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ABSTRACT

The coordinated vulnerability disclosure (CVD) process is com-
monly adopted for open source software (OSS) vulnerability man-
agement, which suggests to privately report the discovered vul-
nerabilities and keep relevant information secret until the official
disclosure. However, in practice, due to various reasons (e.g., lack-
ing security domain expertise or the sense of security management),
many vulnerabilities are first reported via public issue reports (IRs)
before its official disclosure. Such IRs are dangerous IRs, since at-
tackers can take advantages of the leaked vulnerability information
to launch zero-day attacks. It is crucial to identify such dangerous
IRs at an early stage, such that OSS users can start the vulnerability
remediation process earlier and OSSmaintainers can timely manage
the dangerous IRs. In this paper, we propose and evaluate a deep
learning based approach, namely MemVul, to automatically iden-
tify dangerous IRs at the time they are reported.MemVul augments
the neural networks with a memory component, which stores the
external vulnerability knowledge from Common Weakness Enu-
meration (CWE). We rely on publicly accessible CVE-referred IRs
(CIRs) to operationalize the concept of dangerous IR. We mine 3,937
CIRs distributed across 1,390 OSS projects hosted on GitHub. Eval-
uated under a practical scenario of high data imbalance,MemVul
achieves the best trade-off between precision and recall among all
baselines. In particular, the F1-score ofMemVul (i.e., 0.49) improves
the best performing baseline by 44%. For IRs that are predicted as
CIRs but not reported to CVE, we conduct a user study to inves-
tigate their usefulness to OSS stakeholders. We observe that 82%
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(41 out of 50) of these IRs are security-related and 28 of them are
suggested by security experts to be publicly disclosed, indicating
MemVul is capable of identifying undisclosed dangerous IRs.
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1 INTRODUCTION

Open source software (OSS) is widely used by the software indus-
try [35], from small-scale projects to critical applications deployed
in global infrastructures. Despite its benefits [64], the usage of OSS
also incurs on security risks [41, 60, 71] that can lead to negative
impacts to individuals and organizations [3]. To better manage
OSS vulnerabilities and minimize the risk of exploits, the coordi-
nated vulnerability disclosure (CVD) process [2, 46] is commonly
adopted [4, 7, 22]. The CVD suggests to privately report the discov-
ered vulnerabilities to OSS maintainers, so that relevant informa-
tion is not publicly available until the maintainers are ready for the
disclosure (e.g., a patch is available) [4].

In practice, however, due to various reasons (e.g., lacking security
domain expertise [42] or the sense of security management [32]),
many IRs that report vulnerabilities are first submitted to publicly
accessible issue tracking systems (ITS), and then the associated
vulnerabilities are officially disclosed. Such vulnerability IRs are
dangerous IRs, as the time gap between the IR creation date and
the vulnerability disclosure date provides a window of opportu-
nity for attackers to develop and deploy exploits (e.g., zero-day
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attacks [31]). In particular, attackers can take advantage of the
leaked vulnerability information (e.g., the reproducible steps of an
attack), which puts OSS users at a great disadvantage in defending
against exploitation. For instance, many vulnerability IRs are first
submitted to the GitHub ITS, then referred by a Common Vulner-
abilities and Exposure (CVE) record that officially discloses the
vulnerability [62, 77]. Such CVE-referred IRs (CIRs) are a type of
typical dangerous IRs, as the leaked vulnerability information are
earlier available with a median time of 13 days (see Section 2.3),
and the reported vulnerability details provides an advantage for
attackers (see Section 2.2 for a motivation example).

It is crucial for OSS users, especially downstream software ven-
dors, to identify dangerous IRs at an early stage so that they can
take an active role in the race against attackers (i.e., the race be-
tween patching and exploiting vulnerabilities). With the ability
of early sensing dangerous IRs, vendors can start the remediation
process earlier, instead of waiting for the official disclosure and
then rushing to remediate. Since one project may rely on hundreds
of OSS projects [35] and it takes too much work from OSS users
to monitor every IR in the upstream OSS projects, an automated
solution is necessary to identify dangerous IRs.

Furthermore, it is also important for ITS platforms to implement
mechanisms to identify emerging dangerous IRs. ITS platforms, as a
service provider, should take the responsibility of better managing
vulnerability reports to comply with the CVD process, reducing the
threat of dangerous IRs and consequently making the OSS ecosys-
tem safer. For example, by identifying dangerous IRs in advance,
ITS platforms can warn reporters before posting the IR and suggest
them to privately report to the maintainers instead. Moreover, ITS
platforms can automatically hide the existing dangerous IRs from
the public channel, and flag them as priorities for maintainers.

The goal of our work is to provide a tool that can automatically
unearth the emerging dangerous IRs at their early stage. Given
the prevalent usage of CVE in OSS vulnerability management, and
the popularity of GitHub ITS in OSS IR management, we opera-
tionalize dangerous IRs as CIRs. In this paper, we take a first step
to explore the characteristics of CIRs and to propose an automated
approach to identify them at their creation time. We first build
a large-scale dataset consisting of 1,221,677 IRs from 1,390 OSS
systems hosted on GitHub, with 3,937 CIRs in total. The number
of CIRs in our dataset is larger and more up-to-date than those of
the five datasets (351 in total, collected before 2015) as proposed
by existing studies [62, 67, 78]. Moreover, the existing datasets are
limited in project-scope, which hinders the construction and eval-
uation of a generic approach. The small proportion of CIRs (0.3%)
agrees with real-world distributions and shows the challenge of
unearthing dangerous IRs.

Our preliminary study shows that ❶ 98.5% of the CIRs are cre-
ated before the disclosure of the corresponding CVE records, sug-
gesting that early leakage of vulnerability information through a
public IR is very common. ❷ CIRs account for only 0.3% of all IRs,
indicating that there is a limited vulnerability knowledge for data-
driven models. Moreover, all CIRs belong to 132 different CWE
vulnerability types, which can have diverse causes, behaviours,
and consequences. It is challenging to predict CIRs under such
a highly imbalanced class distribution and diverse vulnerability
types, particularly by using existing machine learning approaches

that are adopted from similar tasks (e.g., triaging security bug re-
ports [42, 62, 77, 78, 81]).

To cope with these challenges, we propose MemVul, a deep
learning based approach that leverages language models [40] and
a memory component to incorporate the external vulnerability
knowledge fromCWE (CommonWeakness Enumeration): a curated
classification schema for describing vulnerabilities. The memory
component is designed to act as a vulnerability knowledge base
during model inference. MemVul predicts whether an input IR is a
CIR by matching the description of the IR against the knowledge
base. To evaluate the effectiveness ofMemVul, we conduct exper-
iments under a practical scenario where the proportion of CIRs
(0.3%) agrees with the real-world distribution. Evaluation results
show that our approach achieves an F1-score of 0.49, which outper-
forms the best baseline by 44%. With an ablation study, we further
verify the effectiveness of incorporating the memory component as
a knowledge base of vulnerabilities. In summary, our paper makes
the following contributions:
• We are the first to introduce the task of unearthing dangerous
IRs at their early stage. We build a real-world dataset with larger
and more-up-date security-related IR data, i.e., 3937 CIRs from
1,390 OSS systems. We consider IRs linked to CVE records as
CIRs, and use them as a proxy to dangerous IRs.

