N
Check for
Updates

SelfPiCo: Self-Guided Partial Code Execution with LLMs

Zhipeng Xue Zhipeng Gao Shaohua Wang
Zhejiang University Zhejiang University Central University of Finance and
Hangzhou, China Hangzhou, China Economics
zhipengxue@zju.edu.cn zhipeng.gao@zju.edu.cn Beijing, China
davidshwang@ieee.org
Xing Hu Xin Xia Shanping Li
Zhejiang University Zhejiang University Zhejiang University
Hangzhou, China Hangzhou, China Hangzhou, China

xinghu@zju.edu.cn

Abstract

Code executability plays a vital role in software debugging and
testing (e.g., detecting runtime exceptions or assertion violations).
However, code execution, especially partial or arbitrary code ex-
ecution, is a non-trivial task due to missing definitions and com-
plex third-party dependencies. To make partial code (such as code
snippets posted on the web or code fragments deep inside com-
plex software projects) executable, the existing study has proposed
a machine learning model to predict the undefined element types
and inject the pre-defined dummy values into execution. However,
the performance of their tool is limited due to its simply designed
dummy values and the inability to continue learning. In this pa-
per, we design and implement a novel framework, named SELF-
P1Co (Self-Guided Partial Code Executor), to dynamically guide
partial code execution by incorporating the open-source LLM (i.e.,
Code Llama) within an interactive loop. Particularly, SELFP1Co
leverages few-shot in-context learning and chain-of-thought rea-
soning to elicit human knowledge and logical reasoning based on
fine-tuning the Code Llama model. SELFP1Co continuously learns
from code execution results and refines its predictions step after
step. Our evaluations demonstrate that SELFP1ICo can execute 72.7%
and 83.3% of all lines in the open-source code and Stack Overflow
snippets, outperforming the most recent state-of-the-art Lexecutor
by 37.9% and 33.5%, respectively. Moreover, SELFPICO success-
fully detected 18 and 33 runtime type error issues by executing
the partial code from eight GitHub software projects and 43 Stack
Overflow posts, demonstrating the practical usage and potential
application of our framework in practice.

CCS Concepts
« Software and its engineering — Software testing and debug-

ging.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680368

1389

xin.xia@acm.org

shan@zju.edu.cn

Keywords

Partial Code Execution, Dynamic Analysis, Large Language Model,
Prompt Engineering

ACM Reference Format:

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, and Shan-
ping Li. 2024. SelfPiCo: Self-Guided Partial Code Execution with LLMs.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA 24), September 16-20, 2024, Vienna, Aus-
tria. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.
3680368

1 Introduction

To share ideas or programming techniques, developers write code
snippets to illustrate specific task solutions and/or demonstrate
programming concepts in the software development community,
such as Stack Overflow or GitHub [19, 20, 23, 66, 67]. These ar-
bitrary code snippets are often written for illustrative purposes
and as quick ways to convey solutions, without implementation
detail, which are widely used by developers [21, 22, 49]. Despite the
wide adoption of code snippets among developers, 75% of the code
snippets can not be directly executed [16, 18, 79, 80] and reused.
This is because a significant number of code snippets are partial
and incomplete (i.e., missing variable or function definitions, miss-
ing third-party dependencies). Therefore, executing arbitrary code
snippets written by developers is essential for reusing these code
snippets immediately and effectively.

The capability of executing partial code also facilitates diverse
applications of dynamic program analysis, such as taint analysis [4,
9, 32, 60], vulnerability and bug detection [17, 29, 39, 41, 42, 44, 68,
74, 82], type inference [25, 43, 51, 52]. Dynamic analysis provides
valuable insights into a program’s runtime behavior, capturing in-
formation such as actual data inputs, execution traces, and system
reactions. It has proven to be effective in unveiling various runtime
bugs (e.g., memory leaks, buffer overflow, race conditions [34, 71]).
However, for large-scale software projects, it is difficult, if not pos-
sible, to run the dynamic analysis tools on any arbitrary code area
that is deep inside the project. Executing arbitrary code fragment
enable us to run dynamic analysis tools on the key components
and vulnerable code area (e.g., the newly updated code), without
worrying about the complex building procedure and sophisticated
third-party dependencies.

To achieve the goal of executing arbitrary code snippets, Souza
et al. [63] first proposed Lexecutor, a neural network guided tool to

https://orcid.org/0000-0002-9060-4064
https://orcid.org/0000-0003-3030-9917
https://orcid.org/0000-0001-5777-7759
https://orcid.org/0000-0003-0093-3292
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0003-2615-9792
https://doi.org/10.1145/3650212.3680368
https://doi.org/10.1145/3650212.3680368
https://doi.org/10.1145/3650212.3680368
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680368&domain=pdf&date_stamp=2024-09-11

ISSTA °24, September 16-20, 2024, Vienna, Austria

predict and inject missing values into program execution. In partic-
ular, when a missing element (e.g., variable, attributes, or function
calls) is encountered, their approach queries a machine learning
model (i.e., CodeT5[70]) to predict the element type and inject a
pre-defined dummy value instead. However, the performance of
Lexecutor is still relatively suboptimal in terms of the code cover-
age on open-source project functions (50.6%) and Stack Overflow
code snippets (61.0%). After empirically investigating their exper-
imental results, two main challenges are observed regarding their
approach: (i) the pre-defined dummy values are too simple and in-
flexible to cover the practical scenarios in the real development
environment. For instance in Listing 1, Lexecutor successfully pre-
dicts the correct type of filter_cached, i.e., Callable. Then Lex-
ecutor will inject a pre-defined DummyCall for it. However, the
program will crash during the execution, since the expected re-
turn of filter_cached includes two values, while the pre-defined
DummyCall returns only a single value. (ii) the disability of inter-
active learning. The Lexecutor uses a machine learning model to
predict the missing value types, the prediction results are constant
when the input samples are fixed. It cannot continue learning from
the program execution results, which can provide valuable infor-
mation to guide the model to make more accurate predictions. A
skilled developer can gain insights from failed execution results to
refine predictions step by step. According to the error message in
Listing 1, the skilled developer would rectify the DummyCall by re-
turning either two values or an iterable object, e.g., Tuple. Thus the
key question we ask in this work is: can we design models that can
continuously learn from code execution results and incrementally re-
fine predictions, ultimately enabling non-executable code to become
executable.

Listing 1: A Failure Case of Lexecutor

Original Code: black/src/black/concurrency.py:
2 sources, cached filter_cached(cache, sources)
s # Lexecutor Injection:
« filter_cached DummyCall (*args)
5 TypeError: cannot unpack non-iterable DummyObject object
¢« # SelfPiCo Injection:

def filter_cached(*args):
8 return (1, 2)

Inspired by the impressive capacities of LLMs (Large Language
Models) for code comprehension and their great potential for in-
teracting with humans [10, 15, 47-49, 70, 78, 81], in this work, we
first investigate incorporating LLMs for the task of executing ar-
bitrary code snippets. The key idea of this work is LLM-in-the-
loop. Compared with human-in-the-loop (HITL) which uses hu-
man interaction to aid computers in making decisions, we first in-
troduce the concept of LITL (LLM-in-the-loop), where the LLMs
are engaged within an interactive loop for generating useful arti-
facts. In particular, we design and implement a novel LLMs-based
framework, named SELFP1Co, to guide partial code execution. The
SELFP1Co is constructed by following three components:

o Interactive Value Predictor. The interactive value predictor
is the core module of SELFP1Co0, which includes an interactive
value generator and an execution value checker. The interactive
value generator is responsible for generating likely values for
the missing elements (e.g., undefined variables, return values,

1390

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, Shanping Li

or missing functions). The execution value checker is responsible
for ensuring the validity of the generated values. If the gener-
ated values provided by interactive value generator fail to execute
the given arbitrary code snippet, the execution value checker will
query back the interactive value generator with error execution
messages for regenerating new likely values.

Complementary Type Predictor. This component serves as a
complement module to the interactive value predictor, address-
ing cases where the interactive value predictor exceeds maxi-
mum iterations. If the value predictor can not predict appropri-
ate values, the complementary type predictor predicts the type
of missing element and injects the pre-defined dummy value.
Runtime Engine. The runtime engine instruments the partial
code with execution hooks, which catch the exceptions during
code execution, and inject values from interactive value predic-
tor to guide partial code execution.

Automated program repair (APR) techniques aim to generate a
patch that passes compilation and test execution and recent stud-
ies have leveraged LLMs for fixing bugs (e.g., compilation or exe-
cution bugs) [11, 30, 31, 38, 40, 75]. The goal of APR overlaps to
some extent with our partial code execution. However, there are
two significant distinctions between them: (i) The goal is differ-
ent. APR aims to fully repair programs to pass all tests, while our
task seeks to make partial code executable. Our work can be re-
garded as a base model to enable other dynamic analysis tools for
checking partial code. Notably, our tool can also assist developers
in fixing bugs or code errors (e.g., exposing runtime errors during
execution), but fixing bugs is not the final goal of this research. (ii)
The way of interacting with code is different. APR generates
correct patches to fix bugs in buggy code, which need to modify
and update the original buggy code. In contrast, our tool injects
missing values to run partial code, we keep the original code un-
touched without changing any original code elements. Due to dif-
ferent goals and ways of generating code, APR methods are not
applicable to our partial code execution task.

