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Rust is an emerging programming language that ensures safety through strict compile-time checks. A Rust
function marked as unsafe indicates it has additional safety requirements (e.g., initialized, not null), known as
contracts in the community. These unsafe functions can only be called within explicit unsafe blocks and the
contracts must be guaranteed by the caller. To reuse and reduce unsafe code, the community recommends
using safe encapsulation of unsafe calls (EUC) in practice. However, an EUC is unsound if any contract is not
guaranteed and could lead to undefined behaviors in safe Rust, thus breaking Rust’s safety promise. It is
challenging to identify unsound EUCs with conventional techniques due to the limitation in cross-lingual
comprehension of code and natural language. Large language models (LLMs) have demonstrated impressive
capabilities, but their performance is unsatisfactory owing to the complexity of contracts and the lack of
domain knowledge. To this end, we propose a novel framework, Safe4U, which incorporates LLMs, static
analysis tools, and domain knowledge to identify unsound EUCs. Safe4U first utilizes static analysis tools to
retrieve relevant context. Then, it decomposes the primitive contract description into several fine-grained
classified contracts. Ultimately, Safe4U introduces domain knowledge and invokes the reasoning capability
of LLMs to verify every fine-grained contract. The evaluation results show that Safe4U brings a general
performance improvement and the fine-grained results are constructive for locating specific unsound sources.
In real-world scenarios, Safe4U can identify 9 out of 11 unsound EUCs from CVE. Furthermore, Safe4U detected
22 new unsound EUCs in the most downloaded crates, 16 of which have been confirmed.
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1 Introduction
Rust is a promising programming language acclaimed for its efficiency and security [76]. Through
strict compile-time checks, it provides a safety promise that programs written in safe Rust are
guaranteed to be memory-safe [73, 77]. To satisfy flexibility and extreme performance, Rust provides
the keyword unsafe to bypass safety checks and allow unsafe low-level operations within explicit
unsafe blocks [27]. A function (API) can be explicitly marked as unsafe, meaning it has additional
∗Corresponding Authors

Authors’ Contact Information: Huan Li, Zhejiang University, Hangzhou, China, huanlee@zju.edu.cn; Bei Wang, Zhejiang
University, Hangzhou, China, bwang9410@gmail.com; Xing Hu, Zhejiang University, Hangzhou, China, xinghu@zju.edu.cn;
Xin Xia, Zhejiang University, Hangzhou, China, xin.xia@acm.org.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTISSTA021
https://doi.org/10.1145/3728890

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA021. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0001-7191-0998
HTTPS://ORCID.ORG/0009-0001-8465-8189
HTTPS://ORCID.ORG/0000-0003-0093-3292
HTTPS://ORCID.ORG/0000-0002-6302-3256
https://doi.org/10.1145/3728890
https://doi.org/10.1145/3728890
https://orcid.org/0009-0001-7191-0998
https://orcid.org/0009-0001-8465-8189
https://orcid.org/0000-0003-0093-3292
https://orcid.org/0000-0002-6302-3256
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3728890


ISSTA021:2 Huan Li, Bei Wang, Xing Hu, and Xin Xia

/// Get the element without boundary checking
///
/// # Safety
/// The index `i` must be non-negative 
/// and less than `self.len` 
pub unsafe fn get_unchecked(&self, i: isize)->&T{...}

pub fn get(&self, t: isize) -> Option<&T> {
  if t >= 0 && t < self.len {
    // Safety: `t` is checked as in-bound 
    Some( unsafe { self.arr.get_unchecked(t) } ) }
  else { None} } 

unsafe 
API

sound 
EUC

sound

pub fn get_partially_checked(&self, t: isize) -> .. { 
  if t >= 0 { Some( unsafe {self.arr.get_unchecked(t)})}
  else { None }} 

unsound 
EUC unsound

contracts

t < self.len

Fig. 1. An unsafe API get_unchecked and two simple safe encapsulations of unsafe calls (EUCs) get and
get_partially_checked that are sound and unsound, respectively.

safety requirements for its caller, referred to as contracts in the community [54, 63]. Typically, these
contracts are written in unstructured natural language in the Safety section of the documents [49].
Calling unsafe APIs introduces extra unsafe blocks and remarkably increases the burden on

developers, thereby weakening the benefit brought by Rust’s safety promise. Therefore, the Rust
community recommends encapsulating unsafe calls behind safe functions to hide and reuse the
unsafe implementation [7, 54, 63]. According to the specification, the safe encapsulation of unsafe
calls (EUC)must guarantee all contracts when calling unsafe APIs. As shown in Figure 1, the EUC get
guarantees the contracts of unsafe API get_unchecked, “The index i must be non-negative and less
than self.len”, with corresponding boundary checks. Since unsafe blocks bypass compiler checks,
it is the developers’ responsibility to ensure that all contracts are guaranteed [54]. Occasionally,
developers fail to guarantee all contracts of interior unsafe calls for various reasons (e.g., lack
of expertise or sudden negligence), which leads to unsoundness. An encapsulation is unsound
means it can be called in safe code but causes undefined behavior, which breaks the safety
promise of Rust [66]. Taking the unsound EUC get_partially_checked in Figure 1 as an example,
this EUC calls get_unchecked without guaranteeing “t < self.len”. Therefore, developers can use
get_partially_checked in safe code, but access to uninitialized elements or illegal memory with
specific input. Furthermore, the unsoundness of EUC could propagate widely through function
calls and data flows, leading to sophisticated bugs or even hidden vulnerabilities [23]. In general, it
is crucial to eliminate unsoundness to maintain the safety promise of Rust.
To identify the soundness of an EUC, we need to check whether it guarantees all contracts

described in the Safety section, which is written in unstructured and flexible natural language.
Accordingly, conventional techniques for unsoundness detection, including formal verification [30,
43] and static analysis[5, 40, 53], can hardly be adopted due to their limitation in cross-lingual
comprehension of natural language and code. Deep learning models demonstrate the capability
to understand both code and natural language [6, 12, 75], which requires task-specific data for
fine-tuning. Nevertheless, there is no existing dataset for identifying unsound EUCs, and it is
challenging to create a new dataset with sufficient samples. The emergence of Large Language
Models (LLMs) and their excellent achievement in multi-lingual tasks indicate their potential to
identify unsound EUCs [11, 31, 34, 41, 59, 69]. However, as discussed in Section 5.1, it turns out
that the LLMs underperform in this task for various reasons. Firstly, the Safety sections of unsafe
APIs are commonly redundant and intricate, illustrating the intrinsic challenge of checking EUC
with the original Safety sections. In addition, since LLMs lack the relevant context of the EUC,
they often generate unfaithful responses with notable hallucinations [29]. Furthermore, due to the
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deficiency of domain knowledge, LLMs tend to check contracts based on their limited or even wrong
understanding (e.g., requiring all contracts to be explicitly validated), leading to low accuracy [70].
To obtain insight into how contracts are guaranteed in real-world EUCs, we first conducted

a preliminary study on the Rust standard library [65] and the top 500 most downloaded crates
(i.e., packages in Rust) [16]. After manually studying their documents and code, we ultimately
summarized 16 contract types, covering various requirements:Memory& Pointer,Value,Concurrency,
Lifetime, Ownership, Dataflow, and Environment. We also distilled 34 guarantee patterns (GPs) for
these contract types, meaning a contract can be guaranteed in any corresponding GP associated
with its type. For instance, the contract “i must be less than self.len” can be guaranteed either by
explicit validation or by the context that i is the remainder of self.len.
Based on the preliminary study, we propose a novel framework, Safe4U, to identify unsound

safe encapsulations of unsafe calls in Rust. Given an EUC, Safe4U identifies its soundness with
three modules, Context Retrieval, Decomposition & Classification, and Pattern-Oriented Checks.
Firstly, the Context Retrieval module deploys static analysis tools that collaborate with the compiler
to retrieve the context of the target EUC. The context involves additional information crucial for
identification (including the Safety section). Secondly, the Decomposition & Classification module
applies the LLM to decompose the verbose Safety section into several fine-grained contracts. During
decomposition, the LLM also classifies every decomposed contract into predefined contract types.
Through decomposition, the fine-grained contracts can be checked independently, significantly
decreasing the difficulty of unsoundness identification. Through classification, Safe4U can dy-
namically select examples containing specific domain knowledge to promote subsequent checks.
In particular, the Pattern-Oriented Checks module adds examples to the prompt and checks the
contract utilizing LLMs’ in-context learning and reasoning capabilities. Ultimately, the results for
all fine-grained contracts are aggregated. If one contract is identified as Unguaranteed, this contract
is deemed as the fine-grained unsoundness that requires a fix, and this EUC is considered Unsound.
To evaluate the performance of Safe4U, we extract samples (EUCs) from the most downloaded

crates. Since there is no dataset for unsound EUCs, we propose to simulate unsound samples from
unsafe encapsulations. The evaluation results show that Safe4U outperforms the baseline for all
LLMs, reflecting its effectiveness and generalizability. Additionally, we find that Safe4U can locate
the fine-grained unguaranteed contract which requires a fix. We also evaluate Safe4U in real-world
scenarios. Firstly, it reveals its effectiveness by identifying 9 of 11 unsound EUCs from CVE [19, 20].
Then, we deployed Safe4U for a practical scan on the most downloaded crates, involving 2,849
EUCs and 1,409 different unsafe APIs. It ultimately detected 22 unsound EUCs, 16 of which have
been confirmed and fixed. The replication package is publicly available [3].