• We propose MemVul, a deep learning based approach that
uses language models and incorporates external vulnerability
knowledge from CWE, improving the identification of CIRs.

• We evaluateMemVul under a practical scenario of extreme data
imbalance. MemVul achieves an F1-score of 0.49, improving
the best performing baseline by 44%.

• To foster future work and in line with good research practices,
we provide a complete replication package of our approach and
experiments [25].

2 MOTIVATION AND PRELIMINARIES

In this section, we first introduce the background of our paper
(Section 2.1). Then, we provide a motivation example (Section 2.2).
Finally, we conduct a preliminary study on CIRs (Section 2.3).

2.1 Background

Common Vulnerabilities and Exposure (CVE): CVE provides a stan-
dardized method to identify, define and catalog publicly disclosed
software vulnerabilities [9]. Once a vulnerability is discovered, de-
velopers can request a CVE ID from the CVE Numbering Authority
(e.g., MITRE Corporation). The ID being reserved is regarded as the
initial state of a CVE record. However, the record is not publicly
available until its publication to the CVE list, when the minimum
required details are prepared. Except for the CVE ID, each CVE
record includes a brief and project-oriented description of the vul-
nerability and the related references (i.e., a list of URLs). When
constructing our dataset, we use the URLs from the references to
identify the corresponding GitHub CIRs.
Common Weakness Enumeration (CWE): CWE serves as a common
language for discussing and describing weaknesses [10]. Each CWE
entry represents a single vulnerability type, providing detailed
information including the common causes, behaviours, and con-
sequences. CWE entries are organized in a tree-like structure of
multiple levels of abstraction.
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Table 1: An example of vulnerability that was publicly posted

as a GitHub IR, prior to its disclosure.

Report date: Apr 24, 2019
Issue title: LDAP connector does not verify TLS certificates
Labels: bug, ldap, triaged
Issue body:

Expected Behavior: Graylog should verify the LDAP server certifi-
cate chain up to a trusted root, and refuse the connection when the
certificate chain cannot be verified.
Current Behavior: Graylog accepts LDAP server certificates whose
root certificate is not in any trust store. This presents a vulnerability
for man-in-the-middle attacks.
Steps to Reproduce (for bugs):
- 1. Navigate to the LDAP / Active Directory configuration page.
......
Context: We run Graylog in a Docker container, using the official
Docker image.1 Our LDAP server is on a different network. We would
be better protected against man-in-the-middle attacks if Graylog veri-
fies the LDAP server certificate.
Your Environment:
<Environment settings>

Disclosure date: Jul. 17, 2020
CVE ID: CVE-2020-15813
CVE description (key information):

Graylog before 3.3.3 lacks SSL Certificate Validation for LDAP servers.
...... Therefore, any attacker with the ability to intercept network traffic
between a Graylog server and an LDAP server is able to redirect
traffic to a different LDAP server ...... , effectively bypassing Graylog’s
authentication mechanism.

CVSS v2.0 exploitability score: 8.6
CVSS v2.0 severity ratings:Medium
Note that the detailed environment setting is replaced with a placeholder.

National Vulnerability Database (NVD): NVD [24] is one of the most
popular security advisories [77]. NVD fully syncs with CVE list, i.e.,
once a CVE record is published, it will appear in NVD immediately.
Upon the information included in CVE records, NVD provides
enhanced vulnerability information including the severity score
rankings, the exploitation scores, and the weakness type (CWE).
NVD uses CWE as a categorization mechanism to differentiate
CVEs according to their vulnerability type. NVD is a widely used
public source for new OSS vulnerabilities.

2.2 Motivation Example

Table 1 shows an example of vulnerability that was publicly posted
as a GitHub IR [16] prior to its disclosure as a CVE record [55] (CVE-
2020-15813). CVE-2020-15813 is an “Improper Certificate Validation”
type vulnerability with an exploitability score of 8.6 and a medium
level of severity rating. This vulnerability allows an attacker to
bypass the authentication mechanism of graylog2/graylog2-server
project, which is a widely used (6,000+ GitHub stars) OSS log man-
agement system. The vulnerability was disclosed via NVD on Jul.
17, 2020, while it was first reported and publicly available 450 days
earlier (Apr. 24, 2019) on GitHub ITS.

This CIR was dangerous as it leaked sensitive vulnerability infor-
mation, giving hackers a chance to launch attacks when the general
public was unprepared or even unaware. Moreover, the CIR de-
scribed the detailed information of the vulnerability, including the
expected behavior, current behavior, and reproduction steps. These

Table 2: Number of IRs that contain vulnerability patterns.

Issue report type #Issue reports

Contain vuln. patterns No vuln. patterns

CVE-referred IR 3,271 666
Not CVE-referred IR 189,545 1,028,195
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Figure 1: The distribution of delta days between the creation

date of CIRs and the NVD disclosure date of the correspond-

ing vulnerabilities.

information provided attackers with advantages in creating a func-
tioning exploit. According to CVD, such vulnerability information
should not be publicly available until the official disclosure when
the general public can start the remediation process. However, due
to the lack of security domain expertise or the sense of security
management, the end-user directly reported the vulnerability to
the public ITS, leading to a dangerous issue report. Even worse,
the maintainers let the CIR be publicly available for more than one
year before the NVD disclosure, leaving potential attackers with a
large time window to exploit the vulnerability.

It is crucial to identify such CIRs at an early stage. So that OSS
users can take an active role in the race against potential attackers.
Specifically, OSS users can sense the threat and take remediations
in time, instead of waiting for the NVD disclosure and then hurry to
remediate. Also, ITSs can warn reporters before posting a possible
CIR, and help OSS maintainers to handle them appropriately by
flagging CIRs as priorities and restricting the access to the IR from
the public. With such mechanisms, ITS platforms can provide OSS
stakeholders a safer ecosystem.

2.3 Preliminary Study

We build a large-scale dataset (see Section 4.2) for understanding
the characteristics of CIRs and to evaluate our approach, which
consists of 1,221,677 GitHub IRs from 1,390 GitHub projects. We
consider IRs that are referred by CVE records as CIRs (3,937 in
total), and the remaining IRs as not CVE-referred IRs (NCIRs). In
this section, we perform a preliminary study using the collected
dataset to show the importance and challenges of identifying and
flagging potential CIRs at their creation time.

