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ABSTRACT
Reinventing the wheel is a detrimental programming practice in
software development that frequently results in the introduction of
duplicated components. This practice not only leads to increased
maintenance and labor costs but also poses a higher risk of propa-
gating bugs throughout the system. Despite numerous issues intro-
duced by duplicated components in software, the identification of
component-level clones remains a significant challenge that existing
studies struggle to effectively tackle. Specifically, existing methods
face two primary limitations that are challenging to overcome: 1)
Measuring the similarity between different components presents a
challenge due to the significant size differences among them; 2)
Identifying functional clones is a complex task as determining the
primary functionality of components proves to be difficult.

To overcome the aforementioned challenges, we present a novel
approach named C3 (Component-level Code Clone detector) to ef-
fectively identify both textual and functional cloned components. In
addition, to enhance the efficiency of eliminating cloned components,
we develop an assessment method based on six component-level
clone features, which assists developers in prioritizing the cloned
components based on the refactoring necessity.

To validate the effectiveness of C3, we employ a large-scale indus-
trial product developed by Huawei, a prominent global ICT company,
as our dataset and apply C3 to this dataset to identify the cloned com-
ponents. Our experimental results demonstrate that C3 is capable
of accurately detecting cloned components, achieving impressive
performance in terms of precision (0.93), recall (0.91), and F1-score
(0.9). Besides, we conduct a comprehensive user study to further val-
idate the effectiveness and practicality of our assessment method and
the proposed clone features in assessing the refactoring necessity of
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different cloned components. Our study establishes solid alignment
between assessment outcomes and participant responses, indicating
the accurate prioritization of clone components with a high refactor-
ing necessity through our method. This finding further confirms the
usefulness of the six “golden features” in our assessment.
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1 INTRODUCTION
Reinventing the wheel refers to the practice of developing a solu-
tion or functionality from scratch that already exists and is well-
established in the software development community [11]. While
reinventing the wheel may be necessary in certain situations to ad-
dress software licensing incompatibilities or technical limitations in
third-party modules [11], it often emerges as a poor programming
practice during development and has become a prevalent issue in
the industry. This practice often arises due to developers’ limited
programming skills or lack of awareness, resulting in unnecessary
duplication of effort despite existing solutions or technologies al-
ready meeting the requirements or solving the problem at hand [12].
It demonstrates a disregard for the knowledge and experience ac-
cumulated by others, leading to inefficiencies, wasted resources,
and development delays [36]. Even in some cases, developers may
remain unaware that they have reinvented the wheel even after com-
pleting the task. Therefore, it is of utmost importance to address
these issues by detecting the practice of reinventing the wheel and
identifying instances of duplicated wheels within software systems.
These duplicated wheels can be found in various aspects of software
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development, including algorithms, libraries, and frameworks, rep-
resenting complete functionalities within the software. Unlike code
clones discussed in existing studies [49], these duplicated wheels
often manifest as components in software that encompass a wider
scope of code, spanning multiple source files [8]. Consequently,
identifying duplicated components presents a substantial challenge.

In recent decades, numerous studies [15, 28, 40, 41, 43, 53, 57,
61, 62] have proposed various methods to detect duplicated code
fragments in software. However, these code clone detectors can
only identify clones at the line, method, and file levels, and they
have limited capability to identify duplicated software components
that span multiple source files. This limitation arises due to the two
primary challenges in identifying duplicated components, which are
particularly difficult to address:

1) Existing studies face challenges in measuring the similarity
between software components due to the significant volume of source
code involved. Existing methods are limited to calculating the simi-
larity of code fragments at a granularity no higher than the file level.
Consequently, when a group number of similar code fragments are
dispersed across different source files within a pair of components,
existing methods fail to recognize the similarity between the two
components, or even the similarity between the source files them-
selves. Thus, existing methods are difficult in their applicability to
identify duplicated components.

2) Existing studies struggle to accurately determine the primary
functionality of a component, resulting in their inability to detect
components with similar functionalities. Apart from cloned compo-
nents that display textual similarities, there exist functionally similar
components. However, current methods lack the ability to generalize
the primary functionality of a component, resulting in their inability
to detect functionally cloned components.

To address these challenges, we develop a novel approach called
C3 (Component-level Code Clone detector), which enables the iden-
tification of both textual and functional cloned components within
the software. Specifically, we begin by gathering components from
the software and detecting cloned files among them. Subsequently,
we devise a method to assess the similarity between components
based on the count of cloned files within components. We construct
a graph structure to describe the relationships of similarity among
components, allowing us to transform the task of identifying textual
and functional clones into detecting nodes with close relationships
and similar structures within the graphs. Finally, we employ a graph-
based clustering algorithm that utilizes the connectivity patterns
of nodes to identify both textual and functional cloned components
effectively. Furthermore, to support developers in effectively address-
ing cloned components and improving code quality, reliability, and
compatibility, we present an assessment method that incorporates
six component-level clone features to evaluate the priority of each
cloned component by assessing its necessity for refactoring.