To evaluate the effectiveness of our SELFPICo, we used the
same dataset from Lexecutor containing two sets of code snippets:
functions extracted from popular open-source projects and code
snippets extracted from Stack Overflow posts. Our results indicate
that the SELFPICo enables the execution of 72.7% and 83.3% of
all lines in the open-source code and Stack Overflow snippets, re-
spectively, outperforming Lexecutor by 37.9% and 33.5%. Souza et
al. [63] first propose the task of partial code execution, and they use
Lexecutor to find the semantics-changing commits. In this paper,
we attempt to validate the practical usage of SELFP1Co on a dy-
namic analysis task: runtime type error detection. Specifically, by
running SELFPICo on partial code fragment, our framework suc-
cessfully detected 18 type error issues from eight popular Python
GitHub repositories and 33 type error issues from Stack Overflow
posts. In summary, this paper contributes the following:

e We design and implement a framework, named SELFP1Co, to
engage the Code Llama model within LITL (LLM-in-the-loop)
to guide the partial code execution. Our fine-tuned Code Llama
model performs similarly to the close-source, commercial GPT-
3.5 model in the task of guiding partial code execution. The richer

SelfPiCo: Self-Guided Partial Code Execution with LLMs

complimentary dummy types help SELFP1Co to guide more par-
tial code execution.

e We extensively evaluate SELFPICo on both functions extracted
from popular open-source projects and code snippets extracted
from Stack Overflow posts. The evaluation results show that
SELFPICo can significantly outperform Souza et al [63]’s method
in both datasets (37.9% code coverage and 62.6% fully executed
rate improvement on the Open-source projects dataset, 33.5%
code coverage and 57.7% fully executed rate improvement on
Open-source projects dataset), achieving the state-of-the-art per-
formance.

e We validate SELFPICo with a practical dynamic analysis appli-
cation: runtime type error detection. From eight popular Python
GitHub repositories and 43 Stack Overflow posts, we success-
fully detected 18 and 33 type error issues, respectively. To the
best of our knowledge, our work is the first attempt to identify
type errors at runtime, our tool can expose the runtime type
error before compiling or running the entire software project,
illustrating the effectiveness of our approach in practice.

2 Motivation

The ability to execute partial code is essential for various dynamic
analysis applications. We demonstrate a motivating example of
checking runtime type errors using our approach, however, we ar-
gue that our approach is not limited to this particular application.
It can be used to incorporate dynamic analysis tools to support a
wide range of applications, for example, detecting security vulnera-
bilities via taint analysis. Better combining our tool with advanced
dynamic checking techniques is an interesting future direction, but
it is beyond the scope of our current research.

Motivating Example. Python is one of the most popular program-
ming languages nowadays. However, due to its dynamic type char-
acteristics, variable types are determined and validated at runtime
rather than compile time. Developers often suffer from runtime
type errors when performing operations on inconsistent types of
variables. Although Python static checkers (e.g., Pyre [2]) are de-
signed to detect such type inconsistencies, however, they primar-
ily rely on manually written type annotations which are unavail-
able most of the time. As a result, Python type errors are often
hard to detect unless they are exposed at runtime. Figure 1 demon-
strates an example of Python type error in Luigi project. Specifi-
cally, the method replace expects to be passed with two variables
of the same type, in this case, both should be bytes objects. How-
ever, the developer wrongly passed a string object and thus in-
troduced a type error. Due to complex internal dependencies, such
type errors are difficult to trigger or reach out until bugs are even-
tually exposed. We manually checked the development history of
the Luigi project, this runtime type error has existed for over two
years until finally exposed by a bug issue report. During this time,
any code refactorings associated with this buggy method could be
influenced, posing significant risks to software quality and main-
tenance. It is thus beneficial to have a tool that can discover such
type errors without worrying about complex code dependencies
or writing extensive test cases.

SELFPICo Usage Scenarios. SELFPICo successfully detected this
runtime type error without building/running the whole project.

1391

ISSTA °24, September 16-20, 2024, Vienna, Austria

Based on the code snippet context, our framework correctly in-
jects a bytes value object for the variable d and a string value ob-
ject for the variable module, which successfully triggered the same
runtime error reported by the bug issue report. Our framework
can help developers expose this bug in an early stage (e.g., check-
in time) and reduce the risks of introducing any unwanted prob-
lems or negative impacts. Suppose the developer who adopts our
SELFP1Co during his/her development, when code change hap-
pens, our tool can be performed on the newly updated partial code
snippets for checking runtime type errors and discovering poten-
tial type errors just-in-time. It is worth mentioning that the usage
scenario of our SELFPICo is not limited to runtime type error de-
tection, our framework can be further extended to enable different
dynamic analysis applications (e.g., assertion violation, taint anal-
ysis). In this work, we use runtime type error detection as a pre-
liminary study to validate the practical usage of our framework.

https:// github.com /spotify/luigi/issues /1988

def _dump (self, fd): ¥ TypeError: a bytes-like
- object is required, not 'str'
d ~

= pickle .dumps (fd) N
module = os .path . basename (sys .argv [0]) \\
. rsplit (1) [0]
d = d. replace<(_b__ , + module) /
fd .write (d) T TTTtee—e o --- -

Figure 1: A Type Error Detected From Partial Code

3

In this work, we design and implement an LLM-based framework,
SELFPICo, to interactively make predictions and execute partial
code snippets. SELFP1Co includes three key components: the run-
time engine, the interactive value predictor, and the complemen-
tary type predictor. As shown in Fig. 2, for a given non-executable
arbitrary code snippet, the runtime engine first instruments it with
execution hooks, and then executes the partial code and catches
any exception that might be thrown when undefined code elements
(e.g., variable, attribute) are met. The raised exception will trigger
the execution hooks, which send the undefined element and its
contextual information to the interactive value predictor for infer-
encing the valid values for the undefined element. The execution
hooks inject the inference values to the undefined element and
guide code execution. The interactive value predictor adaptively re-
generates the likely values for the undefined elements and checks
if these values can be executed by the runtime engine successfully.
In certain cases, LLMs may fail to generate valid values even after
multiple interactions, leading to the activation of the complemen-
tary type predictor. It queries the LLMs to predict the type of the
undefined element and returns a pre-defined dummy value to the
runtime engine. Details of each component are as follows.

Our Approach

3.1 Runtime Engine

The goal of the runtime engine is to catch the exception during
partial code execution, query the interactive value generator, and
inject the replied value to guide code execution.

ISSTA °24, September 16-20, 2024, Vienna, Austria

Runtime Engine

Interactive Value Predictor

II

l value

Role Designation

succeed

Il

J type

IIME we ()
Injected Value

.

Figure 2: The Overview of SELFP1Co

The runtime engine initially instruments the arbitrary code with
execution hooks from Lexecutor. It first visits the abstract syn-
tax tree (AST) of the code and detects three types of AST nodes:
variable reads, attribute reads, and calls of functions and methods.
Then It instruments the detected three kinds of code by wrapping
them with execution hooks. The original code and instrumented
code of each kind are illustrated in Table 1. The iids refer to the
instrument IDs, and the functions n_, a ,and c_ are execution
hooks for variable reads, attribute reads, and calls of functions and
methods, respectively.

For the variable reads, the instrumented code calls the execution
hook _n_, passing the name of the variable and a lambda function
that tries to read the value of the variable. _n_ then returns the
value from the lambda function. For the attribute reads, the instru-
mented code calls the execution hook _a_, passing the base object
that has been assigned by _n_ and the name of the attribute. _a_
returns the value of the passing attribute of the base object. For
the calls of functions and methods, the instrumented code calls
the execution hook _c_, passing the callee function. Then the exe-
cution hook invokes the callee function and returns the result of
it. During the execution of each hook, if it triggers some excep-
tion like NameError, AttributeError, the hook will query the inter-
active value predictor for a possible value. The query message of
execution hooks combines the name of the code element, the kind
of code element, the code line of the code element in the original
code snippet located by the instrument IDs, and the error message
during the execution.

3.2 Interactive Value Predictor

The interactive value predictor is to adaptively predict likely val-
ues of undefined code elements based on the contextual informa-
tion and execution error message. The interactive value predictor
combines a value generator and a value checker. The value genera-
tor generates the definition or assignment of the queried undefined
code element. The value checker ensures the validity of the gener-
ated value by executing the definition or assignment and loading
the value. If generated values are valid, the value checker sends the
loaded value to the runtime engine, and the code execution contin-
ues. If generated values fail the validity checking, the value checker
will query back the value generator again with a detailed execution

1392

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, Shanping Li

error message. As a result, the interactive value predictor adap-
tively learns from the code execution results and progressively re-
fines its predictions until executing the partial code successfully.

3.2.1 Interactive Value Generator. The underlying approach of the
value generator is prompt engineering. Role designation, few-shot
learning and chain-of-thought reasoning are incorporated to con-
struct LLM prompts. An example of the prompts is shown in Ta-
ble 2.

Role Designation. In prompt engineering, the role designation
refers to designating LLMs with a specific role, providing them
with a context that aids their understanding of the task context
and leading to more accurate and relevant responses. In this study,
since we aim to execute a Python code snippet, we designate the
role of LLMs to act as a Python programmer. In addition, we also
added output restriction and format restriction in the prompt. The
prompt details are shown in Table 2.

In-context Few-shot Learning. Few-shot learning is utilized
to augment the context with a few examples of desired inputs and
outputs. In this work, to select representative examples for few-
shot learning, we invited three developers with at least five years
of Python programming experience. Each of them was asked to
fill in the likely values for the undefined code element based on
contextual information and error execution message. After manu-
ally examining 30 arbitrary code snippets by each developer, the
developers then discuss the representation of the selection and re-
fine the dataset until a consensus is reached. In total, we collect 6
examples as our representative dataset, with an example in Table 2.