The main contributions of our paper are as follows:

• We conduct a preliminary study of both the documents and the usage of unsafe APIs in the
standard library and the most commonly used crates. We summarize 16 contract types and 34
corresponding guarantee patterns.
• To the best of our knowledge, we propose the automated framework, Safe4U, that is the first to
introduce LLMs to identify unsound EUCs in Rust.
• Safe4U not only decomposes the identification into sub-tasks but also effectively integrates static
analysis and domain knowledge into the advanced capabilities of LLM. The evaluation results
indicate that Safe4U brings generalizable performance improvements for all LLMs.
• Safe4U can identify 9 out of 11 existing unsound EUCs from CVE and found 22 new unsound
EUCs from real-world Rust crates.
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Fig. 2. The Safety section of commonly used unsafe API from_raw_parts in the standard library.

2 Background and Preliminary
This section presents the background of our research and a preliminary study conducted on (1)
what types the contracts can be categorized into and (2) how each type can be guaranteed.

2.1 Background

Safe and Unsafe Rust. Rust conducts strict checks during the compilation phase to deliver the
safety promise that programs written in safe Rust are guaranteed to be memory-safe as long as they
can pass the compile checks [73, 77]. In practice, developers usually need more flexibility to write
low-level code for optimization or system calls, which is not allowed by safe Rust [27]. Accordingly,
explicit unsafe blocks can be used to bypass compiler checks and allow unsafe operations [18].
Previous work found that calling unsafe functions (APIs) is the primary purpose of unsafe use [23].
Typically, a Rust function is declared as unsafe to emphasize its additional safety requirements
described in the Safety section, referred to as contracts [54, 63, 76]. It is the caller’s responsibility to
guarantee all these contracts, otherwise, the unsafe call may lead to undefined behavior [18].
Unsound Encapsulation of Unsafe Calls. According to unsafe code guidelines [54, 63], it is
recommended to encapsulate unsafe code within safe functions. This strategy is commonly adopted
in the standard library and third-party crates so that users can directly use the safe APIs without
worrying about the safety requirements. A sound safe encapsulation of unsafe calls (EUC) must
not impose additional requirements beyond the parameter types, ensuring that its correctness can
be checked by the Rust compiler. To achieve this, the EUC itself must guarantee all the contracts.
Otherwise, the encapsulation must be marked as unsafe and inherit all unguaranteed contracts by
stating them in its Safety section. Once unsafe calls are encapsulated in a safe function without
guaranteeing all contracts, it would introduce unsoundness problems. An unsound EUC means
that if its caller inputs specific values, the unguaranteed contract can lead to undefined behavior,
breaking the safety promise of Rust [73, 77]. Furthermore, the unsoundness of EUC can propagate
through function calls and data flow, resulting in intricate defects and significantly undermining
the advantages of Rust. Therefore, unsoundness is intolerable for the community [49] and some
unsound EUCs have been disclosed as CVEs [19].
Challenges to Check Unsafe Calls. As illustrated in Figure 2, the Safety section describes
the contracts in unstructured and flexible natural language. Besides, the Safety section of one
unsafe API often consists of several contracts, making the contract description rather verbose and
complicated. It also involves auxiliary descriptions (e.g., examples and consequences), resulting in
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terribly redundant content [15]. Therefore, it is challenging to analyze various Safety sections with
conventional natural language process techniques. Moreover, some contracts requiring independent
checks are unconsciously mixed in one sentence [18], which increases the potential of omissions
in subsequent checks. Apart from the complicity of the Safety section, it is challenging to verify
these contracts. Firstly, to complete this task, developers or LLMs must have sophisticated domain
knowledge for contracts, some of which are related to features of Rust. Furthermore, checking
contracts may require inferences in complex contexts, which could involve many structs, functions,
traits, and variable types. Overall, it is laborious and error-prone to verify the soundness of unsafe
calls by checking whether all contracts are guaranteed.

2.2 Preliminary
The previous study [18] defines 19 Safety Properties (SPs) based on the documents of unsafe APIs
in the Rust standard library [65], focusing on the safety requirements of unsafe APIs and the
undefined behavior that can be triggered. However, the study does not address how each SP can be
guaranteed, which is crucial for the practical use of unsafe APIs. To bridge this gap, we conduct a
preliminary study on how unsafe APIs are practically guaranteed in EUCs.

Despite the complexity and flexibility of EUCs, we propose that there are some high-level general
patterns for EUCs to guarantee contracts. For instance, the contract “i < len” can be guaranteed
by direct validation in if statement or inferable context (e.g., i is the remainder of len; i < 0 and
len > 0). According to features of different contract types, each type is associated with distinct
guarantee patterns (GPs). In general, the preliminary study aims to summarize contract types and
GPs corresponding to each type. Before the investigation, we refer to prior work [18] and set the
criteria for contract types and GPs:

• Unambiguous: Each contract type has a clear example; same for GPs.
• Non-overlapping: The definitions of different contract types do not overlap; same for GPs.
• Generalizable: Each contract type must abstract many similar cases; same for GPs.
• Essentiality: Any unguaranteed contract would lead to undefined behavior.
• Practical: One contract can be guaranteed in any GPs corresponding to its contract type.

We analyzed the EUCs in the standard library [65] and the top 500 most downloaded crates
in crates.io [16]. All repositories were cloned with the latest commit on GitHub on May 25,
2024. These crates span various fields and have been widely reviewed, ensuring the quality and
comprehensiveness of the preliminary study. After collecting all EUCs and the documents of
referenced unsafe APIs, the first and second authors conducted two rounds of manual analysis.
The first round is dedicated to categorizing the Safety section content into distinct contract types
and the second round aims to distill GPs for each contract type. In the first round, we analyzed the
documents of involved unsafe APIs one by one to summarize the contract types and classify each
mentioned contract. We started with an empty set of contract types and incrementally defined a
new type when the target contract cannot be classified into existing types. The classification was
conducted independently, but the two authors would discuss the new case to determine the name
and definition of the new type. After finishing the initial labeling, we cross-checked the results to
ensure consistency. In the second round, we distill GPs for each contract type individually based on
the results of the first round. For a specific type, we manually examined the code and documents of
all related EUCs. These EUCs are then aggregated into several subgroups according to how they
guarantee the contract is upheld in all conditions. Subsequently, we conducted a cross-checking for
this group and summarized guarantee patterns (GPs) corresponding to each subgroup. To ensure
the criterion Practical, upon distilling GPs of a certain type, we would attentively verify whether
all specific contracts of this type can be guaranteed in any of its GPs. Failure to do so indicates that
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Table 1. Contract Types and Corresponding Guarantee Patterns

Contract Type Definition of Contract Type No Guarantee Pattern Definition of Guarantee Pattern
1 Trusted Source Get the pointer from an aligned object.
2 Aligned Offset Make sure the computed offset of the pointer is aligned.Aligned The pointer must be properly aligned.
3 Type Invariant The type is intrinsically guaranteed to be aligned, e.g., u8.

Allocated The pointer must point to writable allocated memory. 4 Trusted Source Get the pointer from an allocated object or the trusted function.
5 Trusted Source Get the complete memory range from a single object.

Dereferencable
The memory range (indicated by one pointer and another pointer
or length) must be within the bounds of a single object. 6 Explicit Validation Explicitly validate whether the range is in-bound.

7 Trusted Source Get the pointer from an initialized object or a trusted function.
8 Extra Mark Mark the state with extra Wrap, e.g., MaybeUninit.Initialized

The pointer must point to initialized memory so that the object
is readable.