The majority (98.7%) of CIRs are created before the cor-

responding NVD disclosure date, exposing OSS users to un-

perceived security risks. Figure 1 shows the distribution of the
number of days between the CIR creation and the NVD disclosure.
We observe that only 1.3% of the CIRs were created after the asso-
ciated vulnerability was disclosed via NVD. This result shows that
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Figure 2: ECDF of #CIRs that belong to the same CWE.

most of the CIRs constitute the leakage of sensitive vulnerability
information, providing attackers with advantages while exposing
OSS users to huge security risks. For the remaining 98.7% (3,884
out of 3,937) of CIRs, the median time between the IR creation and
the NVD disclosure is 13 days. The median exploitability score
of these CIRs is 8.6/10 and 16.5% of the CIRs are rated as high
severity vulnerabilities. Moreover, the average #Stars and #Forks
of the OSS projects that these CIRs belong to are 3,895 and 1,024,
respectively. These results suggest that CIRs are associated with
potentially impactful vulnerabilities. Moreover, we estimate that
39.9% (1,570/3,937) of the CIRs in our dataset contain the steps of
an attack. We manually analyzed a random sample of the CIRs and
derived a set of keywords to identify CIRs that contain attack steps
(i.e., “steps to reproduce”, “steps to replicate”, “proof-of-concept”,
“proof of concept”, and “poc”). To validate our approach, we man-
ually analyzed 50 random CIRs that contain at least one of our
keywords and verified that all describe attack steps. Since some
steps are described in the implicit way (e.g., “what did you do”),
our result provides the lower bound estimation. Thus, instead of
leaving a time window for attackers to launch zero-day attacks
using the leaked vulnerability information in the CIR, it is crucial
to identify CIRs at an early stage so that the OSS users can

start the remediation process earlier, and thus closing the

dangerous timegap.

Token-level keyword-based approaches are commonly used in
the task of triaging security bug reports [43, 56, 62, 81]. Prior
work [81] proposed regular expressions to identify security-related
IRs that contain vulnerability-related patterns (i.e., 55 security key-
words). For example, an IR is classified as security-related if it con-
tains words such as “xss” (i.e., Cross-site scripting) and “malicious”.
We apply the same regular expression on the title and body of IRs
in our dataset to match those containing vulnerability patterns. Ta-
ble 2 shows the results of matching. We observe that 666 (17%) CIRs
do not contain strong vulnerability patterns while 189,545 NCIRs
also contain strong vulnerability patterns. Directly applying this
keyword-based matching approach will result in an extremely low
precision of 1.7%. This result indicates that it is challenging to

leverage token-level vulnerability-pattern-based approaches

to identify CIRs with high precision and recall.

CIRs are typically scarce among all IRs of OSS projects. In our
dataset (Section 4.2), the number of NCIRs (1,217,740) significantly
outweighs the number of CIRs (3,937). The data imbalance and
limited amount of CIR data prevent data-driven models from ef-
fectively learning the associated patterns with such CIRs. Further-
more, the 3,937 CIRs in our dataset belong to 132 different CWE
categories. Figure 2 shows the empirical cumulative distribution
function (ECDF) of the number of CIRs that belong to the same
CWE category. We observe that 80% of the CWE categories have

less than 30 CIRs, and more than half of the CWE categories have
only 5 CIRs. Moreover, the causes, behaviours, and consequences
can vary significantly across different CWE categories (i.e., the vul-
nerability type it represents). For example, CWE-787 [13] regards
the buffer overflow vulnerability, while CWE-502 [12] regards the
lack of verification in deserialization of untrusted data. Given the

scattered and insufficient knowledge of different types of

vulnerabilities, it is difficult for data-driven models to learn

effective knowledge about diverse vulnerability types.

To cope with the aforementioned challenges, we introduce the
external vulnerability knowledge fromCWE to enhance the internal
knowledge learned by our model. We elaborate on the details of
our approach in Section 3.

3 APPROACH

In this section, we introduce our approach so-called MemVul. We
first introduce the overall architecture for CIR prediction. Then, we
describe the details of model training and inference.

3.1 Architecture of the Memory Network

Existing approaches for triaging security related IRs [42, 62, 67, 78]
typically train an end-to-end model using the textual description of
the IR as input and return a classified IR as output. The input textual
description is encoded as a vector of terms, and the model associates
weights that describe security related IRs. However, as discussed
in our preliminary study (see Section 2.3), the textual descriptions
of CIRs that belong to different CWE categories can differ since
the vulnerability types, as well as its causes and consequences are
different. In addition, the CIRs in our dataset (3,884 in total) belong
to 131 different CWE categories, and 81% of the categories have
fewer than 30 samples. Hence, training a classifier that directly
maps the textual description of an IR to its class (i.e., a binary
classification of whether the IR will be referred by a CVE) will fail
to learn effective knowledge of most vulnerability types, and will
likely suffer from overfitting due to the limited CIR data.

To tackle this challenge, we introduceMemVul (Figure 3), which
augments the neural network with an external memory [70, 74].
The memory component acts as an external knowledge base, stor-
ing the knowledge of different types of vulnerabilities refined and
summarized in the CWE entries. By explicitly incorporating the ex-
ternal memory, the model is directly supplied with the knowledge
of different vulnerabilities instead of learning from the data only.
Moreover, to facilitate training, the model only needs to focus on
matching the description of an input IR against the vulnerability
types stored in the external memory. Figure 3 presents the overview
ofMemVul, which includes the following three components:
External Memory. The external memory component stores infor-
mation of multiple CWE categories, providing domain knowledge
about vulnerabilities to the model. The motivation to store the
CWE information in the external memory is that the CWEs are
well-organized, curated by security experts, and contain a common
language for identifying and describing all types of vulnerabilities
[10]. Different from the low-level and project-oriented CVE descrip-
tion, vulnerability knowledge presented in CWE is high-level and
beyond the specific projects. The external memory is composed
of multiple anchors, with each anchor storing related information
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Figure 3: The overview of MemVul.

Table 3: The CWE attributes used to build anchors.

Attribute Description

Name The core behaviour of the weakness
Description Summary of how the weakness is made, e.g.,

the intended behaviour, the mistake
Extended Description Additional explanation for the weakness,

e.g., why the weakness is a concern
Common Consequences Typical negative security impacts of the

weakness if exploited by an attacker
Related Weaknesses Relationships with other CWEs, e.g., paren-

t/child CWEs, similar CWEs

to the vulnerability associated with an individual CWE category.
It acts as an external knowledge base, which will be accessed by
the matching module during inference (Section 3.3). Specifically,
we build an anchor for each CWE category that has at least one
corresponding CIR in our dataset. By doing so, we introduce the
corresponding vulnerability knowledge from CWE to enhance the
internal knowledge learned by the model. We summarize the CWE
attributes used to build anchors in Table 3. Specifically, we use the
attribute Related Weaknesses to organize all CWE entries into the
tree-like structure. We then merge the descriptions of the remain-
ing four attributes from both the corresponding CWE entry and its
direct child entries to generate the content for each anchor (Figure
3). When merging the information of CWE entries, we place CWE
with higher abstraction levels (i.e., the parent entry) in front of
those lower ones (i.e., the child entries). Thus we always ensure the
common information first and add as many details as possible.
Matching Module. The input of the matching module is the target
IR and an anchor from the external memory. The output is a normal-
ized matching score indicating the extent to which the IR matches
the anchor, i.e., the IR describes a vulnerability type presented by
the anchor. Our implementation of the matching module uses the
Siamese architecture [34] as shown in Figure 3. The Siamese ar-
chitecture is widely adopted in various software engineering tasks
for matching two information items [51, 66, 73, 79]. Besides, as

a metric-based few-shot learning technique [72], it can help us
tackle the imbalanced dataset challenge and make better use of the
limited CIR data. Specifically, our Siamese architecture consists of
following two components:
(1) Shared encoder, to convert the two inputs into feature vectors in

hidden space. Considering that both issue report and anchor con-
tent are natural language descriptions, we leverage Bidirectional
Encoder Representations from Transformers (BERT) [40] as the
shared encoder. BERT is a multi-layer bidirectional transformer
pretrained on large corpora, which achieves state-of-the-art
performance on multiple NLP-related tasks. The embedding of
[CLS] token is used as the representation of the input text. The
issue report and anchor content are passed sequentially into the
shared encoder to get feature vectors 𝑢 and 𝑣 , respectively.