Chain-of-thought Reasoning. The in-context few-shot learn-
ing has provided LLMs with a few examples to learn the expected
inputs and outputs, but the LLMs still lack the logical thinking to
address the complicated task. We introduce the method of chain-of-
thought to elicit the ability of LLMs’ reasoning and logical think-
ing for this study. It endows the LLMs to split a complex task into
several relatively simple steps and generate a series of intermedi-
ate outputs that lead to a reasonable result. Following the previous
studies [65, 69, 73], we design a three-step thinking process that
leads to the prediction of likely values for the undefined code ele-
ments. An example of chain-of-thought reasoning is shown in Ta-
ble 2. In particular, given a Python code snippet (e.g., filepath =
self.path) which is non-executable: In step 1, LLMs are required
to import necessary modules for the code snippet, in this case, the
os module is imported which is relevant to filepath within the
code snippet. In step 2, LLMs are required to define all the neces-
sary class/method/variable undefined of the code snippet, in this
case, the class MyClass is defined and instantiated. Two types of
step 3 are designed for our task, regarding step 3 (assign), LLMs
are required to learn from the runtime engine and infer the likely
values for the undefined code elements. In particular, three types
of information are sent to the interactive value predictor, namely
the undefined code element and its type (in this case the unde-
fined element is path and its type is attribute), and the error
execution message (Attribute Error:‘self' objects has no
attribute ‘path' for this case), LLMs is required to inference the
likely values for the missing path attribute, generating self.path
os.path.abspath(__file__). Regarding step 3 (fix), LLMs are
required to interactively fix the last round’s predicted values based

SelfPiCo: Self-Guided Partial Code Execution with LLMs

Table 1: Execution Hooks

ISSTA °24, September 16-20, 2024, Vienna, Austria

Ast Nodes Original Code

Instrumented Code

Variable Reads
Attribute Reads
calls of functions & methods

Varl = Var2 + 1
Optl.Attrl = Opt2.Attr2
Var = Foo()

Varl = _n_(iid, *Var2”, lamda: Var2) + 1
Optl.Attrl = _a_(iid, _n_(iid, "Opt2”, lambda: Opt2), "Attr2”)
Var = _c_(iid, _n_(iid, "Foo”, lambda: Foo))

on the failed execution message (NameError: name ‘path' is

Table 2: The Example of Prompt Engineering

not defined)and last step output non-executable code (e.g., self.path Prompt Type

= path). Finally, LLMs are required to summarize the aforemen-
tioned steps as outputs as shown Example Output in Table 2.

Prompt construction. We combine the aforementioned infor-
mation, i.e., (<Role Designation> + 6 * (<Chain-of-thought reason-
ing with Example Input> + <Example output>)), to make two types
of input prompt. Particularly, step 3 (assign) was used to construct
the initial assign prompt, and step 3 (fix) was used to construct the
interactive fix prompt. Two types of input prompts are constructed
for the interactive value predictor, i.e., the initial assign prompt and
interactive fix prompt. The initial assign prompt is used for initiating
the interactive value predictor while the interactive fix prompt is
used to fix undefined errors from the last round’s predicted values.
Due to the advantage of few-shot learning and chain-of-thought
reasoning, the LLMs will consistently reply to a Python code to
assign a target code element in the same format as our example
output, which can be directly executed.

3.2.2 Execution Value Checker. After the value generator infer-
ence the likely values for the undefined code elements, the value
checker executes the code with predicted values and queries back
the value generator if necessary. In particular, the value checker
first identifies and attempts to import or install the required third-
party module. Then it invokes the exec function to execute the
replied code from the value generator. if the code execution suc-
ceeds, the value checker loads the value of undefined code ele-
ments, and then it returns the loaded value and the replied code
to the runtime engine. Otherwise, the value checker queries back
the value generator with the previous predicted code and the error
execution messages for refining.

3.23 LITL (LLMs-In-The-Loop) Algorithm. The key idea of incor-
porating LLMs in this work is to put LLMs-in-the-loop, we desig-
nate the LLMs as expert developers capable of interactively learn-
ing from execution results and finally guiding the partial code ex-
ecution tasks. We demonstrate the details of the LITL (LLMs-In-
The-Loop) algorithms in Algorithm 1. For a given arbitrary code
snippet, LLMs interactively refine undefined code values and check
these values by execution (lines 2 to 9). The initial assign prompt
is constructed and queried to the LLMs to generate values for un-
defined code elements (lines 2 to 3). The algorithm then attempts
to execute the generated code and catches any runtime exception
(lines 4 to 7). It returns the value (i.e., R and V, the result code R
refers to the predicted definition or assignment of the unknown
code element from the value generator, and Loaded value V refers
to the value of the unknown code element loaded from result code
R execution.) if the code snippet executes successfully and no ex-
ception occurs. Otherwise, the interactive fix prompt is constructed
and query back LLMs for refining its previous predictions (Line

1393

Instantiation

Role Designation

Role: I want you to act like a Python pro-
grammer. I will give you Python code and
comments, you should write Python code
according to the comments step by step.
Output Restriction: Only give reply
with Python code and Do not write expla-
nations.

Format Restriction: Your reply is lim-
ited to only one code block and should
wrap with backticks.

Chain-of-thought
Reasoning with
Example Input

Task: Complete and fix the given code to
make it can be executed directly.

Given code: Do not modify the given
Python code or wrap it with function.

Step 1: Import needed module.

import os

Step 2: Define all the needed classes, meth-

ods, or variables here in detail.

class MyClass():

pass

self = MyClass()

Step 3 (assign template): Define and as-

sign

to repair the error

Step 3 (assign case): Define and assign
to repair the error

self.path = os.path.abspath(__file__)
Step 3 (fix template): Fix the
since the

Step 3 (fix case): Fix the
since the

path = os.path.abspath(__file__)
self.path = path

Example Output

Overall, complement code are:
import os
class MyClass():

pass
self = MyClass()
path = os.path.abspath(__file__)
self.path = path

ISSTA °24, September 16-20, 2024, Vienna, Austria

8). Whenever Algorithm 1 reaches line 10, it has failed to generate
valid values after ¢ times iteration. It then throws an InvalidVal-
ueError, which triggers the complementary type predictor.

Algorithm 1: LITL Algorithm
Input: Kind k, name n, contextual information c of code

and error message e
Output: Result code R and Loaded value V

1 Prompt « InitializeAssignPrompt(k,n,c, e)
2 fori=1totdo
3 C « query LLMs with Prompt

4 V « Execute R + ¢ and load value, or catch exception e
5 if no exception while executing and loading then

6 ‘ return V, R

7 end

8 Prompt « BuildFixPrompt(c,e, V)

9 end

o throw InvalidValueError

=

3.3 Complementary Type Predictor

The complementary type predictor acts as a backup component
for the adaptive value predictor. In certain cases, arbitrary code el-
ements exceed the maximum interactions and LLMs fail to predict
the appropriate code value, then the complementary type predictor
will be triggered to infer the type of target undefined code element
and return a corresponding pre-defined dummy value. Different
from Lexecutor using CodeT5 for training, SELFP1Co fine-tunes
Code Llama by using the same training set of Lexecutor. We ex-
tend the predefined data types and leverage prompt engineering
for type prediction. The implementation details are as follows.

3.3.1 Pre-defined Dummy Value. A pre-defined dummy value is a
placeholder or default value that is used in place of a real value
when the real value is not yet known or not applicable. As shown
in Table 3, we reuse the built-in date type (including None, Boolean,
Integer, Float, String, List, Tuple, Set, and Dictionary) and Function
and Objects type (including Callable, Object, and Resource) defined
by Lexecutor. Since Python is the primary programming language
for deep learning and data analysis, we extend their pre-defined
abstraction classes with three popular data types from third-party
libraries (Tensor, Array, and DataFrame). When generated data
values are not within the aforementioned abstraction classes, a
dummy object value is injected by our approach.

3.3.2 Prompt Engineering. Similar to constructing a prompt for
adaptive value predictor, we first design the role of LLMs as: I want
you to act as a classifier, I will give a line of Python code and a <word>
in the code. You will classify the <word> into a category from None,
Boolean, Integer, Float, String, List, Tuple, Set, Dictionary, Tensor, Ar-
ray, DataFrame, Callable, Resource, Object. Then we restrict the out-
put of LLMs: I want you to only reply with the classified category and
nothing else. Do not explain the result. Since the type predictor is
a comparatively straightforward classification task, we randomly
select an example of each abstraction class as a few-shot learning
example. In the end, we input the undefined code element and its
contextual information to LLMs for inference.

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, Shanping Li

Table 3: Pre-defined Dummy Value
Type Abstract Class

Dummy Value

None None
Boolean True
Integer 1
Float 1.0
Built-in String "a”
Data Type List [Dummy()]
Tuple (Dummy())
Set set(Dummy())
Dictionary a”: Dummy()
Third-party Tensor torch.tensor([[1.0]])
Data Type Array numpy.array([l})”
DataFrame pandas.DataFrame({"a”: 1})
. Callable DummyCall
Functions .
&objects Object Dummy()
Resource DummyResource()
Others ‘ Dummy()

3.4 Implementation

For the LLMs, we use the Code Llama instruct model with 34B pa-
rameters [58], which is the state-of-the-art open-source LLMs for
coding applications. We fine-tuned it with the Lexecutor code el-
ement type dataset [63] to perform the missing type prediction. We
employed the Parameter-Efficient Fine-Tuning strategy (PEFT)[45],
and Low-Rank Adaptation (LoRA)[26] to accelerate the fine-tuning
process. Based on 4*A800 Gpus, the fine-tuning process followed
these hyperparameters: learning rate of 3e™%, batch size of 128,
2 epochs, and a warmup ratio of 100. After fine-tuning, the fine-
tuned model is then used as our interactive value predictor and
complementary type predictor by further leveraging prompt engi-
neering and chain-of-thought reasoning techniques.

We set the number of few-shot learning examples for the adap-
tive value predictor and complementary type predictor as 6 and
15, respectively. The 6 examples in the adaptive value predictor
include 2 examples for each kind of undefined code element and
15 examples in the complementary type predictor include an ex-
ample for each kind of abstract class. According to a small-scale
pilot study, we set the maximum threshold in the adaptive value
predictor as 5.