9 No Read Do not read nor return the uninitialized data before initialization.
10 Trusted Source Get the pointer from an allocated object or a trusted function.
11 Explicit Validation Explicitly validate whether the pointer value equals Null or zero.Not Null The pointer must not be null.
12 Extra Mark Mark the state with extra Wrap, e.g., Option, Result, NonNull.
13 Trusted Source Get all parameters of calculation from trusted objects or functions.

Not Overflow
The pointer calculation must not cause overflow nor wrap
around the address space. 14 Explicit validation Explicitly validate the value range will not overflow.

15 Trusted Source Get from object satisfying the constraint or trusted function.
16 Explicit Validation Explicitly validate whether the constraint is satisfied.
17 Inferable Context The value is initialized according to the constraint.

Type Constraint
The value must satisfy additional constraints beyond its type,
e.g., Encoding and Parity.

18 Type Invariant The constraint is satisfied intrinsically by the type invariant.
19 Direct Validation Validate the numeric relation and handles all cases.

Numeric Relation
The direct or indirect numeric relation between variables or
constants must be satisfied. 20 Inferable Context The relation can be inferred from the context.

21 Type Invariant The function and the value passed are intrinsically thread-safe.
Thread Safety

The function or the function call context must be thread-safe
to avoid data race or deadlock. 22 Additional Helper Use additional lock to protect the critical resource.

23 Explicit Validation Explicitly validate the required lock is hold.
Locked The specific lock must be held by current thread.

24 Extra Mark Mark the lock is held with extra Wrap, e.g., LockGuard.
25 Additional Helper Trigger interprocess lifetime checking with PhantomData.
26 Explicit Terminated Explicitly terminate the short-lifetime object before another one.Lifetime Coverage The object must or must not outlive another object.
27 Extra Mark Mark the lifetime relation with extra lifetime identifiers.

End of Use The method or the object must not be used again afterward. 28 Explicit Terminated Explicitly terminate the target object before another use.
29 Taken Ownership The generated object takes the ownership from the origin.

Exclusive
The generated object must not be accessed by the original
reference or pointer during its lifetime. 30 Explicit Terminated Explicitly terminate the generated object before external access.

Workflow
The function call must follow specific workflow or the
parameter must originate from specific source.

31
Complete

Encapsulation
Encapsulate the complete workflow as a single method according
to the requirements.

Unreachable The specific code branch must not be reachable. 32 Inferable Context The context guarantees specific branches are not reachable.
33 Explicit Validation Explicitly validate whether the environment meets the requirement.

Environment
The compile environment or target must satisfy extra
requirements, such as architecture, instruction set. 34 Extra Mark Use extra attributes, traits to trigger the compile-time checks.

this contract type is excessively general and abstract. Consequently, we will subdivide the group of
current contract type into several new contract types and resummarize their GPs.

As shown in Table 1, we defined 16 contract types and 34 corresponding GPs. These 16 contract
types emphasize requirements for distinct aspects, covering Memory & Pointer, Value, Concurrency,
Lifetime,Ownership,Dataflow, and Environment. Owing to the criterion Generalizable, these contract
types abstract multiple similar contracts. For example, the contract type Type Constraint involves
encoding and parity, and Numeric Relation includes all numeric relations between variables or
constants. According to the criterion Practical, contracts associated with distinct GPs are categorized
into different types. For instance, the contracts “not null” and “not dangling” both fall under the SP
Allocated [18], while “not null” is significantly easier to validate and should be classified as the new
contract type Not Null. Despite the correlation between contract types, they do not overlap with
others. Namely, the Initialized memory also implicitly requires to be Allocated. However, they are
categorized into two types since Initialized has additional requirements.

Each contract type is associated with at least one GP, indicating how contracts of this type can
be guaranteed practically. Note that these GPs do not necessarily represent explicit operations. In
other words, they can represent the abstractions or invariants of the given context, e.g., a variable
of usize is guaranteed to be non-negative. Besides, different GPs of one contract type are not in
conflict but composable. For example, the return value of a trusted function (Trusted Source), can
still be marked with an additional wrapper (Extra Mark). Given the correlation between contract
types, different contract types may have the same GPs, representing the practical scenarios in
which multiple contract types are guaranteed simultaneously. Moreover, many GPs are related to
Rust features, such as Extra Mark, Additional Helper, and Taken Ownership.
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Encapsulation 
of Unsafe Calls

Code Hints

References

Structs

Safe APIs

Contract1 (TypeA)

Contract2 (TypeB)

Contract3 (TypeC)

Contract TypeA

Pattern1

       Pattern1 Example   Counter-
Example

Contract TypeB

P1 Example

CT-Example

• References
• Code w/ Hints
• Contract1

Unsafe APIs

Query:

Context Retrieval Decomposition & Classification Pattern-Oriented Checks

OR(     ,     ) = 

AND(     ,      ,     ) =

Fine-grained Unsoundness

       Pattern2 Example

Contract TypeC CoT

Pattern2
P2 Example

CT-Example

• References
• Code w/ Hints
• Contract1

Query:

CoT

Example Library

Decompose Refine
Safety Sections

Judge

Fig. 3. Overview of Safe4U. The and denote the final answer of Guaranteed and Unguaranteed in
both examples and response. Context Retrieval: Retrieving context of EUCs with static analysis tools.
Decomposition & Classification: Utilizing the LLM to decompose the Safety section into fine-grained
classified contracts and ensure the quality with Self-Judge and Refine. Pattern-Oriented Checks: Checking
whether the contract is guaranteed in any corresponding GP. Example Library: Providing dynamic examples
for Pattern-Oriented Checks.

3 Approach
In this section, we present our automated framework, Safe4U. Given an encapsulation that contains
one unsafe call, Safe4U verifies its soundness by checking whether it guarantees all contracts
described in its Safety section. As shown in Figure 3, Safe4U consists of three modules, i.e., Context
Retrieval, Decomposition & Classification, and Pattern-Oriented Checks. Initially, the Context
Retrieval module retrieves the context from the Rust project using static analysis tools. The context
includes the Safety section of the interior unsafe API. Then, the Decomposition & Classification
module applies the LLM to decompose and classify the original Safety section into several fine-
grained classified contracts. To ensure the quality of decomposition and classification, the LLM is
further leveraged to self-judge and refine the decomposition results iteratively. Subsequently, in
the Pattern-Oriented Checks module, the LLM checks each fine-grained contract independently.
Particularly, one contract is analyzed in multiple parallel rounds and each round corresponds to
one guarantee pattern (GP) associated with its contract type. In each round, the LLM determines
whether the target contract is Guaranteed by the EUC in the specific GP. The determinations
from parallel rounds are aggregated with OR operation to obtain the identification result for one
contract. After checking all contracts, the results are further aggregated with AND operation to
obtain the identification result for the EUC. Specifically, Safe4U considers this EUC Sound only if all
its contracts are Guaranteed. Otherwise, it is Unsound, and the Unguaranteed contract is identified
as fine-grained unsoundness which requires a corresponding fix.

3.1 Context Retrieval
Safe4U retrieves two kinds of context with static analysis tools, including code hints and references.
Code hints are code snippets that can be attached to the original code to make the code more
informative, involving inferred variable types and parameter names displayed in function calls.
References include information about items (e.g., structs, functions, and traits) referenced by the
target EUC.
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3.1.1 Code Hints. Rust is an implicit statically typed language, meaning the variable types can be
inferred from their code context instead of being explicitly annotated. Additionally, the contracts
of unsafe APIs are typically described with parameter names, so soundness checking requires
matching the specific parameters with local variables. Such a match process is error-prone for LLMs
and always leads to unfaithful responses. For example, unsafe fn foo(a: u8, b: u8) -> u32
has a contract “a must be larger than b” and the caller is let c = foo(b, a). It is confusing for
LLMs to match the variables b, a to the parameters a, b, not to mention checking the unsafe
call. Furthermore, the type of new variable c is unclear. The variable types could supplement
important information for guaranteeing contracts, e.g., variables of usize must be non-negative.
After adding code hints, the caller code becomes let c: u32 = foo(a: b, b: a), which is clearer
for the explicit variable type and the unambiguous matching relationship between variables and
parameters.

To acquire the variable types precisely and efficiently, we construct a retriever to obtain the type
inference results from the compiler. Subsequently, inferred types are attached to the original code,
within formats that conform to Rust syntax. In particular, for a new variable declared with let var
statement, the type is append behind the variable “: type”. As for the return type of closure, its
format is “-> type”. To obtain the correspondence between parameters and variables passed into
the callee function, Safe4U analyzes the parameter list declared in its function signature. Then, the
parameter names are added preceding the variable names in the format “para_name: var_name”.