(2) Matching classifier, to determine whether the two feature vec-
tors match, i.e., present the same vulnerability information. We
utilize a fully connected feed-forward module as the classifier.
The cosine-similarity or the Euclidean distance is not applica-
ble with vectors from BERT encoder [63], which lie in a high
dimensional nonlinear space. The input of the feed-forward
module is a joint feature vector (𝑢, 𝑣, |𝑢 − 𝑣 |), providing the
information of both vectors. Niels et al. [63] investigated the
impact of different concatenation methods on the performance
of Siamese architecture in classification tasks, and concluded
that the element-wise difference |𝑢 − 𝑣 | is of vital importance.

VotingModule. The input of the voting module is the vulnerability
type presented by each anchor (i.e., the associated CWE category)
and the respective matching score with the target IR. The output
is the classification result of whether the IR is a CIR or not. We
discussed that each anchor in the external memory corresponds to
a vulnerability type identified in CWE. Hence, the list of matching
scores represents the probabilities of the IR describing each type of
vulnerabilities. If the highest matching score is above a specified
threshold, meaning a matched vulnerability type is successfully
retrieved, the IR is predicted as a positive sample. Otherwise, it is
predicted as a negative sample since all the candidate vulnerability
types stored in the external memory fail to match.
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3.2 Training Matching Module

The goal of training the matching module is to learn an encoder
for extracting vulnerability-related features, jointly with a classifier
for matching feature vectors. The training process takes two steps:
Further pretraining BERT encoder. BERT is pre-trained on
BooksCorpus and English Wikipedia [40]. The pre-trained model
can be leveraged to address different downstream tasks by fine-
tuning on task-specific datasets. In our study, however, instead of
directly finetuning a pre-trained BERT model, we first leverage
the Masked Language Modeling (MLM), a commonly adopted pre-
training task [40, 51], to further pre-train BERT using our collected
IR data. The MLM task is performed in an unsupervised fashion by
randomly masking some input tokens and training the model to
recover the masked tokens based on the context. The motivation to
further pre-train the BERT model is that, unlike the corpus used to
pre-train the original BERT, IRs typically contain many technical
expressions and software artifacts (e.g., code snippets). In addition,
we have a large corpus available, consisting of 1,221,677 IRs, which
is opportunistic to conduct a further pre-train.
Training the Siamese architecture.We formulate the training of
the Siamese architecture shown in Figure 3 as a binary classification
task. The model is required to predict whether the input IR matches
the paired anchor or not. We follow existing works [51, 63] to train
the Siamese Network using cross-entropy as the loss function. In
specific, we adjust the loss with the temperature parameter 𝜏 to
help the model better benefit from hard negative samples [38]. Hard
negative samples are mismatch pairs that easily deceive the model
to make opposite predictions. Lin et al. [51] reported that these sam-
ples are crucial to both model performance and convergence speed
under a similar task setting (i.e., matching issues with commits).

When building training samples for the Siamese architecture,
we pair each IR (including both CIR and NCIR) in our dataset with
𝑘 (𝑘 = 16 in our implementation) anchors. In this way, we make full
use of the limited CIRs by converting 𝑛 samples into 𝑘 × 𝑛 training
sample pairs. It is essential to expose NCIRs to multiple anchors
during the training since, ideally, NCIRs should not match any of the
anchors during the inference. Specifically, for each NCIR, we pair it
with 𝑘 randomly sampled anchors from the built external memories.
These training sample pairs are labeled as mismatched. For each
CIR, we pair it with 1) the exact anchor corresponding to the type of
its associated vulnerability, 2) the descriptions of CVEs belonging
to the same vulnerability type. These training sample pairs are
labeled as matched, which is meant to make the model learn which
pair of descriptions relate to the same vulnerability type. Since CIR
and CVE associated with the same CWE are semantically similar
(i.e., describe the same vulnerability type), the incorporation of
CVE descriptions increases the size of training pairs and introduces
diversity, which prevents model from overfitting.

A challenge in model training is the highly imbalanced dataset
with only 0.3% of the samples being CIRs. Different from the com-
mon offline strategy (e.g., SMOTE [37]), where a balanced dataset is
sampled first and used during the entire training process, we adopt
an online negative sampling strategy to handle the imbalanced
dataset [44, 51]. A new dataset is constructed at the beginning of
each training epoch with all CIRs and re-sampled NCIRs. The sam-
ple pairs used to train the Siamese architecture are also re-generated.

Compared with the offline strategy, the online negative sampling
strategy makes maximum use of the massive NCIR data by contin-
ually exposing the model to previously unseen negative samples.
This sampling approach helps the model to avoid overfitting and
benefit from hard negative samples.

3.3 Model Inference

The inference process can be generally regarded as a query, with
the input IR as the key and the vulnerability types presented by
the anchors as the values. We first calculate the matching scores
between an IR and each anchor using the matching module. Then,
we utilize the voting module to perform the retrieval. Successfully
finding a matched vulnerability type (i.e., the highest matching
score is above the threshold) classifies the input IR as a positive
sample and vice versa. Our approach simulates the process of a
software developer trying to use CWE to identify a described weak-
ness in an IR. For efficiency, the feature vectors representing the
anchors are first encoded using BERT (Figure 3) and then reused
during the entire inference.

4 EXPERIMENT

In this section, we first describe our two research questions. Then,
we introduce our data collection and preparation procedure. Finally,
we describe our experiment setting, and present the results.

4.1 Research Questions

We answer the following research questions with our experiment:
RQ1: How effective is MemVul in identifying CIR? With this
RQ, we evaluate the effectiveness ofMemVul in identifying CIRs of
OSS projects that are never seen during the training phase. The goal
of MemVul is to help OSS users (especially software vendors who
use various OSS projects in their products) on sensing the emerging
threats and take earlier remediations, as well as helping ITS to
identify dangerous IRs to better manage the vulnerability disclosure
process. This requires our approach to be generalizable to IRs of
various OSS projects. The most related work with ours are those
on prediction of security bug reports (SBRs) [36, 42, 62, 67, 77, 78].
Therefore, we investigate the effectiveness ofMemVul using several
approaches from the SBR prediction as baselines.
RQ2: How effective are the key designs of our approach?