4 Evaluation
4.1 Experimental Setup

Dataset. Following the experiment set in Lexecutor, we reused the
same datasets which included two sets of code snippets: functions
extracted from popular open-source projects and code snippets ex-
tracted from Stack Overflow posts. To avoid potential bias, as the
raw data set is not provided, we carefully followed the data collec-
tion steps in Lexecutor. Particularly, we initially extracted all the
functions from five popular projects evaluated in Lexecutor, and
we randomly selected 200 samples from each project. The dataset
is composed of 1,000 randomly selected functions, that amount to
7,225 non-empty, non-comment lines of code. To build the Stack
Overflow code snippets dataset, we search for questions with the

SelfPiCo: Self-Guided Partial Code Execution with LLMs

tag Python, then we randomly select an answer and extract the
code in the top 1,000 votes questions. After removing the code
snippets with invalid syntax, we collected 586 code snippets in-
volving 4,540 non-empty, non-comment lines of code. The detail
of the Stack Overflow code snippets dataset is shown in Table 4.

Table 4: Detail of Experiment Datasets

Dataset ‘ Count Loc

Black 200 2,162

Open-source Flask 200 1,100
Projects Functions Pandas 200 1,438
Scrapy 200 1,150

TensorFlow 200 1,375

Stack Overflow Code Snippets ‘ 586 4,540

Baseline. We set up Lexecutor [63] which achieves states-of-art
performance in partial code execution guiding. Lexecutor fine-tuned
the pre-trained models (i.e., CodeT5 [70] and CodeBert [15]) with
collected <code, type> tuple in the training phase. During the ex-
ecution phase, the runtime engine inputs the CodeT5 model with
code and injects a dummy value according to the predicted type.
Following the instructions in the replication package, we first col-
lected training and validation sets from five popular open-source
projects and fine-tuned CodeT5 with the set hyperparameters same
as Lexecutor (denoted as Lexecutor-CodeT5), i.e., learning rate,
epochs, and batch size. We achieved 79.1%, 86.9%, and 90.2% accu-
racy of the top-1,3,5 predictions, respectively. The evaluation re-
sults of it closely match the accuracy they reported, we thus are
confident with our replication process for Lexeuctor. Since SELF-
P1Co is based on Code Llama, to conduct a more fair compari-
son with Lexecutor, we replaced the CodeT5 of Lexecutor with
Code LLama, denoted as Lexecutor-CodeLlama. Following the
methodology described in Sec 3.4, we fine-tuned the Code Llama
model using the same strategy and hyperparameters as SELFP1Co.
we also replaced Code Llama with ChatGPT [1] within our frame-
work as a baseline, denoted as SELFP1Co-GPT-3.5, which is used
without any fine-tuning.

Metrics. We evaluate the ability of SELFP1Co to guide code execu-
tion in average code coverage and fully executed rate. The Code
Coverage refers to the ratio of the number of executed lines of
code to the total number of lines of code in the program. If the en-
tire line has been executed without crashing, we label this line as
“covered”. The Branch Coverage refers to the ratio of the number
of executed branches to the total number of branches in the pro-
gram. The Fully Executed Rate measures how many of all code
snippets we achieve 100% line coverage. The temperature hyperpa-
rameter of pre-trained generative models (including both CodeT5
and CodeLlama) controls the randomness of generated outputs. To
help code execution cover as many lines as possible, we set the tem-
perature hyperparameter to 0.8. This introduces more randomness
and diversity in the generated outputs, allowing for a wider range
of possible responses. We calculate the above metrics by combin-
ing results from five independent executions. The higher the met-
rics score, the better the approach can guide the incomplete code
execution.

1395

ISSTA °24, September 16-20, 2024, Vienna, Austria

4.2 ROQ1: Effectiveness of SELFP1CO

To measure the effectiveness of SELFP1Co in covering and suc-
cessfully executing non-executable code, we evaluated SELFP1Co0
on datasets constructed of popular open-source project functions
and Stack Overflow code snippets. The evaluation results are shown
in Table 5. Lexecutor-CodeLlama has its advantage over Lexecutor-
CodeT5, this is reasonable because Code Llama is a more power-
ful LLM which is 523 times larger than CodeT5. The performance
of SELFP1Co is significantly better than Lexecutor-based models
(i.e., Lexecutor-CodeT5 and Lexecutor-CodeLlama) in both open-
source project functions and Stack Overflow code snippets in terms
of all metrics. We attribute this to the ability of SELFP1Co for in-
teractive learning by refining its predictions from execution results.
In addition, our extension of pre-defined dummy values also con-
tributed to better results. By comparing SELFP1Co with SELF-
P1Co-GPT-3.5, we can see that they achieve a very close perfor-
mance on both datasets, suggesting the generalizability of our ap-
proach for incorporating different LLMs. Compared with ChatGPT
which contains 175B parameters, Code Llama is much smaller with
only 34B parameters. Nonetheless, SELFP1Co can achieve a com-
parable or even better performance than GPT-3.5 after fine-tuning,
verifying the effectiveness of the fine-tuning process.

Table 5: Overall Effectiveness Evaluation

Open-source Stack Overflow

Approach Metrics Projects Functions ~ Code Snippets
Code coverage 0.527 0.624
Lexecutor-CodeT5 Branch Coverage 0.312 0.474
Fully Executed Rate 0.342 0.478
Code coverage 0.542 0.641
Lexecutor-CodeLlama Branch Coverage 0.371 0.511
Fully Executed Rate 0.373 0.502
Code Coverage 0.730 0.819
SELFP1CO-GPT-3.5 Branch Coverage 0.644 0.789
Fully Executed Rate 0.556 0.746
Code Coverage 0.727 0.833
SELFP1CO Branch Coverage 0.643 0.795
Fully Executed Rate 0.556 0.754

Fig. 3 demonstrates the Venn diagrams of fully executed code
snippets reported by our approach and Lexecutor. We can find that,
most code snippets covered by Lexecutor are also covered by
our approach, while our approach can cover far more cases
Lexecutor can not handle. For example, 228 project functions
(40%) and 185 Stack Overflow code snippets (39.8%) are success-
fully executed by our approach but failed to be handled by Lexecu-
tor. While only 14 project functions (2.5%) and 23 Stack Overflow
code snippets (4.9%) are reported by Lexecutor but missed by ours.
This further justifies the superiority of our proposed SELFPICo.
We also observed that several cases can not covered by our ap-
proach and/or Lexecutor, We detailed discussed why we work and
why we fail in Section 4.6.

4.3 RQ2: Component Analysis

The performance of SELFP1Co0 mainly relies on two components:
the interactive value predictor and the complementary type pre-
dictor. We evaluate the performance of each component respec-
tively. In particular, we compare SELFP1Co with two incomplete
versions:

ISSTA °24, September 16-20, 2024, Vienna, Austria

Partial
Execution
121

Partial
Execution
430

Ours Lexecutor Ours Lexecutor

228 328 14 185 1257 23

Figure 3: Venn Graph for Fully Executed Code Snippets Re-
ported by SELFPICo and Lexecutor, Open-Source Project
Functions (left) and Stack Overflow Code Snippets (right)

Interactive value predictor. In this version, we only keep the in-
teractive value predictor and remove the complementary type
predictor, the values are directly injected from the interactive
value predictor.

Complementary type predictor. In this version, we only use the
complementary type predictor to infer the type of queried ele-
ment and inject the pre-defined value.

Table 6: Effectiveness of two components in SELFP1Co

Open-source

Stack Overflow

Approach Metrics Projects Functions ~ Code Snippets
Interactive Value Code coverage 0.636 0.744
Predictor Branch Coverage 0.552 0.704
Fully Executed Rate 0.477 0.679
Complementary Type Code Coverage 0.558 0.656
pPredictory P Branch Coverage 0.390 0.521
Fully Executed Rate 0.382 0.514
Code Coverage 0.727 0.833
SELFP1CO Branch Coverage 0.643 0.795
Fully Executed Rate 0.556 0.754

The results are shown in Table 6. From the tables, several points
stand out: (i) No matter which component we removed, it reduces
the performance of our approach in guiding partial code execu-
tion. This verifies the importance and usefulness of our interactive
value predictor and complementary type predictor. (ii) The inter-
active value predictor and complementary type predictor can com-
plement and enhance the performance of each other. For example,
the interactive value predictor performs better on Stack Overflow
code snippets while the complementary type predictor achieves
better performance on open-source project functions. Although
both components use our fine-tuned Code Llama model for infer-
ence, the interactive value predictor focuses on generating likely
values for undefined code elements, while the complementary type
predictor focuses on predicting the types, the different learning ob-
jectives of these two sub-components make them a suitable pair
to enhance each other’s capabilities. As a result, after combining
these two modules, the performance of SELFPICo is significantly
boosted and achieved state-of-the-art performance.

4.4 RQ3: Sensitivity Analysis

The interaction learning and chain-of-thought reasoning are the
core mechanisms of our approach. To explore the effectiveness
of the above mechanisms, we construct a sensitivity analysis. To
demonstrate the effectiveness of interactive learning from code

1396

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, Shanping Li

execution results, we evaluate the performance of SELFP1Co af-
ter each iteration, to demonstrate the effectiveness of chain-of-
thought reasoning, we evaluate SELFPICo0 using the prompt with-
out chain-of-thought settings. It is worth mentioning that to better
present the performance contributed by each mechanism alone, we
drop the complementary type predictor for this RQ setting.

0.8

0.8

0.7 r0.7

0.6 4

o
el

0.5 1

o
wn

Project Functions
SO Code Snippets

CC in Project Functions

BC in Project Functions

FE in Project Functions
—8— CC in SO Code Snippets
—%- BCin SO Code Snippets
--m- FE in SO Code Snippets

0.3 T T T T T T
] 1 2 3 4 5
Interaction Times

Figure 4: Performance of Interactive Value Predictor

0.4 4 r 0.4

Fig. 4 illustrates the performance of our approach under differ-
ent interaction times. We found that the performance of our ap-
proach rapidly increased after the initial two interactions. Regard-
ing simple problems such as introducing unknown variables or
parameters, can be easily resolved after one or two iterations of
interactively learning. This further confirms the self-guided inter-
active learning ability of our fine-tuning Code Llama model. Then
the improvement ratio slows down after 3 interactions, the reason
for this can be the insufficient code context information and/or un-
clear code execution error message, which indicates that the fine-
tuning Code Llama model is helpful but not a ’silver bullet’ for
value prediction. The 5 interaction times we used in our settings
are reasonable for achieving optimal results.