To demonstrate the effectiveness of C3, we utilize a large-scale
industrial product developed by Huawei, a leading ICT company, as
our dataset. This dataset consists of 2,099 components. We apply
C3 to detect cloned components within this dataset. The evaluation
results demonstrate that C3 effectively identifies component clones,
achieving a precision of 0.93, a recall of 0.91, and an F1-score of
0.9. Furthermore, we conduct a user study to validate the correct-
ness of our assessment method and the utility of the proposed six

component-level clone features. The study result demonstrates that
our assessment method can accurately determine which cloned com-
ponents should be given higher priority for refactoring based on six
valuable component-level clone features. It achieves over 90% in all
three evaluation metrics on average, highlighting its accuracy and
reliability. In summary, our study makes the following contributions:

(1) To the best of our knowledge, we are the first to develop a
practical tool, C3, to detect both textual and functional cloned
components within software systems.

(2) We develop an assessment method that creates six component-
level clone features to effectively measure the refactoring neces-
sity of cloned components.

(3) We utilize a well-established industrial product developed by a
globally renowned ICT company as our dataset to thoroughly
evaluate the effectiveness and practicality of C3. The experimen-
tal results conclusively demonstrate that C3 can accurately detect
cloned components within the software, attaining exceptional
performance in terms of precision, recall, and F1-score.

(4) We conduct a user study to evaluate the effectiveness of our
assessment method and the practicality of the six clone features.
The study results demonstrate outstanding performance across
all metrics, providing compelling evidence for the utility of the
features and confirming the accuracy of the assessment method.

2 MOTIVATION
In this section, we initially present two common industrial scenarios
leading to cross-project and within-project cloned components. Next,
we highlight two real-world cloned component pairs detected by C3

across different projects, enhancing readers’ comprehension.

2.1 Industrial Application Scenarios
2.1.1 Scenario One: Cross-project Cloned Components. Jack
and Nina are software developers employed in separate departments
within the same company. In Department A, Jack is tasked with de-
veloping a commenting module for a music application, while Nina,
in Department B, is responsible for implementing a similar com-
menting module for a social application. Since Jack and Nina work
in different departments, they are unaware of each other’s existence
despite having similar development assignments. Following the com-
pany’s coding conventions, they both use the same programming
language and framework to complete their respective commenting
modules. As a result, after completing their tasks, both Department
A and Department B have their own commenting modules integrated
into their respective applications, and the source code of these two
components exhibits a high degree of similarity. The presence of
these two redundant components increases maintenance expenses.
Solution. They can be refactored into a shared component, allow-
ing for broader utilization, consolidation, and reuse across various
departments within the company.

2.1.2 Scenario Two: Within-project Cloned Components. Bob,
a recently hired software developer, is assigned to a coding task at
his new company. His objective is to add a new feature to an existing
component, Component C, in the latest version. As Bob delves into
the development process, he realizes that this component is quite
large and encompasses intricate dependencies. This implies that
directly modifying Component C may pose potential risks to the
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AJWaveRefresh

AJWaveRefreshHeader.m MJDIYHeader.m

linux/arch/arm/include/
asm/vdso

linux/arch/arm64/include/
asm/vdso

AJWaveRefreshAutoStateFooter.m MJDIYAutoFooter.m

ShoppingDetails

vsyscall.h vsyscall.h

processor.h processor.h

#import "AJWaveRefreshHeader.h"
#import "AJWaveRefreshAnimation.h"
- (void)scrollViewPanStateDidChange:

(NSDictionary *)change {
[super scrollViewPanStateDidChange:change];}
- (void)setState:(MJRefreshState)state {

MJRefreshCheckState;
switch (state) {

case MJRefreshStateIdle:
[self.logoView stopAnimating];
self.label.text = @"xxx"; break;
case MJRefreshStatePulling:
[self.logoView stopAnimating];
self.label.text = @"xxx"; break;
case MJRefreshStateRefreshing:
self.label.text = @"xxx";

[self.logoView startAnimating]; break;
default: break;   }}...