3.1.2 References. Given the final target of practical scans, the target EUC derives from real-world
projects and often involves many external items, such as structs and functions. If the references
of items are not provided, the LLM always outputs unexpected answers that contain notable
hallucinations. Thus, it is crucial to provide information about these items in the prompt.

To implement reference retrieval, we extend Rust Analyzer, the language server of Rust [47, 64].
First, by analyzing the abstract syntax tree of the target EUC, Safe4U extracts a set of referenced
items. Then, it collaborates with Rust Analyzer, which analyzes the whole project, to retrieve
the documents and code of these items. Since the references could expand exponentially, Safe4U
only involves items that are directly referenced. However, the retrieved information may still be
too redundant to be completely added to the prompt. Thus, Safe4U slices the reference with the
following rules. The code snippets of structs (i.e., struct definitions) are completely kept since
their fields are informative. In terms of the code of referenced functions and macros, the slicer
omits their lengthy implementation details, retaining only their signatures. Similarly, despite the
value of the documents, they are too verbose to be used directly. Considering the trade-off, we
retain the description sections in the documents, which briefly summarize the functionality of
items. In addition, the Safety sections of used unsafe APIs are extracted for further checks.

3.2 Decomposition & Classification
As described in the Background 2.1, an unsafe API typically has multiple contracts, which are
mixed in the Safety section. To identify the soundness of the target EUC, we have to check whether
all of these contracts are guaranteed, i.e., check these contracts one by one. However, the original
Safety section is too complicated and redundant to be directly checked by the LLM. Therefore, it
is crucial to decompose the original Safety section into non-overlapping fine-grained contracts.
Besides, previous studies have demonstrated that the decomposition of questions can remarkably
improve the faithfulness of model-generated reasoning and overall performance [13, 51, 74]. Overall,
Safe4U applies the LLM to decompose the original Safety section into fine-grained contracts so that
each contract can be checked independently. The decomposition has the following requirements:
1) Consistency: The decomposed contracts must derive from the original Safety section and cover
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all described safety requirements. 2) Non-overlapping: The decomposed contracts cannot overlap
with others. 3) Atomic: The decomposed contracts cannot be further decomposed. 4) Exclusively-
Typed: Each decomposed contract can only belong to one categorical contract type. 5) Clarity: Each
decomposed contract should be condensed but clear. To achieve Exclusively-Typed and promote
further analysis, we display the names and definitions of all contract types 𝑇 in the prompt and
require the LLM to classify each decomposed contract 𝑐 simultaneously. Compared to the strategy
of classifying after decomposition, integrating these two objectives into a single step gives the
LLM a clearer understanding of the decomposition criteria, thereby achieving a more thorough
and accurate decomposition. For more accurate classification, the prompt also involves seven
demonstrations to invoke the ICL capability of LLM. The detailed prompt is displayed in the
replication package and we denote LLM with this specific prompt as 𝐿𝐿𝑀𝑑𝑒𝑐&𝑐𝑙𝑠 . By decomposing
and classifying the Safety section 𝑠𝑎𝑓 𝑒𝑡𝑦, Safe4U gets 𝑛𝑐 fine-grained contracts 𝑐 and corresponding
types 𝑡𝑦𝑝𝑒 .
The quality of the decomposition and classification results is essential since they could signifi-

cantly influence the subsequent checks. To this end, Safe4U employs the LLM to further self-judge
and refine the decomposition results [24]. Specifically, LLM with a judge prompt 𝐿𝐿𝑀 𝑗𝑢𝑑 is used
to check whether the current decomposed contracts meet all requirements and are classified cor-
rectly. The judge provides elaborate review comments towards each requirement and ultimately
determines whether the refinement is needed. If necessary, Safe4U passes 𝑠𝑎𝑓 𝑒𝑡𝑦, current decom-
posed contracts, and the judge comments to LLM with a refinement prompt 𝐿𝐿𝑀𝑟𝑒 𝑓 to refine the
decomposition results. This process is repeated iteratively until 𝐿𝐿𝑀 𝑗𝑢𝑑 confirms that no further
refinement is required. To avoid infinite self-judge loops, the maximum number of iterations is
limited to 𝑟𝑜𝑢𝑛𝑑_𝑙𝑖𝑚𝑖𝑡 . Overall, the pseudocode of Decomposition & Classification with iterative
Self-Judge and Refine is defined as follows:

Algorithm 1: Decomposition & Classification
Input: safety
Output: 𝑆 =

[
(𝑐𝑖 , type𝑖 )

]
where 𝑖 ∈ [1, 𝑛𝑐 ]

1 𝑆 ← 𝐿𝐿𝑀𝑑𝑒𝑐&𝑐𝑙𝑠 (𝑠𝑎𝑓 𝑒𝑡𝑦);
2 for 𝑟 = 1 to 𝑟𝑜𝑢𝑛𝑑_𝑙𝑖𝑚𝑖𝑡 do
3 𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 ← 𝐿𝐿𝑀 𝑗𝑢𝑑 (𝑆);
4 if refinement_needed( 𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡) then
5 𝑆 ← 𝐿𝐿𝑀𝑟𝑒 𝑓 (𝑠𝑎𝑓 𝑒𝑡𝑦, 𝑆, 𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡);
6 else
7 break
8 end
9 end

3.3 Pattern-Oriented Checks
3.3.1 Example Library. Prior works demonstrate that LLMs have in-context learning capability
to learn knowledge from few-shot demonstrations without updating parameters [25, 56]. To fully
activate the in-context learning capability of LLMs, Safe4U includes a set of pre-constructed
examples that can be added to the prompt as demonstrations. There are two categories of examples,
namely Pattern Example and Counter-Example. Each Pattern Example corresponds to one GP,
describing how a contract is guaranteed by the EUC in this GP. Contrarily, the Counter-Example
explains why a contract is considered Unguaranteed. According to the 16 contract types and 34
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GPs defined in the preliminary, the example library involves 34 Pattern Examples and 16 Counter-
Examples. Both Pattern Examples and Counter-Examples are composed of a query and a check
answer. Particularly, the check query consists of references, code of EUC, and one fine-grained
contract to be checked. The check answer is the human-written step-by-step analysis, which
implicitly demonstrates the specific guarantee pattern or explains why the contract is unguaranteed.

3.3.2 Basic Process. To check whether the contract 𝑐𝑖 is guaranteed, Safe4U instructs the LLM
to answer the query 𝑞𝑢𝑒𝑟𝑦𝑖 , which is constructed by filling the 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 with sliced references
𝑟𝑒 𝑓 , code augmented with code hints 𝑐𝑜𝑑𝑒′, and the target contract 𝑐𝑖 . To provide accurate domain
knowledge to the LLM, Safe4U selects examples from the example library according to the contract
type type𝑖 of the target contract 𝑐𝑖 . Nevertheless, the significant differences between guarantee
patterns (GPs) make it challenging for LLMs to learn all GPs simultaneously. Therefore, to check
contract 𝑐𝑖 , Safe4U performs multiple rounds of checks, each corresponding to one of the GPs 𝑃type𝑖
associated with type𝑖 . In particular, for the round of GP 𝑝 , Safe4U picks a Pattern Example 𝑒𝑥𝑝𝑝
associated with GP 𝑝 and a Counter-Example 𝐶𝑇 -𝑒𝑥𝑝type𝑖 corresponding to type𝑖 . In the round of
GP 𝑝 , the LLM finally makes the determination 𝑔𝑖,𝑝 , meaning contract 𝑐𝑖 is Guaranteed by the EUC
in GP 𝑝 or not, as defined below:

𝑞𝑢𝑒𝑟𝑦𝑖 = 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒
(
𝑟𝑒 𝑓 , 𝑐𝑜𝑑𝑒′, 𝑐𝑖

)
, 𝑖 ∈ [1, 𝑛𝑐 ]

𝑔𝑖,𝑝 = 𝐿𝐿𝑀check
(
𝑒𝑥𝑝𝑝 ,𝐶𝑇 -𝑒𝑥𝑝type𝑖 , 𝑞𝑢𝑒𝑟𝑦𝑖

)
, 𝑝 ∈ 𝑃type𝑖

(1)

After pattern-oriented checks, we get determinations 𝑔𝑖,𝑝 corresponding to each GP 𝑝 . With OR
operation, these determinations 𝑔𝑖,𝑝 are aggregated to 𝑔𝑖 as the determination for contract 𝑐𝑖 .
Ultimately, considering a sound EUC must guarantee all contracts, all determinations of every
contract are further aggregated withAND operation as the final determination 𝑠𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 , indicating
whether the EUC is sound or not. These aggregating steps are defined below:

𝑔𝑖 = 𝑂𝑅
[
𝑔𝑖,𝑝

]
, 𝑝 ∈ 𝑃type𝑖 , 𝑖 ∈ [1, 𝑛𝑐 ]

𝑠𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 = 𝐴𝑁𝐷 [𝑔𝑖 ]
(2)

If the fine-grained result 𝑔𝑖 is Unguaranteed, indicating contract 𝑐𝑖 is not guaranteed by the EUC
and requires a corresponding fix. We define such an unguaranteed fine-grained contract 𝑐𝑖 as a
contract-level unsoundness.