Table 7 illustrated the performance of our approach (drop com-
plementary type predictor) with and without chain-of-thought rea-
soning. The code coverage, branch coverage and fully executed rate
decreased by 24.7%, 61.4% and 45.9% on the open-source project
functions dataset and those decreased by 15.3%, 31.1% and 27.5%
on the Stack Overflow code snippets dataset. We found that, with-
out the chain-of-thought reasoning, the logic reasoning capability
of our approach drops significantly, for example, the fine-tuning
Code Llama model often uses a module before importing it (as de-
fined in step 1), query undefined classes or variables (as defined in
step 2), this further justifies the effectiveness of chain-of-thought
reasoning for prompt engineering.

Table 7: Effectiveness of Chain-of-thought Reasoning

Approach Metrics Open-source Stack Overflow

PP Projects Functions ~ Code Snippets
Interactive Value Code Coverage 0.479 0.630
Predictor w/o CoT Branch Coverage 0.213 0.485
Fully Executed Rate 0.258 0.493
. Code Coverage 0.636 0.744
Inte;:icengcetzalue Branch Coverage 0.552 0.704
Fully Executed Rate 0.477 0.680

SelfPiCo: Self-Guided Partial Code Execution with LLMs

4.5 RQ4: Time Cost Analysis

In this RQ, to evaluate the efficiency of SELFP1Co, we conduct
the time cost analysis regarding two aspects: (i) We compare the
time cost of each prediction taken by SELFP1Co and Lexecutor;
(if) We compare the performance of Lexecutor and SELFP1Co by
allocating them with the same time budget.

For the first aspect of time cost analysis, the prediction time of
Lexecutor costs from 0.18s to 0.48s, while SelfPiCo takes 6.25s to
perform a single prediction. We found that the time cost of SELF-
P1Co is largely due to the interactive learning process (i.e., 2.28s
for a single round of interactive learning in open-source project
functions). Besides, the model in Lexecutor only needs to output
a predicted type, while SELFPICo must generate a concrete code
snippet. The time cost of SELFP1CoO can be reduced with paral-
lelization and more advanced hardware. Moreover, we argue that
SELFPICo is a general framework that can easily be incorporated
with other smaller-size LLMs, further decreasing the time costs.

Regarding the second part analysis, we equitably compared the
performance of Lexecutor by allocating it with the same time spent
by SELFPICo. Specifically, we set different temperature values to
run multiple-rounds of execution until reaching the time limit. The
experimental results remained the same (e.g., 0.527 code coverage
on the Open-source dataset and 0.624 code coverage on the Stack-
Overflow dataset) between the basic five-round executions in the
previous experiment and subsequent multiple-round executions,
suggesting allocating extra time to Lexecutor can’t bring perfor-
mance gains.

4.6 Result Discussion

Why SELFP1Co works. As shown in Fig. 3, there are 86 functions
and 125 code snippets that can be fully executed by our approach
but failed by Lexecutor. We summarize three advantages of our
approach over Lexecutor, including valid value injection, accurate
type prediction, and comprehensive data types.

In particular, compared with Lexecutor: First, we generate more
accurate values for the undefined code elements by self-guided
interactive learning. The Lexecutor uses the pre-defined dummy
values to fill the code, to compare, the interactive learning of SELF-
P1Co can dynamically assign and refine the required values based
on code context and execution results. As the Listing 1 shows, Lex-
ecutor successfully predicts the correct type (i.e., Callable) for the
undefined filter_cached, but the pre-defined value DummyOb-
Jject conflicts the expected return value. According to the error mes-
sage, our approach guides the model to assign the value as a tuple,
which can be unpacked into two values and successfully address
the issue. Secondly, we predict more accurate types with the
fine-tuned Code Llama model. Compared with CodeT5, LLMs
are trained on ultra-large-scale datasets and exhibit promising per-
formance in code understanding and logical reasoning, which have
achieved great accuracy on type prediction [13]. Listing 2 - Ex.1 il-
lustrates an example where the queried code element declarations
is a list, but Lexecutor predicts it as DummyObject, resulting in a
type error. In contrast, our approach accurately identifies the type
of declarations and assigns it with a tuple, enabling successful
value retrieval later on. Thirdly, we apply more comprehensive
data types with third-party libraries. In Listing 2 - Ex.2, the un-
known code element df is actually a DataFrame provided by the

1397

ISSTA °24, September 16-20, 2024, Vienna, Austria

pandas module. None of the pre-defined dummy values in Lexecu-
tor could be injected appropriately. However, our approach over-
comes this limitation by importing the pandas module and defin-
ing the DataFrame as an extended third-party data type, allowing
code execution successfully continues.

Listing 2: Successful & Failed Cases of SELFP1Co

1 # Ex1: Accurate type prediction
:# Original Code: black/src/black/concurrency.py:
; for prop, value in declarations:
prop = prop.lower ()
value = value.lower ()
o # Lexecutor Injection:
7 declarations = DummyObject
s TypeError: cannot unpack non-iterable DummyObject object
o # SelfPiCo Injection:
1w declarations = [())]

| m e e e

> # Ex2: Comprehensive data types
3 # Original Code: pandas/tests/groupby/transform/
test_transform.py:

. expected = df[-df.a.isin(drop_idx.index)]

s # Lexecutor Injection:
i df = DummyObject

TypeError: bad operand type for unary -:

s # SelfPiCo Injection:

o df = pd.DataFrame ({ 1D

'DummyObject’

21 # Ex3:Insufficient code Instrumentation &
Inadequate contextual information

22 # Original Code: black/src/black/trans.py:

3 LL = line.leaves

25 1f LLLcomma_idx].type == token.COMMA:
26 # SelfPiCo Injection:

27 class Line:

28 def __init__(self, leaves):

29 self.leaves = leaves

0 line = L1ne([])

31 IndexError: list index out of range

Limitations of SELFP1Co. We also investigate why our SELF-
P1Co fails to execute certain partial codes, two main reasons are
identified, as shown in Listing 2 - Ex.3: Inadequate contextual
information. In our approach, we only input the line where the
undefined code element is located as the contextual information.
The generated value may satisfy the current line execution require-
ment but conflict with the subsequent code. For example in Ex.3,
without the following contextual information about LL, SELFPICo0
assigns an empty list for it. Insufficient code instrumentation.
In the code instrumentation phase, we utilize the Lexecutor and in-
strument three kinds of execution hooks: variable reads, attribute
reads, and calls of functions. However, these hooks are insufficient
and miss some important operations, such as indexing, and binary
operation. For example, the empty list assignment to LL results
in an IndexError when indexing operation LL[comma_idx] is per-
formed. However, none of the exception hooks can catch the In-
dexError, leading to the termination of code execution.

ISSTA °24, September 16-20, 2024, Vienna, Austria

5 Practical Applications
5.1 Runtime Type Error Detection

In this section, we apply SELFP1Co in a real dynamic program
analysis task: runtime error detection. As discussed in the Moti-
vation Section, Python runtime errors are often hard to discover
and/or trigger until the bugs are eventually exposed. To verify the
practical usage of our framework, we apply SELFPICo in real GitHub
projects and Stack Overflow posts to assess its effectiveness.

Particularly, to collect the real type errors from GitHub, we first
selected eight popular GitHub open-source projects that have more
than 1000 stars (i.e., Pandas, Airflow, Luigi, Ansible, Core, Keras,
Requests, and Salt). Then for each project, we searched the pull re-
quests containing the keyword Type Error to find those reporting
and fixing type error issues. We excluded type errors whose mes-
sages included project-specific domain knowledge that could not
be generated. Finally, we collected 42 type errors from the above
eight projects for our evaluation. For each collected type error, we
check out the code snippet that introduced type error as our partial
code input. To collect real type errors from Stack Overflow posts,
we randomly selected 200 posts with the keyword “Type Error” in
the title or body. After filtering out code snippets containing in-
valid syntax, we collected 47 unique type errors for analysis. We
arranged each partial code into a separate file and then leveraged
SELFPICoO to run the partial code to see if the target type error
could be successfully triggered. If and only if our approach termi-
nates at the same fault localization and reports the same error mes-
sages with the issues, we consider this type error as successfully
detected.

SELFPICo successfully detected 18 Python type errors from 42
collected ones from the GitHub projects and 33 Python type errors
from 47 collected ones from the Stack Overflow forum. Lexecutor-
CodeLlama can only detect 8 and 21 Python type errors from GitHub
projects and Stack Overflow forum, respectively. Figure 5 shows a
detected type error. First, SELFPICo injects the value of True for
get_logs, and the variable last_log_time is assigned with None.
When executing the buggy line, SELFPICo predicted the unde-
fined variable pendulum as an object which includes a method now
to return the current time. Then SELFPICo0 successfully detected
the runtime type error: TypeError: unsupported operand type(s) for -:
"DateTime’ and 'NoneType’. The runtime type error detection shows
the practical value of our tool to facilitate the dynamic program
analysis of applications. However, there are still cases SELFP1Co
can not handle correctly, the failed cases primarily stem from cases
where the partial codes are too complicated to perfectly handle,
and/or insufficient context to infer the error triggered types (e.g.,
last_log_time may also be assigned with DateTime object). Fur-
thermore, to estimate the false positive rate of SelfPiCo, we ran-
domly sampled 50 function bodies from the 8 open-source projects
and 50 partial codes without error from the Stack Overflow fo-
rum. Following that, we run SelfPiCo to execute these 100 partial
codes to see if any potential type errors will be triggered. The ex-
perimental results show that SelfPiCo reported 11 type errors for
100 partial codes, resulting in a false positive rate of 11%, while
Lexecutor-CodeLlama performed a 28% false positive rate. The rel-
atively low false positive ratio further confirms the practical usage
of our approach. We manually checked false positive cases, these

1398

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, Shanping Li

https:// github.com/apache/airflow/pull /14513
if get_logs :
read_logs _since_sec = None
last_log _time = None

R TypeError: unsupported
_--~~ ¥k operand type(s) for -:

B \5] 'DateTime' and 'NoneType'
delta = pendulum .now () - last_log_time
read_logs_since_sec = math .ceil (delta .

total_seconds ())

Figure 5: Type error detected by SELFP1Co

failed cases are primarily caused by imprecise value predictions (7
cases due to lack of code context, 4 cases due to complex variable
value), it would be interesting to address these limitations in future
work.