#import "MJDIYHeader.h"
#import "IndicatorView.h"
- (void)scrollViewPanStateDidChange:

(NSDictionary*)change {
[super scrollViewPanStateDidChange:change];}
- (void)setState:(MJRefreshState)state {

MJRefreshCheckState;
self.label.frame = self.bounds;
switch (state) {

case MJRefreshStateIdle:
self.label.text = @"xxx";
[self.indicator stopAnimating]; break;
case MJRefreshStatePulling:
self.label.text = @"xxx";
[self.indicator stopAnimating]; break;

sizeWithAttributes:@{NSFontAttributeName
:[UIFont boldSystemFontOfSize:16]}];
self.label.center =  ... break;
default: break; }} ... 

#import "MJDIYAutoFooter.h"
#import "IndicatorView.h"
@interface MJDIYAutoFooter()
@property (strong, nonatomic) UILabel *label;
@property (strong, nonatomic) 

IndicatorView *indicator;
@end
@implementation MJDIYAutoFooter
...
- (void)prepare {

[super prepare];
self.mj_h = 50; }

- (void)placeSubviews {
[super placeSubviews];
self.label.frame = 

CGRectMake(0, 0, ScreenWidth, 50);
} ...

#import "AJWaveRefreshAutoStateFooter.h"
#import "AJWaveRefreshAnimation.h"
@interface AJWaveRefreshAutoStateFooter()
@property (weak, nonatomic) 
AJWaveRefreshAnimation *logoView;

@end
@implementation AJWaveRefreshAutoStateFooter
...
- (void)prepare {

[super prepare];
self.mj_h = 60; }

- (void)placeSubviews {
[super placeSubviews]; …
self.label.frame = CGRectMake(0, 0, 100, 30);

} ...

#ifndef __ASM_VDSO_VSYSCALL_H
#define __ASM_VDSO_VSYSCALL_H
#ifndef __ASSEMBLY__
#include <linux/timekeeper_internal.h>
#include <vdso/datapage.h>
#include <asm/cacheflush.h>
extern struct vdso_data *vdso_data;
extern bool cntvct_ok;
static __always_inline
struct vdso_data *__arm_get_k_vdso_data(void) {

return vdso_data; }
#define __arch_get_k_vdso_data \

__arm_get_k_vdso_data
static __always_inline
void __arm_sync_vdso_data(struct vdso_data 

*vdata) {
flush_dcache_page(virt_to_page(vdata)); }

#define __arch_sync_vdso_data \
__arm_sync_vdso_data  

#include <asm-generic/vdso/vsyscall.h>
#endif /* !__ASSEMBLY__ */
#endif /* __ASM_VDSO_VSYSCALL_H */

#ifndef __ASM_VDSO_VSYSCALL_H
#define __ASM_VDSO_VSYSCALL_H
#ifndef __ASSEMBLY__
#include <linux/timekeeper_internal.h>
#include <vdso/datapage.h>
extern struct vdso_data *vdso_data;
static __always_inline
struct vdso_data *__arm64_get_k_vdso_data(void) {

return vdso_data; }
#define __arch_get_k_vdso_data \

__arm64_get_k_vdso_data
static __always_inline
void __arm64_update_vsyscall(struct vdso_data \
*vdata, struct timekeeper *tk) {

vdata[CS_HRES_COARSE].mask =
VDSO_PRECISION_MASK;

vdata[CS_RAW].mask = 
VDSO_PRECISION_MASK;}

#define __arch_update_vsyscall \
__arm64_update_vsyscall

#include <asm-generic/vdso/vsyscall.h>
#endif /* !__ASSEMBLY__ */
#endif /* __ASM_VDSO_VSYSCALL_H */

#ifndef __ASM_VDSO_PROCESSOR_H
#define __ASM_VDSO_PROCESSOR_H
#ifndef __ASSEMBLY__
#if __LINUX_ARM_ARCH__ == 6 

|| defined(CONFIG_ARM_ERRATA_754327) 
#define cpu_relax()
do { smp_mb();
__asm__ __volatile__("nop; nop; nop;");} while (0)
#else
#define cpu_relax() barrier()
#endif
#endif /* __ASSEMBLY__ */
#endif /* __ASM_VDSO_PROCESSOR_H */

#ifndef __ASM_VDSO_PROCESSOR_H
#define __ASM_VDSO_PROCESSOR_H
#ifndef __ASSEMBLY__
static inline void cpu_relax(void) {
asm volatile("yield" ::: "memory");
}

#endif /* __ASSEMBLY__ */
#endif /* __ASM_VDSO_PROCESSOR_H */

Figure 1: Two pairs of real-world cloned components.
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Figure 2: The overall framework of our approach.

proper functioning of certain business logic. Given his limited famil-
iarity with the business logic associated with both the components
that depend on Component C and the components that Component
C relies on, Bob decides to mitigate potential issues by creating a
new component, Component D. This allows him to narrow down
the scope of impact and avoid introducing unforeseen complica-
tions. Bob proceeds by copying and pasting the necessary source
code from Component C and implementing the new feature within
Component D. Upon completing his coding task, the system now
consists of two similar components: Components C and D. How-
ever, Component D is only invoked when running the new feature,
and the implementation of such duplicated components consumes a
significant amount of developers’ time and effort.
Solution. To eliminate the duplicated component, it is imperative to
integrate Component D into Component C.