3.3.3 Chain-Of-Thought (CoT). To effectively invoke the reasoning capability of the LLM, Safe4U
instructs the LLM to check with CoT [13, 71]. Instead of simply asking the LLM to analyze step by
step, it requires the LLM to follow the given procedure:
(1) Locate the code snippet of the unsafe call.
(2) List the variables related to the contract.
(3) Analyze step by step towards the contract.
(4) Determine whether the contract is guaranteed.

In the first step, the LLM explicitly clarifies its analysis goal by repeating the code, which contributes
to minimizing input-conflicting hallucinations [67]. Similarly, in the second step, the LLM extracts
key expressions from the code, thereby promoting subsequent reasoning steps. Step three is the
main part of reasoning where the LLM leverages inherent capabilities and domain knowledge
acquired from the given examples to conduct a thorough, step-by-step analysis. Ultimately, the
LLM is required to answer Yes or No as the final determination, enabling the automation of output
processing. This check chain is both stated in the 𝑠𝑦𝑠𝑡𝑒𝑚 prompt and demonstrated by the few-shot
examples. The difficulty of these four steps increases gradually, and each step depends on the
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output of the former. Furthermore, CoT can also make the output more interpretable [13], allowing
human reviewers to check whether it is a false alarm effortlessly.

3.4 Handle Corner Cases
To improve generalizability, Safe4U implements alternative schemes to address corner cases that
could damage the automation. First, since Safe4U checks soundness according to the Safety section,
unsafe APIs lacking document or Safety section will be filtered. During the Decomposition &
Classification step, the LLM may accidentally classify the contract into some undefined types or
directly output Unknown. For these contracts, Safe4U obtains their embedding and then determines
the contract type by identifying the most similar contract in the example library with cosine
similarity. When checking contracts, although LLMs are required to finally answer Yes or No, they
may output Unknown if they are not sure about the determination. When aggregating results,
Safe4U treats Unknown as a variant of Unguaranteed.
For EUC involving more than one unsafe call, Safe4U decomposes each of their Safety sections

and conducts pattern-oriented checks for all fine-grained contracts. Similarly, this EUC is deemed as
Sound only if all contracts are identified as Guaranteed. Additionally, if any contracts of the unsafe
call are Unguaranteed, this unsafe call is considered unsound, named function-level unsoundness.

4 Experimental Setup
4.1 ResearchQuestions
In the evaluation, we answer the following research questions with experiments:

• RQ1: How generalizable and effective is Safe4U? Safe4U is a generalizable framework that
can be applied to different LLMs. Accordingly, in this RQ, we first apply Safe4U to various LLMs
to evaluate its generalizability. Besides, to assess the effectiveness of Safe4U, we compare Safe4U
with state-of-the-art non-LLM techniques.
• RQ2: How effective are the components in Safe4U? There are multiple elements in Safe4U,
including References (Ref), Code Hints (Hints), Chain of Thought (CoT), Decomposition (Dec),
Classification (Class), Self-Judge (Judge), and Pattern-Oriented Checks (Pattn). To investigate the
contribution of each component, in this RQ, we conduct a comprehensive ablation experiment.
• RQ3: How effective is Safe4U in locating fine-grained unsoundness? Safe4U provides
fine-grained unsoundness analysis for each contract. These fine-grained analyses may be helpful
for human reviewers to locate and validate the source of unsoundness, i.e., unsound unsafe calls
and unguaranteed contracts. To quantify the value of these fine-grained responses, in this RQ, we
manually label the ground truth of fine-grained contracts and evaluate the results in two levels:
– Function-Level: Locate the unsound unsafe call from all interior unsafe calls.
– Contract-Level: Locate the fine-grained Unguaranteed contracts.
• RQ4: How effective is Safe4U in different types? Apart from the capabilities of the applied
backbone LLM, the type of contract could be a significant factor affecting the performance of
Safe4U, i.e., some contract types may be more difficult to analyze. Accordingly, in this RQ, we
investigate the relationship between the performance of unsoundness identification and contract
types.

4.2 Data Collecting
Both sound and unsound samples are required to evaluate the performance of identifying unsound
EUCs. However, there is no existing dataset and it is impractical to build samples manually. Thus,
we design the following procedures to collect real-world EUCs from crates in practice.
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Public Functions. Third-party crates commonly create private helper functions that are not
completely sound and intentionally mark them as safe for code reusing. Since these private
functions are not accessible outside the crate, this strategy is acceptable if the maintainers ensure
that these unsound functions are used correctly. Hence, we collect public functions that directly
encapsulate interior unsafe calls to prevent data pollution.
Sound Samples. As discussed in Background 2.1, the Rust community recommends developers
write a Safety comment above every unsafe call to explain why it is safe, i.e., how the contracts are
guaranteed. The Safety comment reveals the developers’ awareness and respect for the contracts.
Thus, the safe EUCs with Safety comments are supposed to be sound. In addition, these EUCs
derive from popular and commonly used crates, meaning that they have been frequently reviewed,
tested, and widely verified in practice. Therefore, the public EUCs with complete Safety comments
can be considered sound samples approximately. To prevent the LLM from referring to the Safety
comment, we delete all comments around unsafe calls.
Unsound Samples. Since there is no existing dataset for unsound EUCs and their amount in
CVE [20] is inadequate for evaluation, we can only simulate unsound samples from unsafe encap-
sulations. Specifically, some unsafe encapsulations partially guarantee the contracts of interior
unsafe calls and inherit the unguaranteed contracts by declaring them in their Safety sections.
Accordingly, we simulate unsound samples from these unsafe encapsulations with the following
steps. First, extracting public unsafe encapsulations of unsafe calls, together with both Safety
sections of encapsulations and unsafe calls. Second, we manually check these unsafe encapsulations
to determine whether they inherit any contracts of its interior unsafe callees by comparing the
Safety sections. An encapsulation is filtered if it is unsafe for other reasons, such as dereferencing
raw pointers or data race. Finally, the remaining unsafe encapsulations are preprocessed: 1) delete
the unsafe keyword in the function signature, 2) add an unsafe block to the function body if needed,
and 3) delete the Safety comments.
Sample Details. To ensure the quality of samples, we reuse the top 500 most downloaded crates
on crates.io [16], which have been examined in the preliminary study. From these repositories,
244 public EUCs and 143 public unsafe encapsulations are extracted. Subsequently, the unsafe
encapsulations are manually filtered by the first and second authors independently and the initial
results achieve a Cohen’s Kappa [44] value of 0.856, indicating a high inter-rater reliability. After
cross-checking and reaching a consensus, we construct 105 simulated unsound samples. Then, 16
sound and 8 unsound samples are used to construct examples in the example library. Ultimately, we
get an evaluation dataset with 325 samples, including 228 sound and 97 unsound samples. The ratio
of unsound samples is 29.8%, which may be higher than the real-world fraction but still reflects the
fact that unsound EUCs are less than sound ones. Note that these samples include no manual labels
except the ground truth marking whether the EUC is sound. Furthermore, these samples involve
224 unsafe APIs, significantly exceeding that in the example library.

4.3 Implementation Details

Baselines. To measure the improvement introduced by Safe4U, we first adopt LLMs with the basic
pipeline and prompt as the LLM baseline. Given the code of EUC and the original Safety section,
the baseline queries the LLM to determine whether the EUC guarantees all contracts described in
the Safety section. The LLM is instructed to respond either Yes or No, indicating the EUC is Sound
or not. To objectively reflect the performance of Safe4U, we compare it with three state-of-the-art
non-LLM techniques: 1) LockBud [48, 50]: An advanced static bug detector tailored for concurrency
and memory bugs caused by unsafe Rust; 2) Rudra [8]: A static tool that efficiently recognizes
three important bug patterns in unsafe Rust; 3) Kani [32]: A formal verification tool that can verify
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Table 2. Results of Comparison Experiments. Table (a) shows the results of applying Safe4U to different LLMs.
Table (b) presents the results of both Safe4U and state-of-the-art non-LLM techniques.