5.2 Discussion

Unit test generation (UTG) technology is widely used to detect run-
time errors, recent research also leveraged LLMs to generate unit
test [36, 59, 84]. For example, Schafer et al. [59] introduced the
LLM-based model TestPilot to generate tests by re-prompting the
model with error messages, Yuan et al. [84] proposed a ChatGPT-
based model ChatTester to leverage ChatGPT to improve unit test
generation. UTG methods differ from our research as follows: (i)
UTG methods are incapable of handling partial code. UTG
methods, such as TestPilot and ChatTester, require the method un-
der test (i.e., focal method) can be invoked and executed properly.
The underlying assumption is that focal methods should be com-
plete and compilable, while either our open-source functions (un-
compilable) or Stack Overflow code snippets (incomplete and un-
compilable) fail to satisfy such conditions. In other words, the par-
tial code can not be directly invoked and executed, making UTG
tools unable to generate tests for them. For example, TestPilot and
ChatTester can’t generate unit tests for SO code snippets, because
75% SO code snippets can not be executed. Moreover, SO code
snippets are often code lines and lack method signatures, render-
ing UTG tools ineffective; (ii) SELFPICO can discover different
runtime errors that UTG can not detect. Based on the focal
method, UTG tools (e.g., TestPilot and ChatTester) generate a unit
test that invokes the target method with reasonable input param-
eter values and checks the output with corresponding assertions.
UTG injects values only at well-defined interfaces, such as func-
tion entry points. While SELFP1Co can inject valid runtime val-
ues in arbitrary points of the code during execution on-demand,
enabling the discovery of bugs that are not triggered by changing
input value changes. Such as the state-dependent issues and bound-
ary condition problems, these bugs can’t be essentially checked by
UTG methods, SELFP1Co can assist developers to find these hid-
den bugs in runtime.

6 Threats to Validity

In our experiments evaluating our model, threats to internal va-
lidity may arise from the randomness of LLMs generation, which
may generate different results for different runs. It means LLMs
may reply with different outputs based on the same input. To mit-
igate this threat, we calculated the metrics by combining results
from five independent executions.

SelfPiCo: Self-Guided Partial Code Execution with LLMs

The main external threat to the validity of our work is the repre-
sentative of the testing dataset selected to evaluate our approach.
To mitigate this threat, we followed the same strategy as the base-
line method, representing an unbiased testing dataset for our study.
Moreover, Our practical evaluation is based on known issues con-
firmed or reported by developers, these data samples can be re-
garded as ground truth and we can easily measure the effective-
ness of our SELFPICo on these samples. It would be interesting
future research direction to use our tool to detect more runtime-
type errors in the wild.

7 Related Work

Incompletion code execution. micro-execution [24] builds a run-
time Virtual Machine that allows for executing arbitrary x86 code
by injecting binary values into memory on demand. X-force [55]
executes arbitrary binary code and fixes the invalid memory by set-
ting the offending pointers to the allocated memory. UC-KLEE [57]
extends the symbolic execution (KLEE) for an incompletion code
snippet. J-Force [33] forced to execute the uncovered path and in-
ject the value candidates from data flow for missing objects. JS-
Force [64], Dual-Force [27] and Oyama et al. [53] explored the
execution paths of arbitrary malware code by switching between
different execution paths when encountering exceptions. LExecu-
tor [63] predicted the type of missing code element and injected
the corresponding injected pre-defined dummy value. Our work
fundamentally differs from the above approach by predicting the
definition and assignment of missing code elements and injecting
realistic value.

Execution behaviour analysis Since several tasks require the be-
havior of code execution, some research focuses on predicting the
behavior of code execution. Bieber et al. [7] proposed an instruc-
tion pointer attention graph neural network (IPA-GNN) to infer
the runtime value of each variable. Some research aimed to pre-
dict the type of dynamic Language [50, 56] or binaries [35, 54].
TRACED [13] fine-tuning the large language model by the exe-
cution trace of code and predicting the execution branch of code
without execution. Moreover, Bieber et al. [6] predicted whether a
program has runtime errors or an exception raised. The approach
mentioned above illustrated the feasibility of predicting the run-
time behavior of the program. Compared to all the above work,
our approach not only predicts the runtime value of the code ele-
ment but also practically executes the program.

Automated Program Repair. APR tries to modify a program
to achieve successful compilation or execution, which overlaps to
some extent with our partial code execution. A common approach
to APR regards it as a code transformation task, which transforms
the buggy program into a bug-fixing program [28, 37, 83, 86]. Re-
cent research has explored the potential of large language models
for program repair [76]. Several studies have demonstrated that
LLMs display a basic level of program comprehension that can be
for APR [11, 30, 31, 75]. Different from APR, our study focuses on
partial code execution and will not modify the target program or
its semantics.

Dynamic analysis for Python. Dynamic analysis is crucial in
program analysis, and there is some research work for Python dy-
namic analysis. For the runtime dynamic analysis, Xu et al. [77]

1399

ISSTA °24, September 16-20, 2024, Vienna, Austria

collected the execution trace of the Python program and lever-
aged the SMT solver to detect bugs. Chen et al [8] instrumented
the bytecode of the Python program and executed instrumented
bytecode to capture the data and control flow and sliced the file.
SCALENE [5] is a high-performance CPU, GPU, and memory pro-
filer for Python, which monitors memory usage during Python pro-
gram execution. DynaPyt [14] is a dynamic analysis framework
that instruments the code with the analysis hooks and supports
customized dynamic analysis tasks. Fuzzing technology is widely
used for bug identifying during execution[12, 61, 72]. The above ap-
proaches need to execute the Python code, while our approach can
support them to analyze non-executable Python code. For compile-
time dynamic analysis, angr [62] translated the binary code into
an intermediate representation (IR) and performed symbolic exe-
cution. Triton is a dynamic analysis applied taint analysis and sym-
bolic execution on the instrumented IR. Since the non-executable
code can not be translated to valid IR, our approach can comple-
ment the code to be successfully compiled and executed.

Unit Test Generation. UTG is widely used to detect errors dy-
namically, which can also detect the runtime time errors. Based on
the target function, these tools produce a unit test that invokes the
target function with reasonable input parameter values and checks
the output with corresponding assertions [46, 85]. Recently there
are also some tools leveraging LLMs to generate unit test [36, 59,
84]. A key difference to our work is that UTG assumes that the
target method is complete and compilable, which can be invoked
and executed directly, while our SELFP1Co aims to detect runtime
type errors from un-executable partial code.

8 Conclusion and Future Work

Aim to dynamically analyze arbitrary code, e.g., non-executable
partial code snippets, we introduce SELFPICo leveraging the pow-
erful learning capabilities of LLMs to interactively fill in the partial
code to make it executable. The experiments demonstrate the ef-
fectiveness of our approach in guiding partial code execution. The
exploratory study of SELFP1Co on the practical usage shows that
SELFP1Co successfully detects 51 type errors, illustrating the use-
fulness of our approach in arbitrary code dynamic analysis. In this
study, we only use error messages for applying LLMs, we will ex-
plore other domain information during code execution (such as
partial AST and API sequence) in our future work.

9 Data Availability

Our replication package is available at [3].

Acknowledgments

This research is supported by the Starry Night Science Fund of
Zhejiang University Shanghai Institute for Advanced Study, Grant
No. SN-ZJU-SIAS-001. This research is partially supported by the
Shanghai Sailing Program (23YF1446900) and the National Science
Foundation of China (No. 62202341). This research is partially sup-
ported by the Ningbo Natural Science Foundation (No. 2023]292).
This research was also supported by the advanced computing re-
sources provided by the Supercomputing Center of Hangzhou City
University. The authors would like to thank the reviewers for their
insightful and constructive feedback.

ISSTA °24, September 16-20, 2024, Vienna, Austria Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, Shanping Li

References [25] Momoko Hattori, Shimpei Sawada, Shinichiro Hamaji, Masahiro Sakai, and
[1] 2023. Introducing ChatGPT. https://chat.openai.com/. Shunsuke Shimizu. 2020. Semi-static type, shape, and symbolic shape infer-
[2] 2023. Pyre. https://pyre-check.org/. ence for dynamic computation graphs. Proceedings of the 4th ACM SIGPLAN
[3] 2024. Our replication package. https://zenodo.org/records/10401593. Internatiorlal Workshop on Machine Learning and Programming Languages (2020).
[4] Mark W. Aldrich, Alexi Turcotte, Matthew Blanco, and Frank Tip. 2022. Augur: https://apLsemanncscholaerrg/corpusAID:2191(;7(;08 .

Dynamic Taint Analysis for Asynchronous JavaScript. Proceedings of the 37th [26] Edward J Hu, Yelong Sher}, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhl Li, Shean
IEEE/ACM International Conference on Automated Software Engineering (2022). Wang, Lu Wang, and Welzhu'Chen. 2021. Lora: Low-rank adaptation of large
https://api.semanticscholar.org/CorpusID:255441495 language models. arXiv preprint arXiv:2106.09685 (2021).]