In this RQ, we conduct an ablation study to verify the effective-
ness of incorporating memory component and other two designs
of MemVul. Therefore, we experiment with three variants (i.e.,
MemVul-m, MemVul-p and MemVul-o), each lacking one key de-
sign ofMemVul. All other settings (both model and training) are
kept exactly the same as inMemVul. The main design introduces
the vulnerability knowledge from CWE using the external memory
(see Section 3). We evaluate the validity of this design in tackling
the challenge of learning effective vulnerability knowledge, which
is caused by the differences between vulnerability types and the
limited CIR data. We use the same BERT encoder (also further pre-
trained) that is used in the matching module (Figure 3), attached
with classification layers (a fully connected feed-forward module
and a softmax layer), to build a model that directly maps an in-
put IR to its label. We refer to this variant as MemVul-m, which
can be regarded as a plain MemVul without the external memory.
MemVul-m is trained using the online negative sampling strategy.
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Figure 4: Overview of data collection process.

We further verify the effectiveness of the following two training
strategies (Section 3.2): 1) Further pretraining of BERT encoder. We
train aMemVul without the further pretraining, and refer to this
variant asMemVul-p. 2) Online negative sampling strategy. We use
a previously sampled dataset to trainMemVul instead of the online
strategy, and refer this variant as MemVul-o.

4.2 Data Collection

In the construction of our dataset, we utilize both GitHub IR infor-
mation from a set of OSS and vulnerability information from NVD
and CWE. We rely on NVD and CWE to first collect vulnerability-
relevant information (e.g., GitHub IR links, vulnerability description,
and CWE categories). Then, we further collect the original IR infor-
mation of OSS that contain any of the vulnerability IRs we collected.
The overview of our data collection process is shown in Figure 4.
Step 1: Collecting vulnerability-relevant information. We first
collect all CVE records from NVD (on Dec. 19, 2020) and filter out
those that do not have references of GitHub IRs. We extract vul-
nerability information (e.g., CVE description, CWE ID and publish
date) from these records. Then based on the extracted CWE IDs,
we further collect the corresponding CWE information.
Step 2: Collecting original issue report information. We ex-
tract GitHub IR links from the CVE records collected in Step 1 and
collect the associated IR data with the extracted links. Since our
goal is to identify CIRs at the time they are created, we collect the
original (i.e., when first created) IR data (e.g., the title, labels and
body of an IR) from GHArchive [15], as such original data is not
recorded by GitHub. We first get the GitHub project information
of the extracted IR links. Then, we collect all IRs of these projects
from GHArchive. Since GHArchive starts archiving the original
information of IRs from 2015, the earliest IRs in our dataset were
created on Jan. 1st, 2015. We consider the IRs that are in the ex-
tracted GitHub IR links (i.e., linked by a CVE record) as CIRs, and
the remaining IRs as NCIRs.

As a result, in total, we collect 3,937 vulnerability IRs from 1,390
GitHub projects. The average #Stars and #Forks of the GitHub
projects are 3,895 and 1,024 respectively, showing that the asso-
ciated vulnerabilities could impact a large amount of OSS users.
Together with remaining IRs (NCIRs) from these OSS projects, our
dataset consists of 1,221,677 IRs in total. We extracted all avail-
able CIRs from full CVE records. Then, we collected all IRs from
the relevant repositories without sampling the NCIRs. Hence, we
consider our dataset retains the real-world distribution. Compared
with the dataset (351 security bug reports in total, collected be-
fore 2015) used in the similar studies of triaging security bug re-
ports [1, 59, 62, 67, 78], our collected security-related data (i.e., CIRs)

are larger and more up-to-date. Moreover, these existing datasets
are small and limited in project-scope, while ours contain IRs of
1,390 GitHub OSS across various development domains.

4.3 Data Preparation

We use the dataset built in Section 4.2 for model training and eval-
uation. Our data preparation follows two steps:
Step 1: Data Cleaning. We exclude the following IRs from the ex-
periments: 1) CIRs whose creation time is later than the disclosure
time of the corresponding CVE records. These CIRs (53 in total) do
not constitute the leakage of sensitive vulnerability information,
since the reported vulnerabilities have already been officially dis-
closed. Instead, they are used for documentation and disclosure
purposes [33]. We then filter out 30 invalid projects (i.e., do not
contain any CIRs) caused by the removal of these CIRs. 2) IRs with
missing title and body. These samples are considered as noisy data.
Finally, our dataset consists of 1,195,202 issue reports (3,884 CIRs
and 1,191,318 NCIRs) from 1,360 projects.
Step 2: Data Preprocessing. We combine the original title and
body (the very first comment) of the IR as the input of the model
since both of them provide useful information. The title usually
presents a summary of key information (e.g., the type of the vul-
nerability), while the details are described in the body. Besides, the
IRs are usually very noisy, containing lots of special tokens (e.g.,
code snippets, URLs, and version numbers). To clean the IRs, we
replace these tokens with specific tags (e.g., CODETAG, URLTAG,
and NUMBERTAG) using regular expressions.

4.4 Experiment Setting

The experimental environment is a server with 4 NVIDIA GTX
3090 GPUs, Intel Xeon Gold 6226R CPU, running Ubuntu OS.
Testing Scenario. Our testing scenario simulates the situation
where the users want to apply the trained algorithm to identify po-
tential CIRs of new projects. This application scenario requires the
learned knowledge of the model to be generalizable as the testing
IRs are from projects that are previously unseen during the training.
Cross-project is a commonly adopted testing scenario to evaluate
the model’s generalizability regarding different projects [45, 58]. We
randomly sample 10% projects and use the IRs from these projects
as the testing set. We again perform the same project-wise split
to the remaining IRs, and use IRs from 10% projects as the valida-
tion set and remaining ones as the training set. Table 4 presents
the details of the dataset used in the experiment. We retain the
real-world distribution of CIRs (0.3% of all IRs) in evaluation, with
highly imbalanced testing set and training set.
Implementation Details. We use the pre-trained BERT model
from HuggingFace Transformer library [8]. In the further pretrain-
ing of BERT encoder (Section 3.2), we perform the MLM task on our
collected IR data for 50 epochs. The outputs of the BERT encoder are
pooled and further passed through a nonlinear projection header
as suggested by [38]. We get two 512-dimensional feature vectors
for the input IR and the anchor, respectively. The concatenation
of two vectors, together with their element-wise differences are
used as the input to the final classification layers. We use cross-
entropy as the loss function, and set the temperature parameter to
0.1 following [38].
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Table 4: Description of dataset in cross-project scenario.

#CIR #NCIR #Projects

Training Set 3,175 969,570 1,102
Validation Set 306 103,273 122
Testing Set 403 118,475 136

During the training of the matching module, we apply
dropout [68] with the drop rate set to 0.1. We use AdamW [52]
as the optimizer. The learning rate (lr) is set to 2𝑒−5 for the BERT
encoder as suggested for finetuning in [40], and 1𝑒−4 for other
modules. The learning rate linearly warm-ups over the first 10,000
steps (roughly three epochs) and decays in the left steps. Especially,
in the online negative sampling, we sample NCIRs three times the
number of CIRs. Thus, we make training pairs for each epoch in a
3:1 ratio of mismatched pairs to matched pairs, which is considered
as an optimal ratio for training Siamese networks [57].
Baselines.We adopt the following baselines in our experiments:

• Random Guess. For each input IR, RG predicts randomly
whether it is a CIR or not.