(a) Applying Safe4U to different LLMs

Method Acc Rec Prec F1

Llama 33.2% 87.6% 29.3% 43.9%
+Safe4U 68.3%↑106% 78.3%↓10.5% 48.1%↑64.1% 59.6%↑35.7%

Qwen-C 41.5% 62.9% 28.4% 39.1%
+Safe4U 67.4%↑62.2% 92.8%↑47.5% 47.6%↑67.8% 62.9%↑61.0%

Qwen 52.9% 52.6% 32.3% 40.0%
+Safe4U 80.3%↑51.7% 57.7%↑9.80% 70.9%↑120% 63.6%↑59.1%

GPT-4 40.9% 97.9% 33.3% 49.7%
+Safe4U 87.7%↑114% 88.7%↓9.47% 74.8%↑124% 81.1%↑63.1%

(b) Comparison with SOTAs

Method Acc Rec Prec F1 Succ

RG 50% 50% 29.8% 37.3% 100%

LockBud 70.1% 10.3% 40% 16.4% 100%

Rudra 34.7% 54.6% 18.6% 32.1% 42.2%

Kani 81.0% 100% 63.6% 77.8% 12.3%

Safe4UQwen 80.3% 57.7% 70.9% 63.6% 100%

Safe4UGPT 87.7% 88.7% 74.8% 81.1% 100%

user-specific assertions, memory safety, run-time panics, and undefined behaviors in unsafe Rust.
Typically, Kani requires manually constructing test harnesses for each EUC, but we automated
the testing through scripts that generate harnesses based on the function signature. Additionally,
we use Random Guess (RG) as a reference baseline. Due to the challenge of gathering enough
task-specific data, fine-tuning models are not included as baselines.
Studied LLMs. Since Safe4U is a generic framework that can be applied to many LLMs, we
study the RQ1 with the following LLMs to better evaluate the effectiveness of Safe4U: 1) Meta-
Llama3.1-8b-Instruct (Llama) [62], 2) Qwen2.5-Coder-7B-Instruct (Qwen-C) [61], 3) Qwen2-7B-
Instruct (Qwen) [60], and 4) gpt-4o-2024-05-13 (GPT-4) [4]. The first three open-source LLMs, each
approximately 7B in size, offer a balanced trade-off between performance and deployment costs.
Qwen-C is selected to examine whether code-specific LLMs are more suitable for Safe4U. GPT-4 is
utilized to evaluate the generalizability of Safe4U on state-of-the-art LLMs. Considering the cost of
GPT-4, we intend to utilize only open-source LLMs in actual deployment. Therefore, we choose
the best-performing open-source LLM identified in RQ1 to conduct the following RQs. GPT-4 is
accessed through the API [1] and the other LLMs are downloaded from Huggingface [2].
Parameter Settings. A previous study proposes that greedy decoding is typically more effective
for reasoning tasks and coding problems [55]. In addition, we found that LLMs with higher tem-
peratures are more likely to output responses in unexpected formats (for example, not providing
“Yes” or “No” as definitive answers), which complicates the extraction of results using automated
parsers. Accordingly, we perform greedy decoding with temperature = 0 for all LLMs throughout
the experiment. Moreover, we fix the random seed and keep other settings as the default. The
𝑟𝑜𝑢𝑛𝑑_𝑙𝑖𝑚𝑖𝑡 of self-judge and refinement is set to 3.
Evaluating Metrics. Since our target is to identify unsound EUCs, we set unsound samples as
positive while sound samples are negative. Based on that, we evaluate the effectiveness of Safe4U
using four common metrics: Accuracy (Acc), Recall (Rec), Precision (Prec), and F1-score (F1). Moreover,
given that analysis-based methods may fail on certain samples, we also considered the success rate
(Succ) as a metric. In the computation of first four metrics, failed samples will be excluded.

5 Results
5.1 RQ1: How generalizable and effective is Safe4U?
Table 2a shows that Safe4U remarkably outperforms the LLM baseline in accuracy, precision, and
F1-score for all studied LLMs. The consistent increase in these metrics reflects the generalizability
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of Safe4U. The LLM baseline does not have much advantage over random guessing, especially in
accuracy and precision. This indicates that these LLMs themselves cannot identify unsound EUC
well when lacking relevant contextual information and domain knowledge.

In addition, Table 2a shows that Safe4U brings different degrees of performance improvement to
different LLMs, which is caused by the varied in-context learning and reasoning capabilities between
LLMs. Among the selected LLMs, the performance of GPT-4 + Safe4U significantly surpasses others,
owing to the superior capabilities of the backbone LLM. This means that the performance of Safe4U
can be extended by deploying more advanced LLMs. Among other LLMs with similar parameter
scales, Qwen + Safe4U achieves the best overall performance, with the highest accuracy of 80.3%,
highest precision of 70.9%, highest F1-score of 63.6%, and an acceptable recall of 57.7%. Despite the
similar performance in many benchmarks, these four LLMs’ capability differences are magnified by
Safe4U. In particular, a weak LLM is more likely to get non-atomic contracts, classify contracts
into wrong types, and perform worse in final checks. Notably, Qwen-C surpasses Qwen in many
code-related benchmarks [26, 28, 78], but it does not outperform Qwen in identifying unsound
EUC according to F1-score. This demonstrates that Safe4U depends on the more comprehensive
capabilities of LLMs, encompassing their understanding and reasoning abilities for NL and code,
capacity for ICL, and so on.
Safe4U can notably improve precision but may sacrifice some recall. For example, Safe4U can

increase the accuracy and precision of Llama by 106% and 64.1% respectively, but it will lose part of
the recall. As shown in Table 2, we found that Llama and GPT-4 with the baseline achieve high recall
scores but quite low precision, which is marginally better than Random Guss. These situations
show that Llama and GPT-4 themselves are inclined to identify EUCs as unsound. After adopting
Safe4U, the inherent propensities of LLMs are corrected, allowing a more reliable check.
Table 2b demonstrates that Safe4U also outperforms SOTA non-LLM techniques in identifying

unsound EUCs, particularly in accuracy, precision, and F1-score. LockBud can merely identify 10.3%
of unsound EUCs since it only supports specific bug patterns of unsafe code. Rudra detects 54.6%
of unsound EUCs, but it also produces numerous false positives due to the lack of understanding of
contextual semantics. Besides, Rudra depends on a specific version of middle-level intermediate
representation, making it incompatible with projects that use newer compilers. Kani appears to
identify all unsound EUCs with a precision of 63.6%. However, Kani’s success rate only reaches
12.3%, as its automated harness generation is limited to simple samples. The simplicity of these
successful samples leads to an overestimation of Kani’s performance. In contrast, Safe4U supports
all types of EUCs and is easy to maintain.

Answer for RQ1: Safe4U is generalizable to all studied LLMs and it can achieve better per-
formance by applying more advanced LLMs. Safe4U outperforms both the LLM baseline and
SOTA non-LLM techniques in identifying unsound EUCs, reflecting its effectiveness.