2.2 Two Pairs of Real-world Cloned Components
The first pair includes two cloned components, namely AJWaveRe-
fresh [1] and ShoppingDetails [2], which both have a commonly
used functionality for implementing transition animations. Each
component comprises eight source files, and half of the source files
in both components exhibit significant similarities to each other. In
Fig. 1, we showcase two sets of similar source files out of a total of

four pairs of similarities. The two components are a pair of cross-
project component-level clones, belonging to different systems. The
second pair of cloned components originate from a renowned open-
source software system, Linux [3], making it a within-project clone
pair. They comprise five and six source files, respectively, with four
of the files in each component demonstrating high similarities to
each other. Similarly, Fig. 1 showcases two pairs of similar files out
of the four pairs present in this clone pair.
Summary. From these two motivating examples, it is evident that
even components with distinct path information, component names,
file names, or residing in different systems can exhibit substantial
similarity in terms of both textual content and functionalities.

3 APPROACH
The overall workflow of our approach is illustrated in Fig. 2, consist-
ing of two primary phases: ❶ component-level code clone detection
(C3) and ❷ assessing the refactoring necessity of cloned compo-
nents. In this section, we provide a detailed explanation of each
phase of our approach.

3.1 Component-level Code Clone Detection
C3 performs component-level clone detection through three pri-
mary steps: 1) identifying file-level clones among components; 2)
calculating the similarity between components; and 3) detecting
component-level code clones.

3.1.1 Identifying File-level Clones among Components. Given
the substantial variation in code volume among components, fine-
grained detection methods like line-level and function-level can be
impractical. Therefore, we opt for file-level granularity to effec-
tively characterize the similarity between components. Specifically,
our initial step involves identifying file-level clones from software
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Figure 3: Two categories of file-level clone pairs in components.
components, which serve as the basis for calculating the similarity
between different components. To ensure the effectiveness and util-
ity of C3 in the industry, the used clone detector requires to meet
the following requirements: 1) It should be capable of effectively
identifying file-level clones from software. 2) It should be capable
of being applied to software of varying scales, demonstrating high
scalability. 3) Its detection time should be minimized for optimal
efficiency. 4) It should be widely recognized as a well-established
and commonly used tool. Hence, after pre-processing the raw files
according to the steps in existing work [51], we select the qualified
tool, SourcererCC [29, 51], to identify clone pairs from components.

3.1.2 Calculating the Similarity between Components. The
file-level clone pairs can be classified into two distinct categories:
1) Within-component Clone Pairs, which consist of two cloned files
belonging to the same component. 2) Cross-component Clone Pairs,
which include two cloned files originating from different compo-
nents. As shown in Fig. 3, the left section displays three pairs of
cloned files, while the right section depicts the corresponding com-
ponents in which these pairs are detected. Source files within each
component are depicted using a consistent color scheme. We ob-
serve that the first and last pairs of files represent Within-component
Clone Pairs, as they share the same color, indicating that they belong
to the same component. On the other hand, the source files in the
second clone pair have different colors, suggesting that they belong
to different components. Therefore, this clone pair falls under the
category of Cross-component Clone Pairs.

During our endeavor to capture the similarity among different
components, we observe from the three clone pair examples that
Within-component Clone Pairs only contribute to evaluating the simi-
larity within a component, while Cross-component Clone Pairs assist
in calculating the similarity among different components. Based on
this observation, we exclude the relationships of within-component
clone pairs and focus solely on the relationships of cross-component
clone pairs among components. We then leverage the relationships
among cross-component clone pairs to quantify the similarity be-
tween two components. The specific equation is as follows:

𝑆𝑖𝑚𝐼 𝐽 =
𝐶𝐹𝐼 𝐽

𝐹𝐼
(3.1)

Where 𝑆𝑖𝑚𝐼 𝐽 represents the ratio of the number of Component I’s
source files cloned from Component J to the total number of files in
Component I, serving as a measure of the similarity of Component I
to Component J.𝐶𝐹𝐼 𝐽 denotes the count of source files in Component
I that exhibit similarity to the files in Component J, and 𝐹𝐼 represents
the total number of source files in Component I.