• Simple text classification approaches. In the latest work of
security bug prediction, Wu et al. [78] reported that simple text
classification methods outperformed the specially designed ap-
proaches in previous studies [62, 67] on the clean dataset (i.e., all
labels are correct). We directly use the code shared by the authors,
since they perform a customized preprocessing for text tokeniza-
tion and dimension reduction [78]. The five text classification
approaches are Random Forest (RF), Naive Bayes (NB), Linear
Regression (LR), Multilayer Perceptron (MLP), and K-Nearest
Neighbor (KNN).

• TextCNN [48]. Recently, the TextCNN has been widely applied
in software engineering studies [47, 66] regarding text classifica-
tion and achieved state-of-the-art results. We include TextCNN
as a neural network baseline in our experiments.

Evaluation Metrics. To evaluate the performance of identifying
potential CIRs, we use the metrics including Precision, Recall and
F1-score. These threemetrics are commonly adopted in the software
engineering tasks, including security bug prediction [62, 67, 78].
Precision is the ratio of the IRs that are correctly classified as CIR
to the total predictions made for CIR. Recall is the ratio of the IRs
that are correctly classified as CIR to the total CIR in the ground
truth. F1-score is the harmonic mean of precision and recall.

Besides, we also consider two threshold-independent metrics,
i.e., AUROC (area under the Receiver Operating Characteristics
curve) and AUPRC (area under the Precision-Recall curve), as the
measure of the discriminatory power of the classifiers that is not
affected by specific threshold values.We also adopt AUPRC, because
the AUROC may not be indicative in our case where the data is
extremely imbalanced, i.e. the number of negatives cases outweighs
the number of positives significantly [39, 65, 69, 75].

4.5 Experiment Results

RQ1: Performance of CIR identification. The performance com-
parison between our approach and the baselines for CIR identifi-
cation are presented in Table 5. The best results are highlighted

Table 5: The performance comparisons between our approach

and baselines for CIR identification.

Approach Precision Recall F1-score AUROC AUPRC

RG 0.003 0.50 0.01 0.50 0.003

RF 0.54 0.10 0.16 0.92 0.35
NB 0.16 0.81 0.26 0.95 0.23
LR 0.43 0.24 0.31 0.94 0.31
MLP 0.34 0.34 0.34 0.92 0.25
KNN 0.40 0.10 0.17 0.66 0.10

CNN 0.18 0.73 0.28 0.97 0.27

MemVul 0.38 0.70 0.49 0.98 0.39
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Figure 5: Precision-recall curves of MemVul and baselines.

in bold. The precision of RG is extremely low, showing the chal-
lenge of this task, i.e., the scarcity of CIRs (0.3% in our dataset). The
five customized simple text classification approaches behave very
differently. RF, KNN, and LR achieve relatively high precision and
low recall, while NB is the opposite. MLP finds a balance between
precision and recall, thus achieving the best F1-score among all
baselines. Similar to NB, the neural baseline, i.e., CNN, also suffers
from a low precision (0.18).

Consider a real application scenario where a software vendor
wants to monitor the emerging CIRs of OSS used by their products.
Recall is important as the vendor is certainly not willing to miss
threats that may cause huge losses. However, precision also needs
to be considered. Since our approach monitors hundreds of OSS
ITSs, detecting numerous emerging IRs, a low precision will un-
dermine users’ confidence and eventually cause the approach to be
abandoned [53]. This is also the case when our approach is adopted
by ITSs to monitor dangerous IRs for better management of vulner-
ability disclosure process. Comparing MemVul with RF, although
the precision drops, recall is improved significantly from 0.10 to
0.70. For NB, although it achieves a higher recall, it sacrifices too
much precision (only 0.16). When compared with MLP, which also
achieves a balance between precision and recall,MemVul beats it in
all metrics. Hence, we argue that our approach is better applicable
for a real scenario, compared with the baselines. Since recall and
precision are both important, we use F1-score as the most important
evaluation metric to avoid bias, which evaluates if an increase in
Precision (Recall) outweighs a reduction in Recall (Precision) [80].
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Table 6: The performance comparisons in ablation study.

Approach Precision Recall F1-score AUROC AUPRC

MemVul-m 0.29 0.85 0.43 0.98 0.36
MemVul-p 0.31 0.55 0.40 0.98 0.31
MemVul-o 0.30 0.75 0.43 0.98 0.25

MemVul 0.38 0.70 0.49 0.98 0.39

Prior work [78] also stated that F1-score is the most important met-
ric for triaging security-related IRs in practice.MemVul achieves
the best performance in terms of F1-score (0.49), improving the
performance of MLP, the one with the highest F1-score among the
baselines, by 44%.

Besides, considering that precision, recall and F1-score are
threshold-sensitive, we adopt AUROC and AUPRC to compare the
discriminatory power (independent of specific thresholds) between
our approach and baselines. MemVul achieves the best AUROC
(0.98), indicating that our approach has a higher probability to rank
a randomly chosen CIR higher than a randomly chosen NCIR. Dif-
ferent from AUROC whose baseline (i.e., random guess) is always
going to be 0.5, the baseline for AUPRC is task-specific and equal
to the fraction of positive cases [65]. In our task, due to the extreme
data imbalance, the AUPRC of RG is much lower than the AUROC
(0.003 compared with 0.5). MemVul achieves the best AUPRC of
0.39, which is satisfying given the challenge of this task. We also
present the precision-recall of our approach and baselines in Fig-
ure 5.MemVul achieves the best precision at recall above 0.4. For a
given recall of 0.8 (for software vendors who try to avoid missing
the threats), MemVul achieves a precision of 0.30, which improves
the best performing baseline (0.18) by 66.7%.

RQ-1: MemVul achieves the best trade-off between precision
and recall among all baselines. The F1-score of MemVul (i.e.,
0.49) improves the best performing baseline by 44%.MemVul also
achieves the best performance on threshold-independent metrics.

RQ2: Effectiveness of key designs of our approach. In this RQ,
we compare the performance ofMemVul with three variants (i.e.,
MemVul-m, MemVul-p and MemVul-o) to verify the effectiveness
of three key designs of our approach (i.e., the external memory,
further pretraining of BERT and online negative sampling). Each
of the three variants lacks one design compared with MemVul,
while keeping all other settings exactly the same (see Section 4.1
for more details). The comparison results are presented in Table
6. The best results are highlighted in bold. MemVul boosts the
F1-score of MemVul-m with a relative improvement of 14%. Specif-
ically, compared withMemVul, the recall ofMemVul-m is higher,
but the precision drops by 24%. For threshold-independent metrics,
MemVul also achieves a higher AUPRC. These results verify the
effectiveness of our critical design ofMemVul, i.e., incorporating
the external vulnerability knowledge from CWE using a memory
component. Moreover, by manually checking the testing results,
we find that MemVul-m is more easily to be confounded by the
security cross words, i.e., the same security related keywords used
in both CIRs and NCIRs. Peters et al. [62] first introduced this term
in the security bug prediction task and argued these words could

mislead the model. We also point out in Section 2.3 that a large
amount of NCIRs contain strong vulnerability patterns (Table 2)
when applying a keyword-based approach. One possible explana-
tion of MemVul-m being more easily deceived is that it only learns
common signals (words like “memory” and “buffer”) for all types
of vulnerabilities. We discuss in Section 2.3 that the differences
between vulnerability types (e.g., causes, behaviours, and conse-
quences) can make it hard to effectively learn the knowledge of
each type. For Memvul, however, this challenge is alleviated by
introducing the external vulnerability knowledge from CWE.