5.2 RQ2: How effective are the components in Safe4U?
We compare the performance of Safe4U with seven variants, each lacking a component of Safe4U.
Additionally, considering the significance of CoT, we include a variant w/ CoT that adds CoT to the
LLM baseline. To eliminate CoT, the LLM is instructed to directly answer Yes or No. For variants that
ablate the references or the code hints, we remove the references from the prompt or provide the
original code, respectively. Owing to the dependency relationship between Safety Decomposition,
Self-Judge, Contract Classification, and Pattern-Oriented Checks, ablating the decomposition disables
the other three parts and the pattern-oriented check is not available without the classification.
The w/o Dec directly checks the original Safety section with random examples from the example
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Table 3. Results of Ablation Experiment

Name Settings Accuracy Recall Precision F1-Score
Ref Hints CoT Dec Judge Class Pattn

Qwen 52.9%↓34.1% 52.6%↓8.93% 32.3%↓54.5% 40.0% ↓37.1%

w/ CoT 60.0%↓25.3% 18.6%↓67.9% 26.1%↓63.2% 21.7% ↓65.9%

w/o CoT 59.7%↓25.7% 56.7%↓1.79% 38.2%↓46.1% 45.6% ↓28.3%

w/o Ref 75.1%↓6.51% 47.4%↓17.9% 60.5%↓14.6% 53.2% ↓16.4%

w/o Hints 72.0%↓10.3% 64.9% - 52.5%↓25.9% 58.1% ↓8.76%

w/o Dec 68.9%↓14.1% 11.3%↓80.4% 42.3%↓40.3% 17.9% ↓71.9%

w/o Judge 78.2%↓2.68% 41.2%↓28.6% 74.1% - 53.0%↓16.7%

w/o Class 77.8%↓3.07% 47.4%↓17.9% 68.7%↓3.14% 56.1%↓11.8%

w/o Pattn 74.5%↓7.28% 43.3%↓25.0% 60.0%↓15.4% 50.3% ↓21.0%

Safe4U 80.3% - 57.7% - 70.9% - 63.6% -

library. Variant w/o Class checks decomposed contracts with examples selected based on embedding
similarity. To ablate Self-Judge, w/o Judge simply uses the initial decomposition results for further
identification. As for w/o Pattn, it checks each fine-grained contract in one round, provided with all
Pattern Examples and one Counter-Example. Due to the best overall performance of Qwen in RQ1,
it is selected for experiments in this RQ and all other settings are kept as the same.
The results are presented in Table 3, the best result for each metric is highlighted in bold and

the second is underlined. The relative performance decreases compared to Safe4U are included
to make the comparison more perceivable. Compared to Safe4U, all variants exhibit varying
degrees of performance degradation, which underscores the contribution of each component to
the identification of unsound EUCs. The most significant performance drop in w/o Dec and w/o
CoT illustrates the critical role of decomposition and CoT in Safe4U. The notable drop in w/o Dec
is expected since the absence of decomposition disables many other components. As for w/o CoT,
ablating CoT results in the LLM’s reasoning capability not being explicitly activated. However, the
poor performance of w/ CoT and w/o Dec indicates that the lack of reasoning capability is not the
only cause of the performance drop. The main issue is that without CoT, the answers in the given
examples are limited to a simple Yes or No, which fails to provide the LLM with domain knowledge
about guarantee patterns. Similarly, compared to w/o Class and w/o Pattn, Safe4U achieves better
performance by providing the LLM with more accurate domain knowledge. As for w/o Judge, the
performance difference indicates that the self-judge mechanism effectively improves the quality of
the decomposition and classification.

Answer for RQ2: All ablating variants exhibit varying degrees of performance degradation,
reflecting the effectiveness of each component. The notable performance drop observed after
ablating decomposition and CoT underscores their crucial importance for Safe4U.

5.3 RQ3: How effective is Safe4U in Locating Fine-grained Unsoundness?
To evaluate the performance of Safe4U in locating fine-grained unsoundness, we first manually
labeled the ground truth (GT) for the decomposed contracts. These contracts are exclusively marked
as Guaranteed or Unguaranteed. A contract is considered Guaranteed only if it remains guaranteed
regardless of how the EUC is used, otherwise, it is deemed Unguaranteed. Additionally, despite
the Self-Judge during the decomposition, there are fabricated contracts that do not exist in the
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original Safety section due to the hallucination. We marked these contracts as Hallucinated and
excluded them from the evaluation. Since the decomposed results for each LLM are different, we
only manually labeled the GT based on the fine-grained contracts decomposed and self-judged by
Qwen. The contract-level GT was labeled by the first and second authors independently and the
initial results reached a Cohen’s Kappa [44] value of 0.868. Then the results were cross-checked until
a consensus was met on all contracts. The function-level GT is inferred from contract-level labels.
Specifically, an unsafe call is considered as Unsound if any associated contract is Unguaranteed,
otherwise, it is Sound.

Table 4. Results of Locating Fine-
grained Unsoundness

Granularity Recall Precision

Function-Level 57.4% 98.2%
Contract-Level 35.6% 94.1%

We treat the Unguaranteed contracts as positive and evaluate
the results with recall and precision. The results are presented in
Table 4. For function-level evaluation, the precision of 98.2% re-
veals that the majority of unsafe calls alarmed by Safe4U are indeed
unsound. Similarly, the contract-level precision of 94.1% reveals
the effectiveness of Safe4U in locating Unguaranteed contracts. In
addition to the precise classification, the output of Safe4U elabo-
rates the reasoning process of identifying whether a contract is
Unguaranteed, thereby reducing the burden to review. Overall, the
fine-grained results of Safe4U can effectively assist human programmers in locating and validating
unsound unsafe calls and unguaranteed contracts.
However, the function-level recall of 57.4% and contract-level of 35.6% indicates that Safe4U

fails to locate many unguaranteed contracts. With detailed analysis, we find that the low recall
may derive from the contradiction between the parallel checks of fine-grained contracts and the
implicit topological relationships of these contracts. In practical scenarios, it is common for a fine-
grained contract to depend on other contracts of the former unsafe calls. We label this contract as
Unguaranteed if any of its predecessors is not Guaranteed. Nevertheless, in Safe4U, this fine-grained
contract is checked independently. This means that the LLM is unaware of the other contracts,
not to mention their implicit topological relationships. Consequently, the LLM assumes that other
unsafe calls are sound, focuses solely on the current contract, and predicts it as Guaranteed. Take a
simple code data.get_unchecked(i).load() for example, load has a contract "The object must
be initialized". To check this contract, the LLM focuses on whether data is initialized regardless of
the contract of get_unchecked that “i must be in-bound”. Fortunately, the contradiction between
topological relationships and parallel checks has little impact on identifying unsoundness in
practical scenarios, where all contracts of every unsafe call ought to be guaranteed. In other words,
despite the lower contract-level recall, checks regardless of topological relationships can better
locate the real unsoundness source without predicting all implicated contracts as Unguaranteed.

Answer for RQ3: Safe4U achieves good precision in identifying fine-grained unsoundness,
although the recall is relatively low due to the topological relationships of contracts. Overall, the
fine-grained results of Safe4U are beneficial for human programmers in locating and validating
unsound unsafe calls and unguaranteed contracts.

5.4 RQ4: How effective is Safe4U in different contract types?
To investigate the relationship between the performance of Safe4U and contract types, we conduct a
in-depth analysis for the fine-grained results of Qwen + Safe4U, including both sound and unsound
samples. For sound samples, the expected results for all decomposed contracts are Guaranteed.
As for unsound samples, we reuse the ground truth manually labeled in RQ3. To distinguish the
performance in terms of missed detections and false positives across various types, we employ recall
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(a) Contract Types with Lowest Recall (b) Contract Types with Lowest Precision

Fig. 4. Results of Safe4U across Different Contract Types

and precision as evaluation metrics, and the results are shown in Figure 4. For clearer presentation,
these contract types are sorted in ascending order based on precision or recall, with only the eight
lowest values being presented.
Apparently, the recall and precision of different contract types vary significantly, indicating

that some types are harder for Safe4U to analyze. It is noticeable that the recall and precision for
Type Constraint and Exclusive are both zero. This is due to the limited amount of such types of
Unguaranteed contracts in the evaluation dataset, all of which are identified as false negatives.
Besides, Lifetime Coverage and Not Null exhibit both low recall and unsatisfactory precision.
The subpar performance on Lifetime Coverage attributes to the fact that lifetime is a unique
characteristic of Rust that requires complex reasoning abilities. As for Not Null, we conduct an
in-depth analysis and find that numerous contracts of this type are described in formats like “self
must be non-null”. In these cases, the unsafe APIs are called like “obj.read()”. As a result, the
code hints of parameter names cannot be attached to the original code in the format “para_name:
var_name”. Consequently, the LLM may be confused about which variable the self refers to since
the EUC may also have a parameter named self. These special cases highlight the significance of
code hints and illustrate the limitation of current presentation format of code hints. This limitation
also accounts for the suboptimal performance in other similar contract types. Fortunately, after
reviewing the responses of Safe4U with GPT-4 in these cases, we discover that LLM with better
capabilities is not influenced by this issue and can still provide an accurate analysis.

Answer for RQ4: Both the recall and precision of Safe4U significantly vary across distinct
contract types, indicating that some types are more difficult to analyze. The suboptimal per-
formance of some contract types is due to the intrinsic difficulty of the contract types, the
limitation of presenting code hints, and the capabilities of LLMs.

