repositories. 351–361.

[47] Thomas Wolter, Ann Barcomb, Dirk Riehle, and Nikolay Harutyunyan. [n. d.].

Open Source License Inconsistencies on GitHub. ACM Transactions on Software

Engineering and Methodology ([n. d.]).

[48] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M German, and Katsuro Inoue.

2015. A method to detect license inconsistencies in large-scale open source

projects. In 2015 IEEE/ACM 12th Working Conference on Mining Software Reposi-

tories. IEEE, 324–333.

[49] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M German, and Katsuro Inoue.

2017. Analysis of license inconsistency in large collections of open source projects.

Empirical Software Engineering 22 (2017), 1194–1222.

[50] Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji. 2023. LiDetector:

License Incompatibility Detection for Open Source Software. ACM Transactions

on Software Engineering and Methodology 32, 1 (2023), 1–28.

[51] Weiwei Xu, Hao He, Kai Gao, and Minghui Zhou. 2023. Understanding and

Remediating Open-Source License Incompatibilities in the PyPI Ecosystem. In

2023 38th IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE, 178–190.

https://github.com/librariesio/license-compatibility
https://github.com/librariesio/license-compatibility
https://spdx.org/licenses/

	Abstract
	1 Introduction
	2 Experiment Setup
	2.1 Dataset
	2.2 License Extraction
	2.3 Incompatibility Detection Algorithm

	3 Experiment Results
	3.1 RQ1 – License Usage
	3.2 RQ2 – License Change
	3.3 RQ3 – License Incompatibility
	3.4 RQ4 – Temporal Evolution
	3.5 RQ5 – Core Packages

	4 Discussion
	4.1 Implications
	4.2 Threats to Validity

	5 Related work
	6 Conclusion
	7 Acknowledgments
	References