For the effectiveness of the two training strategies, both of them
contribute to a better performance in terms of F1-score and AUPRC.
The further pretraining strategy makes the BERT encoder better
adapt to the characteristics of IR data, bringing an 22.5% and 25.8%
improvement in F1-score and AUPRC, respectively. The online
negative sampling strategy, in another way, improves the overall
performance by exposing the model to more NCIRs.

RQ-2: The key design of incorporating the external memory im-
proves the performance. The two training strategies (i.e., online
negative sampling and further pretraining) are also effective.

5 DISCUSSION

In this section, we discuss the results of our RQs and practical
applications of our approach.

5.1 Mis-predicted CVE-referred Issue Reports

When manually analyzing the experiment results, we observe that
some false positives (i.e., NCIRs that are identified as CIRs by
MemVul) actually describe security information, but the associated
vulnerabilities have not been reported to the CVE. We conjecture
that OSS users and maintainers can both benefit from knowing such
NCIRs. Thus, we conduct a user study to investigate the usefulness
of such NCIRs identified byMemVul, as well as the possible reasons
why they are not referred by CVE records.
Experiment Tasks.We create tasks using the top 50 false positives
(distributed among 28 OSS) with the highest probabilities of being
predicted as CIRs by MemVul. For each FP, we ask four questions:
• Q1: Does this IR describe security information? (if answer is no,
respondents would skip Q2-Q4)

• Q2: Which one of the following CWE category is related to the
vulnerable issue reported in the IR (i.e., the CWE category can
help you better understand the reported vulnerability)?

• Q3: Should the maintainer deal with this IR with higher priority
(e.g., move the IR out of the public channel to minimize the impact
and patch in priority)?

• Q4: Is it suggested to public disclose the vulnerable issue reported
in the IR (e.g., publish a CVE record)?

For Q1, we aim to verify whether these false positives (FPs) are
security-related as suggested byMemVul. For Q2, sinceMemVul
naturally supports to track the specific matched CWE categories
regarding an input IR (see Section 3.3), we aim to explore the useful-
ness of providing this additional information (i.e., explanation for
making the prediction) in helping users better understand the vul-
nerability. Specifically, we provide five candidate CWE categories
with the highest predicted matching scores, together with their
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titles, descriptions and URLs. Additionally, Q3 and Q4 aim to ex-
amine the value of these security-related but not CVE-referred IRs
for OSS maintainers and users, respectively. Specially, with Q4, we
also try to explore the possible reasons of not publicly disclosing
these security-related IRs via CVE.
Participants. We invite five security experts from a prominent
IT company with 5 to 7 years of experience in software security
as our participants. Each of them is asked to finish an experiment
task including 10 IRs. Our user study evaluates the usefulness of
MemVul from the perspective of OSS users, i.e., helping them sense
the new vulnerabilities to take early remediation.
Results. In Q1, except for 8 invalid IRs (i.e., with insufficient in-
formation or non-English words), only 1 FP is not security-related,
while the remaining 41 FPs are verified by experts as security-
related. In Q2, experts confirm that for these 41 FPs, they can
retrieve the relevant CWE categories within the candidates we
provided in most cases (29 for top 1, 32 for top 3 and 35 for top
5). The results of these two questions verify the effectiveness of
MemVul for identifying IRs with security information.

In Q3, we observe that 40 security-related FPs are considered
to have higher priority except for the one that was posted by the
maintainer himself for disclosure purposes [6].

In Q4, we receive 6 answers as unable to decide. For these cases,
with insufficient information provided in IRs and the limited knowl-
edge of the projects, experts are not able to evaluate the impact
of the reported IRs. In the remaining 35 FPs, 28 FPs are suggested
to be publicly disclosed by experts and the other 7 FPs are not
suggested to. To explore the reason why these security-related IRs
are not publicly disclosed, we manually check these 35 FPs and
the corresponding responds from security experts. For the 7 not-
suggest-disclose FPs, we observe the following 3 possible reasons:
1) IRs were reported to wrong repositories [18, 19], 2) the reported
vulnerability is not caused by the project but the operating environ-
ment [20] (e.g., compiler or dependencies), and 3) the maintainer
decides that the issue is out of their scope [21] or not critical [5, 23].
For the 28 suggest-disclose FPs, we observe that 5 of them already
have relevant IRs referred by CVE, hence, one potential reason is
to avoid duplicated CVE reports. For example, a summarized dis-
closure statement [27] instead of the original issue [28] is reported
and referred by the CVE-2020-15183 [54]. For the remaining 23
suggest-disclose FPs [6, 14], the reason remains unknown. One pos-
sible explanation is that these FPs may not as severe as the proper
CVE-referred IRs, as the developers generally favour reports of
higher-value vulnerabilities [50]. We argue that it is also beneficial
to alert OSS users of this category of FPs at their preliminary stage.

We encourage future work to study the potential motivations
that drive OSS maintainers to disclose certain vulnerabilities (which
are believed to have a higher priority) via CVE.

5.2 Practical Applications

MemVul aims to alleviate the danger caused by the leakage of
vulnerability information. We discuss the potential applications of
MemVul from two aspects:
Software Vendors. MemVul promotes a better vulnerability man-
agement for software vendors. Specifically, software vendors can
deploy MemVul to automatically monitor the emerging dangerous

IRs of OSS projects used in their products. Beyond the current prac-
tice of solely relying on the published vulnerability information on
NVD, MemVul enables vendors with the ability of early sensing
new vulnerabilities at their preliminary stage. Thus, the vendors
can actively perceive the risks and take timely remediations (e.g.,
temporary mitigation).
ITS Platforms. MemVul helps ITS to become safer by facilitat-
ing a better management of vulnerability disclosure process, i.e.,
helping practitioners better comply to the CVD process. ITS can
integrate MemVul as a feature that would warn users before post-
ing a potential dangerous IR and ask them to reconsider posting
it, email the details directly to the maintainers instead. Moreover,
users may ignore the project’s security policy and insist on posting
the IR publicly, e.g., irresponsibly adopt the full disclosure to get
the vulnerability fixed in time, which could bother the maintain-
ers [26]. Thus, ITS can also utilizeMemVul to automatically hide
the new dangerous IRs from the public and flag them for project
maintainers as priorities. Reporters will be informed that these IRs
have been moved to the private channel, where they can further
discuss with maintainers. If maintainers take no further actions,
the IR will be moved to public channel after a certain time. It is also
important that ITS integrating MemVul to implement a feature
through which both users and maintainers can preset a disclosure
schedule (e.g., after 90 days [11, 17]), which controls the trade-off
between preventing the vulnerability leakage and potential side-
effects of delaying the fixes. We recommend ITS (e.g., GitHub and
JIRA) that lack support of CVD process to add support for private
issues and integrate MemVul to facilitate better management of
dangerous IRs. ITS like Bugzilla should also consider adopting our
dangerous IR detector.
5.3 Time Efficiency

Time efficiency is important when the model is deployed in produc-
tion. The inference time ofMemVul on the entire testset (118,878
IRs in total) using single GPU (Nvidia GTX 3090) is 322s. The aver-
age inference time per IR is less than 0.0027s.