6 Case Study
In this section, we deploy Safe4U to identify unsound EUCs in practical scenarios.

6.1 Evaluation on CVEs
We evaluate the performance of Safe4U with real-world unsound EUCs disclosed as CVEs. There are
merely about 400 Rust CVEs by 2024 [20]. We refer to the organized dataset of previous work [77]
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Fig. 5. Two responded issue reports of unsound EUCs found by Safe4U.

and manually reviewed the repair commits to find unsound EUCs. Unfortunately, most Rust CVEs
are filtered for various reasons, such as no patch yet (16.8%), commit not found (13.6%), and unsafe
unrelated (22.0%). 162 CVEs are associated with unsafe code, but the majority of them are screened
out since they derive from raw pointers or concurrency. After excluding unsound EUCs missing
Safety sections, we eventually extract 11 unsound EUCs with clear unguaranteed contracts and the
metadata is accessible in the replication package. This also accounts for why we have to simulate
unsound EUCs to construct the evaluation dataset.
The Llama3 with Safe4U identifies 9 of 11 sophisticated unsound EUCs from CVEs. The recall

reaches 81.8%, close to its recall in the RQ1 (78.3%). This shows the effectiveness of the previous
evaluation based on unsound samples simulated from unsafe EUCs. Despite the complexity of
these real-world unsound vulnerabilities, Safe4U can identify their unsoundness, indicating the
feasibility of applying Safe4U for practical scans.

6.2 Evaluation on crates.io
We further deployed Safe4U to scan crates on crates.io [16]. There are more than 150K crates on
Jun 20, 2024, while we only focus on the top 10% most downloaded crates. The scan target is public
EUCs, regardless of the existence of the Safety comment. The Safety comment (if it exists) around
the unsafe call is removed so as not to affect the check. We deployed Safe4U with both Llama3 and
Qwen2 to double-confirm the identified unsound EUCs, while other settings remain unchanged.
The results of Safe4U are further reviewed by the first and second authors.

Since the top 500 have been used for evaluation, we first scanned the top 500 to 2,000 crates.
After filtering out crates that are out of maintenance or have no public EUC, 931 EUCs are extracted
from 131 repositories, involving 435 unsafe APIs. By deploying Safe4U and manually checking the
results, we only detected one unsound EUC, which was instantly confirmed and fixed. This unsound
EUC can be easily accessed in the crate wasmtime-jit-debug, which has over 5.9M downloads [9].
In general, the frequency of unsoundness derived from unsafe calls in top crates is notably low.
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This meets our expectations since these top projects prioritize minimizing the use of unsafe code
and mandate that any unsafe code undergo thorough reviews.
To investigate the situation regarding unsound EUCs in relatively less popular crates, we scan

the most downloaded crates ranging from 10K to 15K, which are still in the top 10% with over 10K
downloads. There are 1,918 EUCs from 281 repositories, involving 1,046 unsafe APIs. By checking
the results of Safe4U, we ultimately detected 21 unsound EUCs, 15 of which have been confirmed
and fixed. The average number of EUCs per repository (6.83) is comparable to the top 2K projects
(7.11), but the frequency of unsoundness increases remarkably. This indicates the deficiencies of
reviews despite thousands of downloads. The mismatch between the need for code review and
the limited manpower underscores the importance of automated unsoundness detection for the
community.

Figure 5 shows two cases of our confirmations, which received thanks from developers. Typically,
we provide repair suggestions in issue reports, roughly divided into (1) Marking the unsound
EUC as unsafe and documenting the unguaranteed contracts in its Safety section, and (2) Adding
corresponding guarantee patterns or replacing the unsafe calls with safe alternatives to make the
EUC sound. As shown in Figure 5.❷, the latter is not only recommended by us but also preferred
by developers, as it requires fewer code changes and does not introduce additional unsafe code.

7 Threats to Validity

Threats to Internal Validity. The evaluation dataset and examples in the example library derive
from identical crates, meaning that the performance of Safe4U may be overestimated owing to the
implicit correlation. In the ablation experiment, the variant w/o CoT, which includes examples iden-
tical to Safe4U without providing the pattern-specific analysis, performs significantly worse than
Safe4U. This result reflects that it is the abstract domain knowledge that improves the performance
instead of the label of examples. Therefore, the impact of implicit correlation is negligible. Another
threat to internal validity is that the unsound samples in the evaluation dataset are simulated
from unsafe encapsulations instead of real unsound EUCs, so the evaluation results can be biased.
Nevertheless, there is no existing dataset for unsound EUCs. We had attempted to collect real-world
unsound EUCs from CVEs but the number is insufficient for evaluation. Future work is required
to collect more real-world unsound EUCs to better evaluate Safe4U. The randomness of LLMs’
output may considerably threaten the evaluation validity as well. For example, one fine-grained
contract might be classified into distinct contract types in multiple passes, leading to significantly
different results. Due to the cost limitation, we did not repeat experiments with different settings,
e.g., different seeds and temperatures. To ensure fairness, we fix these parameters for all LLMs
throughout the experiment for more consistent responses.
Threats to External Validity. The check procedure of Safe4U depends on the Safety section
of the unsafe API, so the entire check will fail if the unsafe API lacks the Safety section. If the
Safety section is incomplete or contains errors, Safe4U will incorrectly consider the EUC as sound.
Fortunately, missing the Safety section of unsafe API would be warned by the lint checker [14],
and the amount of EUCs with complete Safety sections remains substantial. Accordingly, it is still
practically valuable to deploy Safe4U. Generating and checking the Safety sections are challenging
upstream tasks of identifying unsound EUCs. We will address these tasks in future work, with the
hope of eventually creating a complete toolchain. Another threat is that the contract types and
guarantee patterns summarized in the preliminary study merely cover the standard library and a
limited number of crates, which could also affect the generalizability of Safe4U. To mitigate this
problem, we extend the number of examined crates to 500 to widen the scope and conduct a more
comprehensive preliminary study. Furthermore, we consciously abstract and simplify the definition
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of contract types and guarantee patterns to enhance their generalizability. We will also open-source
this project and continually complete contract types and corresponding patterns. Moreover, the
current implementation of Safe4U encounters reliability challenges stemming from the probabilistic
nature of LLMs and insufficient safeguard mechanisms. This is the trade-off between generalizability
and trustworthiness, where Safe4U prioritizes broad applicability in the development phase. To
enhance trustworthiness, we will integrate verification mechanisms in future versions.

8 Related Work
In this section, we introduce some related work to discuss the achievement of existing approaches
and highlight the distinctiveness of our work.
Unsafe in Rust. The related research on unsafe in Rust can be roughly categorized into three
groups, including formal verification [30, 35, 42, 43], unsafe isolation [5, 40, 53], and detecting
vulnerabilities with static analysis [8, 17, 38, 45]. Formal approaches are typically designed to prove
the safety promise of Rust. Unsafe isolation methods treat Rust programs with safe and unsafe
code spaces and take various measures to ensure the security of the unsafe space. This strategy has
excellent generalizability but brings in notable overhead. Prior works based on static analysis mainly
focus on conventional unsafe operations, including raw pointer operations, memory allocation, and
object deconstruction. These works require dedicated rules manually designed for specific targets.
However, the contracts of different unsafe APIs vary significantly and are written in unstructured
natural language, reflecting its requirements for cross-lingual comprehension. Thus, it is virtually
unachievable to implement general detection for unsound EUCs merely through static analysis.
LLM for Vulnerability Detection. Two primary methods to detect vulnerabilities with code
language models are fine-tuning pretrained models [22, 39, 75] and in-context learning (ICL) [36, 58,
59]. The fine-tuned techniques require dedicated datasets and have poor generalizability to unseen
projects and weak robustness to noises in the code [10, 52, 57]. ICL is a new paradigm for various
downstream natural language or code tasks without updating the parameters of LLMs [33, 72].
Furthermore, several effective techniques, particularly CoT variants [13, 71], can be integrated into
ICL to enhance reasoning capabilities, showing significant promise. However, LLMs often perform
poorly in emerging programming languages [46] and lack domain knowledge for identifying
unsoundness, leading to notable hallucinations [21, 37, 68].

9 Conclusion
In this paper, we conduct a preliminary study and summarize 16 contract types and 34 corresponding
GPs. Then we propose a novel framework, Safe4U, which incorporates LLMs, static analysis tools,
and domain knowledge to identify unsound EUCs. The evaluation experiments show that Safe4U
can bring generalizable performance improvements and its fine-grained results are valuable in
locating detailed unsoundness. Additionally, Safe4U can identify 9 out of 11 unsound EUCs from
CVE and detect 22 new unsound EUCs.

10 Data Availability
The replication package of our work is publicly available at [3].
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