[5] E.Berger. 2020. Scalene: Scripting-Language Aware Profiling for Python. ArXiv [27] Xunchao Hu, Yao Cheng, Yue Duan, Andr?“{ Hepdersoq, and Her}g Yin. 2018.
abs/2006.03879 (2020). Jsforce: A forced execution engine for malicious javascript detection. In Secu-

[6] David Bieber, Rishab Goel, Daniel Zheng, H. Larochelle, and Daniel Tarlow. 2022. rity and Privacy i”_ Communication Networks: 13th International Canfererzce, Se-
Static Prediction of Runtime Errors by Learning to Execute Programs with Ex- C”’?C"’”m 2017, Niagara Falls, ON, Canada, October 22-25, 2017, Proceedings 13.
ternal Resource Descriptions. ArXiv abs/2203.03771 (2022). Sprmger’ 704_720' . .

[7] David Bieber, Charles Sutton, H. Larochelle, and Daniel Tarlow. 2020. Learning (28] Nan llang, Thlba‘fd Lutellier, and ;m Tan. 2021. CURE Code-Aware Neural
to Execute Programs with Instruction Pointer Attention Graph Neural Networks. Machlne: Translation for Automatic P rogram Repam In 2021 IEEE/ACM 43rd
ArXiv abs/2010.12621 (2020). International Conference on Software Engineering (ICSE). 1161-1173. https:

[8] Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu, William Cheng-Chung Chu, //don.(?rg/l'O.l102/1L5E43l902.20?'1.00107 . . .
and Baowen Xu. 2014. Dynamic Slicing of Python Programs. 2014 IEEE 38th (29] Zu—Mu}g]u}ng, Jia-Ju Bai, Kangjie Llf’ and Shih-Min Hu. 2022. Context-Sensﬁlve
Annual Computer Software and Applications Conference (2014), 219-228. and Directional ConlcurArency Fuzzing for pata—Race petectlon. Proceeding§

[9] James A. Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dy- 2022 Network and Distributed System Security Symposium (2022). https://api.

semanticscholar.org/CorpusID:248222066
Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,
and Alexey Svyatkovskiy. 2023. Inferfix: End-to-end program repair with llms.

namic taint analysis framework. In International Symposium on Software Testing

and Analysis. https://api.semanticscholar.org/CorpusID:11142970 30

[10] Zhenlong Dai, Chang Yao, WenKang Han, Ying Yuan, Zhipeng Gao, and) ; ok
Jingyuan Chen. 2024. MPCODER: Multi-user Personalized Code Genera- In Proceedmgs of the 31st ACM‘]omt European Soﬁware AEngmeermg Conference
tor with Explicit and Implicit Style Representation Learning. arXiv preprint and 53{’"1’05”%’” on,the Foundations of Software Er?gmeermg..l646fl656A
arXiv:2406.17255 (2024). [31] Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Ver-
[11] Pantazis Deligiannis, Akash Lal, Nikita Mehrotra, and Aseem Rastogi. 2023. Fix- bruggen, and Ivan Radicek. 2023. Repair is nearly generation: Multilingual pro-

gram repair with llms. In Proceedings of the AAAI Conference on Artificial Intelli-

ing rust compilation errors using llms. arXiv preprint arXiv:2308.05177 (2023).
gence, Vol. 37. 5131-5140.

[12] Yinlin Deng, Chun Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang.

2022. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning [32] Rezwana Karim, Fran}(Tip,v Alena Soc}'lurkova, and Kpushik Sen. 2020. Pl.f;\tform-

Libraries via Large Language Models. Proceedings of the 32nd ACM SIGSOFT Independent Dynamic Taint Analysis for JavaScript. IEEE Transactions on

International Symposium on Software Testing and Analysis (2022). Software Engineering 46 (2020), 1364-1379. https://api.semanticscholar.org/
[13] Yangruibo Ding, Benjamin Steenhoek, Kexin Pei, Gail E. Kaiser, Wei Le, and COIPUSID:(’?SMB%

Baishakhi Ray. 2023. TRACED: Execution-aware Pre-training for Source Code. (33] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng, X.

ArXiv abs/2306.07487 (2023). Zhal?g, and Dongyan Xu. 2917. J-Force: Forced Executl_on on JavaScript. Pro-
[14] Aryaz Eghbali and Michael Pradel. 2022. DynaPyt: A Dynamic Analysis Frame- ceedzng§ of the 26th International CU"f erence on Worlfl Wide Web (2017)-

work for Python. In ESEC/FSE °22: 30th ACM Joint European Software Engineering [34] Owolabi Legunsen, Nader Al Awar, Xinyue Xu, Wajih Ul Hassan, Grigore Rosu,

and Darko Marinov. 2019. How effective are existing Java API specifications for

Conference and Symposium on the Foundations of Software Engineering. ACM. .) ' . . cate;
finding bugs during runtime verification? Automated Software Engineering 26

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre- (201?), 795 - 837. httpsi//api.semanticscholar.org/Corpule:208190648)

Trained Model for Programming and Natural Languages. In Findings of the As- [35] Damel Lehmann and Michael Prfldel.l 2022. Fmdlpg the Dwarf: Recovering Pre-

sociation for Computational Linguistics: EMNLP 2020. 1536—1547. cise Types from WebAssembly Binaries. Proceedings of the 43rd ACM SIGPLAN
[16] Ehsan Firouzi, Ashkan Sami, Foutse Khomh, and Gias Uddin. 2020. On the use International Conference on Programming Language Design and Implementation

of C# Unsafe Code Context: An Empirical Study of Stack Overflow. Proceedings (2022)_‘ X . . X

of the 14th ACM / IEEE International Symposium on Empirical Software Engineer- [36] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.

ing and Measurement (ESEM) (2020). https://api.semanticscholar.org/CorpusID: 2023. Codamosa: Escaping coverage plateaus in test gen§ration with pre-trained
225047199 large language models. In 2023 IEEE/ACM 45th International Conference on Soft-

ware Engineering (ICSE). IEEE, 919-931.
Yi Li, Shaochua Wang, and Tien N. Nguyen. 2020. DLFix: context-based code
transformation learning for automated program repair. In Proceedings of the

[17] Pedro Fonseca, Cheng Li, and Rodrigo Seromenho Miragaia Rodrigues. 2011.
Finding complex concurrency bugs in large multi-threaded applications. In
European Conference on Computer Systems. https://api.semanticscholar.org/

(37

CorpusID:1510847 ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
[18] Akalanka Galappaththi, Sarah Nadi, and Christoph Treude. 2022. Does This Korea) (ICSE "20). A§50C13t1°n for 'COmputymg Machmery, New York, NY, USA,
Apply to Me? An Empirical Study of Technical Context in Stack Overflow. 2022 6(_)27_614‘ https://domrg/lOA1.145/5377811.5380545)
IEEE/ACM 19th International Conference on Mining Software Repositories (MSR) (38] YiLi, Shaqhua' Wang, and Tien N Nguyen. 2020. Improving automated pro-
(2022), 23-34. https://api.semanticscholar.org/CorpusID:247922603 gram repair using two—layer tree-based neural networks. I'n Pr(')ceedmgs of fhe
[19] Zhipeng Gao, Xin Xia, John Grundy, David Lo, and Yuan-Fang Li. 2020. Gener- ACM/IEEE 42nd International Conference on Software Engineering: Companion
ating question titles for stack overflow from mined code snippets. ACM Trans- Pfocleedtngs. 316-317.
actions on Software Engineering and Methodology (TOSEM) 29, 4 (2020), 1-37. [39] YilLi, S}?aohu_a Wang, apd Tien N Nguy‘enA 2021. Vulnerability Qetectlor? with
[20] Zhipeng Gao, Xin Xia, David Lo, and John Grundy. 2020. Technical Q8A site fine-grained interpretations. In Proceedings of the th_h ACM jJoint Meetz.ng on
answer recommendation via question boosting. ACM Transactions on Software European Saft'ware' Engineering Conference and Symposium on the Foundations of
Engineering and Methodology (TOSEM) 30, 1 (2020), 1-34. Sgﬁware Engineering. 292-303.)
[21] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Yuan-Fang Li. 2021. [40] Yi Li, Shachua Wang, and Tien N Nguyen. 2922. Dear: A .novel deep learglng-
Code2que: A tool for improving question titles from mined code snippets in basgd approach for automated program repair. In Proceedings of the 44th inter-
stack overflow. In Proceedings of the 29th ACM Joint Meeting on European Soft- national conference on software engineering. 511-523.

[41

ware Engineering Conference and Symposium on the Foundations of Software En- Yili, Shaoh}la Wang, Tien N Nguyen, and Son Van Nguyen. 2019. Improving bug
gineering. 1525-1529. detection via context-based code representation learning and attention-based

[22] Zhipeng Gao, Xin Xia, David Lo, John Grundy, Xindong Zhang, and Zhenchang neural networks. Proceedings of the ACM on Programming Languages 3, OOPSLA
Xing. 2023. I know what you are searching for: Code snippet recommenda- (2019), 1-30.

tion from stack overflow posts. ACM Transactions on Software Engineering and [42] YiLi, Aashish Yadavally, Jiaxing Zhang,' Shaohua Wang, and Tien N Nguyen.
Methodology 32, 3 (2023), 1-42. 2023. Commit-Level, Neural Vulnerability Detection and Assessment. In Pro-

ceedings of the 31st ACM Joint European Software Engineering Conference and

[23] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. 2021. > 4 " .
Automating the removal of obsolete TODO comments. In Proceedings of the 29th Symposium on the Foundations of Software Engineering. 1024-1036.
ACM Joint Meeting on European Software Engineering Conference and Symposium [43] YiLi, AaShl_Sh' Yadavally, Jiaxing Zhang, Shaohua Wang, and Tien N Nguyen.
on the Foundations of Software Engineering. 218-229. 2023. DeMinify: Neural Variable Name Recovery and Type Inference. In Pro-
[24] Patrice Godefroid. 2014. Micro execution. Proceedings of the 36th International ceedings of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 758-770.

Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong Li.
2024. Empirically revisiting and enhancing automatic classification of bug and
non-bug issues. Frontiers of Computer Science 18, 5 (2024), 185207.

Conference on Software Engineering (2014). (44

1400

https://api.semanticscholar.org/CorpusID:255441495
https://api.semanticscholar.org/CorpusID:11142970
https://api.semanticscholar.org/CorpusID:225047199
https://api.semanticscholar.org/CorpusID:225047199
https://api.semanticscholar.org/CorpusID:1510847
https://api.semanticscholar.org/CorpusID:1510847
https://api.semanticscholar.org/CorpusID:247922603
https://api.semanticscholar.org/CorpusID:219167608
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1109/ICSE43902.2021.00107
https://api.semanticscholar.org/CorpusID:248222066
https://api.semanticscholar.org/CorpusID:248222066
https://api.semanticscholar.org/CorpusID:69361376
https://api.semanticscholar.org/CorpusID:69361376
https://api.semanticscholar.org/CorpusID:208190648
https://doi.org/10.1145/3377811.3380345

SelfPiCo: Self-Guided Partial Code Execution with LLMs

[45] Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta, Tenghao Huang, Mo-
hit Bansal, and Colin A Raffel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Advances in Neural Information
Processing Systems 35 (2022), 1950-1965.

[46] Ping Ma, Hangyuan Cheng, Jingxuan Zhang, and Jifeng Xuan. 2020. Can this
fault be detected: A study on fault detection via automated test generation. Jour-
nal of Systems and Software 170 (2020), 110769.

[47] Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and

Shanshan Li. 2023. At Which Training Stage Does Code Data Help LLMs Rea-
soning? arXiv preprint arXiv:2309.16298 (2023).

[48] Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yong-

bin Li. 2024. How to Understand Whole Software Repository? arXiv preprint

arXiv:2406.01422 (2024).

Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun. 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning

and In-Context Learning. Proceedings of the ACM on Software Engineering 1,

FSE (2024), 2355-2377.

[50] Amir M Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. 2022.
Type4Py: practical deep similarity learning-based type inference for python. In
Proceedings of the 44th International Conference on Software Engineering. 2241~
2252.

[51] Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. 2018. Dynamic type
inference for gradual Hindley-Milner typing. Proceedings of the ACM on Pro-
gramming Languages 3 (2018), 1 - 29. https://api.semanticscholar.org/CorpusID:
53113736

[52] Jens Nicolay, Carlos Noguera, Coen De Roover, and Wolfgang De Meuter. 2013.
Determining dynamic coupling in JavaScript using object type inference. 2013
IEEE 13th International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM) (2013), 126-135. https://api.semanticscholar.org/CorpusID:
609446

[53] Yoshihiro Oyama and Hirotaka Kokubo. 2023. Forced continuation of malware

execution beyond exceptions. Journal of Computer Virology and Hacking Tech-

niques 19, 4 (2023), 483-501.

Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao,

David Williams-King, Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and

Suman Sekhar Jana. 2021. StateFormer: fine-grained type recovery from bina-

ries using generative state modeling. Proceedings of the 29th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (2021).

[55] FeiPeng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhigiang Lin, and Zhendong

Su. 2014. {X-Force}:{Force-Executing} binary programs for security applica-

tions. In 23rd USENIX Security Symposium (USENIX Security 14). 829-844.

Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qi reng Zhang, and

Michael R. Lyu. 2021. Static Inference Meets Deep learning: A Hybrid Type

Inference Approach for Python. 2022 IEEE/ACM 44th International Conference

on Software Engineering (ICSE) (2021), 2019-2030.

[57] David A. Ramos and Dawson R. Engler. 2015. Under-Constrained Symbolic Ex-
ecution: Correctness Checking for Real Code. In USENIX Annual Technical Con-
ference.

[58] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[59] Max Schéfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical

evaluation of using large language models for automated unit test generation.

IEEE Transactions on Software Engineering (2023).

Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon J. Gibbs. 2013.

Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.

In ESEC/FSE 2013. https://api.semanticscholar.org/CorpusID:18240724

[61] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for
open source software. USENIX Association, Vancouver, BC.

[62] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive
Techniques in Binary Analysis. In IEEE Symposium on Security and Privacy.

[63] Beatriz Souza and Michael Pradel. 2023. LExecutor: Learning-Guided Execution.

ArXiv abs/2302.02343 (2023).

Zhenhao Tang, Juan Zhai, Minxue Pan, Yousra Aafer, Shiging Ma, Xiangyu

Zhang, and Jianhua Zhao. 2018. Dual-force: Understanding webview malware

via cross-language forced execution. In Proceedings of the 33rd ACM/IEEE Inter-

national Conference on Automated Software Engineering. 714-725.

H. Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.

2022. Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-

Intensive Multi-Step Questions. In Annual Meeting of the Association for Compu-

tational Linguistics. https://api.semanticscholar.org/CorpusID:254877499

Haoye Wang, Zhipeng Gao, Xing Hu, David Lo, John Grundy, and Xinyu Wang.

2024. Just-In-Time TODO-Missed Commits Detection. IEEE Transactions on

[49

[54

[56

[60

[64

o
&

[66

1401

[67

(68

[69

[70

[72

(73]

[74

ks
2

[76

[77

[78

=
2,

[80

[81

[82

(84

(85

[86

ISSTA °24, September 16-20, 2024, Vienna, Austria

Software Engineering (2024).
Shaohua Wang, NhatHai Phan, Yan Wang, and Yong Zhao. 2019. Extracting

APT tips from developer question and answer websites. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE, 321-332.
Wenbo Wang, Tien N Nguyen, Shaohua Wang, Yi Li, Jiyuan Zhang, and Aashish
Yadavally. 2023. DeepVD: Toward Class-Separation Features for Neural Net-
work Vulnerability Detection. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2249-2261.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan
Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Im-
proves Chain of Thought Reasoning in Language Models. In ICLR 2023. https:
//arxiv.org/abs/2203.11171

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. ArXiv abs/2109.00859 (2021). https://api.
semanticscholar.org/CorpusID:237386541

Yue Wang, Zhide Zhou, Zhilei Ren, Dong Liu, and He Jiang. 2023. A Compre-
hensive Study of WebAssembly Runtime Bugs. 2023 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER) (2023), 355-366.
https://api.semanticscholar.org/CorpusID:258725989

Anjiang Wei, Y. Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free Lunch
for Testing: Fuzzing Deep-Learning Libraries from Open Source. 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE) (2022), 995-1007.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi,
F. Xia, Quoc Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits
Reasoning in Large Language Models. ArXiv abs/2201.11903 (2022). https://api.
semanticscholar.org/CorpusID:246411621

Xin-Cheng Wen, Xinchen Wang, Cuiyun Gao, Shaochua Wang, Yang Liu, and
Zhaoquan Gu. 2023. When less is enough: Positive and unlabeled learning model
for vulnerability detection. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 345-357.

Chungiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated pro-
gram repair in the era of large pre-trained language models. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 1482-1494.
Chungiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

Zhaogui Xu, Peng Liu, X. Zhang, and Baowen Xu. 2016. Python predictive anal-
ysis for bug detection. Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (2016).

Zhipeng Xue, Zhipeng Gao, Xing Hu, and Shanping Li. 2023. ACWRecom-
mender: A Tool for Validating Actionable Warnings with Weak Supervision. In
2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1876-1880.

Aashish Yadavally, Yi Li, Shaochua Wang, and Tien N Nguyen. 2024. A Learning-
Based Approach to Static Program Slicing. Proceedings of the ACM on Program-
ming Languages 8, OOPSLA1 (2024), 83-109.

Aashish Yadavally, Tien N Nguyen, Wenbo Wang, and Shaohua Wang. 2023.
(Partial) Program Dependence Learning. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2501-2513.

Dapeng Yan, Zhipeng Gao, and Zhiming Liu. 2023. A Closer Look at Different
Difficulty Levels Code Generation Abilities of ChatGPT. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 1887—
1898.

Xu Yang, Shaowei Wang, Yi Li, and Shaohua Wang. 2023. Does data sampling
improve deep learning-based vulnerability detection? Yeas! and Nays!. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
2287-2298.

He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022.
Selfapr: Self-supervised program repair with test execution diagnostics. In Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1-13.

Zhigiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. No more manual tests? evaluating and improving chatgpt
for unit test generation. arXiv preprint arXiv:2305.04207 (2023).

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi
Mao, Jian-Guang Lou, and Weizhu Chen. 2023. Repocoder: Repository-level
code completion through iterative retrieval and generation. arXiv preprint
arXiv:2303.12570 (2023).

Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.
In Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering. 341-353.

Received 2024-04-12; accepted 2024-07-03

https://api.semanticscholar.org/CorpusID:53113736
https://api.semanticscholar.org/CorpusID:53113736
https://api.semanticscholar.org/CorpusID:609446
https://api.semanticscholar.org/CorpusID:609446
https://api.semanticscholar.org/CorpusID:18240724
https://api.semanticscholar.org/CorpusID:254877499
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:258725989
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621

	Abstract
	1 Introduction
	2 Motivation
	3 Our Approach
	3.1 Runtime Engine
	3.2 Interactive Value Predictor
	3.3 Complementary Type Predictor
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Effectiveness of SelfPiCo
	4.3 RQ2: Component Analysis
	4.4 RQ3: Sensitivity Analysis
	4.5 RQ4: Time Cost Analysis
	4.6 Result Discussion

	5 Practical Applications
	5.1 Runtime Type Error Detection
	5.2 Discussion

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	9 Data Availability
	Acknowledgments
	References