5.4 Portability

In terms of portability,MemVul has three characteristics that are
useful to practitioners:
Project portability: 1) We leverage the vulnerability knowledge
from CWE, which is high level and beyond the specific projects.
Specifically, the CWE descriptions used to build the anchors is
project agnostic and serve as a common language for describing
weaknesses. 2) We use BERT as our encoder, which learns over any
type of textual input semantically.
ITS portability: Although MemVul is trained and evaluated on
IRs from GitHub, it is ITS agnostic. MemVul is compatible with
CIRs from other ITSs (e.g., Bugzilla), since it is only based on the
textual descriptions of IRs but not ITS-specific features. For ITSs
without a link to CVE, developers can either directly use MemVul
or fine-tune MemVul using their own vulnerability database.
Vulnerability database portability: Other vulnerability
databases, such as VulDB [29], collect extra vulnerabilities and
are incorporated with SCA (Software Component Analysis).
By further fine-tuning MemVul on other public or self-built
vulnerability databases, MemVul can specialize for customized
proxy of dangerous IRs.



Automated Unearthing of Dangerous Issue Reports ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

6 THREATS TO VALIDITY

Internal Validity. Threats to internal validity relate to the exper-
iment bias and errors. One threat is that the maximum sequence
length input to the BERT encoder is set to 256, which may cause
the loss of certain information when the IR is lengthy. This can
put MemVul at a disadvantage in comparisons, since the baselines
take the entire sequence as the input. Another threat is the results
of Q3 and Q4 in the user study (Section 5.1) could be objective as
everyone may hold different standards regarding the best practice
of vulnerability disclosure. Also, the knowledge gap between secu-
rity experts and the maintainer towards specific OSS projects can
also affect the judgements. Moreover, there is possible bias when
sampling the projects for test set under cross-project setting.
External Validity. Threats to external validity relate to the general-
izability of our approach. One threat is that we use the CVE-referred
GitHub IRs as the proxy of dangerous IRs. There may exist other
possible proxies, for example, a different ITS (e.g., Bugzilla) and a dif-
ferent vulnerability database (e.g., VulDB). Future research should
study different proxy of dangerous IRs to determine whether our ap-
proach is generalizable enough. Another threat relates to the choice
of participants in user study.MemVul has two target customers, i.e.,
OSS users (especially companies that use OSSs) and maintainers
(see Section 5.2). Our user study only evaluates the usefulness of
MemVul from the perspective of users by inviting security experts
from a prominent IT company as participants (see Section 5.1). We
plan to evaluate from the perspective of maintainers in future work.

7 RELATEDWORK

Prior research have investigated the importance of triaging security
bug reports (SBRs) from the project ITS, so the maintainer can ad-
dress them in priority. These works employ text mining to identify
SBRs. Gegick et al. [42] utilized the TF-IDF (term-frequency inverse
document frequency) weighting schema to build a statistical model
for distinguishing SBRs from non-security bug reports (NSBRs).
Wijayasekara et al. [76, 77] extracted syntatical information (i.e.,
security keywords) from the bug descriptions, and used it to gen-
erate feature vectors for Naive Bayes classifiers. Kudjo et al. [49]
proposed replacing the TF-IDF schema with the TF-IGM (term-
frequency inverse gravity moment) to improve the performance of
text mining models. In turn, Zhou and Sharma [81] proposed the
usage of a stacking approach to build an ensemble of learners to
increase the model performance.

In an attempt to reduce the presence of false positives due to
class unbalancing, Peters et al. [62] proposed FARSEC, a frame-
work that removes from training data NSBRs that contain security
crosswords (i.e., security related keywords that are associated with
both SBRs and NSBRs). Shu et al. [67] proposed a hyperparameter
optimization approach that improves the recall of FARSEC, com-
pared to “off-the-shelf” hyperparameters. Wu et al. [78] manually
corrected the labels of the datasets used by Peters et al. and Shu et al.
They explored the impact of label correctness on the performance
of text mining models, and found that simple text classification
models yield better performances than approaches proposed in
former two studies. Patrick et al. [56] pointed out the importance
of augmenting standard security keywords with project-specific
security vocabularies, which is proved to boost classifier perfor-
mance. Particularly, they also consider the software artifacts linked

by CVE entries as security-related when conducting experiments.
Furthermore, Oyetoyan et al. [61] studied the problem of using
cross-project data to identify security issue reports. They found
that incorporating cross-project security related keywords during
model training is an effective way to help on the generalization
of these models, and outperforms models that are trained with
project-specific keywords.

Different from prior works that use term information (e.g., TF-
IDF) or manually selected security keywords as features of a ma-
chine learning model, MemVul leverages a deep learning based
language model (BERT) to encode the semantic information of
CIRs. Besides, prior works solely rely on the vulnerability knowl-
edge learned by the model, while MemVul incorporates the expert-
refined knowledge from CWE using an external memory compo-
nent. In addition, approaches proposed in prior works are mainly
limited in project-scope, which are constructed and evaluated us-
ing small and project-specific datasets. These approaches could
suffer significant performance reduction when applied to unseen
projects [30, 42, 61]. We build a large and real-world dataset consist-
ing of IRs of 1,390 GitHub OSS across various development domains,
and evaluate the generalizability of the proposed approach under
the cross-project scenario. Moreover, compared with SBR triage,
we aim to alleviate the danger caused by vulnerability information
leakage.MemVul is trained and evaluated with regards to the iden-
tification of CIRs, which relate to real vulnerabilities (i.e., with CVE
records) rather than security concerns or discussions in SBR.

8 CONCLUSION AND FUTUREWORK

In this work, we take the first look at the dangerous IRs and study
their characteristics. With using CIRs as a proxy of dangerous
IRs, we build a large-scale dataset consisting of 1,221,677 IRs from
1,390 OSS systems, with 3,937 CIRs in total. We propose a memory-
augmented network, namelyMemVul, introducing the well-refined
vulnerability knowledge from CWE to enhance the internal knowl-
edge learned by the model. We keep the real-world distribution
of CIR (0.3% of all IRs) in evaluation and adopt a cross-project set-
ting. Evaluation results suggest that MemVul achieves an average
F1-score of 0.49, which improves the best performing baseline by
44%. For threshold-independent metrics, MemVul also achieves
the highest AUROC (0.98) and AUPRC (0.39). The ablation experi-
ments further verify the effectiveness of incorporating the external
memory as the vulnerability knowledge base.

In future work, we plan to provide further analysis and more
insights to the identified CIRs by inferring the specific vulnerability
type each CIR presents. Actually, the current MemVul architecture
naturally supports to track the matched CWE entry against the
input IR (see Section 3.3). Given the vulnerability type, we can
better understand the identified CIR, assess its associated risks and
recommend possible mitigation.
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