Note that due to differences in the number of source files involved
in each component, Equation 3.1 always produces two distinct val-
ues, namely 𝑆𝑖𝑚𝐼 𝐽 and 𝑆𝑖𝑚 𝐽 𝐼 , which describe the similarity between

Component 1

Component 2

Component 3

a b c d e f g

h i j k l

m n o p q r

Figure 4: A example for calculating the similarity of components.

two components. The two values represent the similarity of Compo-
nent I to Component J (i.e., 𝑆𝑖𝑚𝐼 𝐽 ) and the similarity of Component
J to Component I (i.e., 𝑆𝑖𝑚 𝐽 𝐼 ), respectively. To identify as many
cloned components as possible, we consider the larger value as the
measure of similarity between two components. This is because, for
example, if Component I consists of 62 source files and Component
J consists of 12 source files, even though all the files in Component J
are cloned from files in Component I, the similarity of Component I
to Component J (𝑆𝑖𝑚12) is relatively low at around 0.19. On the other
hand, the similarity of Component J to Component I (𝑆𝑖𝑚21 = 1)
provides a larger value, which better captures the similarity between
these two components to a certain extent. Hence, we take 𝑆𝑖𝑚21 as
the similarity between Component I and Component J.

To provide a concrete illustration, we utilize Fig. 4 as an example
to calculate the similarity between various components. Specifically,
in Fig. 4, we observe three components, namely Component 1, Com-
ponent 2, and Component 3, consisting of seven, five, and six source
files, respectively. Component 1 and Component 2 exhibit three pairs
of cloned files, while Component 2 and Component 3 show four
pairs of cloned files. According to Equation 3.1, the similarity of
Component 1 to Component 2 is 𝐶𝑅12 = 3

7 , while the similarity of
Component 2 to Component 1 is 𝐶𝑅21 = 3

5 . Therefore, the final simi-
larity between the two components is determined by the larger value,
which in this case is 3

5 . Similarly, the similarity between Component
2 and Component 3 is 4

5 .

3.1.3 Detecting Component-level Code Clones. Equation 3.1
can only describe the textual similarity between components. To
overcome the second limitation discussed in Section 1, we construct
a graph structure based on the textual similarity between components
to capture the functional similarity between components. Specifi-
cally, each node in the graph represents a component, and a weighted
edge connecting two components signifies their level of similarity.
The weight of the edge corresponds to their textual similarity value.
Note that to distinguish from textual similarity, in our study, func-
tional clones are defined as components that exhibit similar primary
functionalities but with low textual similarity.

To further clarify the motivation behind utilizing the graph struc-
ture for identifying functional clones, let us consider an illustrative
example. It becomes apparent from Fig. 5 that both Component u
and Component v demonstrate textual similarity with the same set of
components, namely Components a, b, c, d, and e, despite exhibiting
no similarity to each other. Upon thorough manual examination, we
discover that Component u and Component v are functional clones
of each other. Furthermore, we observe a recurring pattern where
components, such as Component u and Component v, which exhibit
low textual similarities but are similar to the same set of other com-
ponents, often turn out to be functional clones. After careful analysis,
this observation can be easily explained. When multiple components
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Figure 5: The structural relationship of functional clones.

exhibit similarity to the same set of components even with low tex-
tual similarity, it suggests that they are commonly utilized in similar
application scenarios and possess similar functionalities.

Therefore, building upon this finding, we transform the task of
identifying functional clones into detecting nodes that exhibit similar
structures with the same set of nodes, while showing no relation-
ships with each other. Considering that the transformed task can
be effectively addressed with the assistance of knowledge from the
field of the Community Network, we adopt the community detec-
tion algorithm, which is a graph-based clustering algorithm [26],
specifically designed to identify clusters containing highly weighted
similar nodes (textual clones) and communities consisting of nodes
(functional clones) with high structural similarity from the graph.
Hence, by leveraging this algorithm, C3 can identify both textual and
functional clones from components. Furthermore, employing the
community detection algorithm offers the advantage of not requiring
the pre-determination of the number of clusters.

During the construction of the graph structure, we establish a
weighted edge between two components when they exhibit a certain
degree of textual similarity. However, we observe that the perfor-
mance of C3 can vary depending on the establishment of weighted
edges based on different degrees of textual similarity. If the thresh-
old for the similarity between components is set too low, numerous
pairs of components with low similarity are connected in the graph,
potentially altering the overall structure. This change in structure
can lead the community detection algorithm to mistakenly identify
component pairs that are not similar as clones, resulting in unrelated
components being grouped into clone clusters. On the other hand, if
we only connect component pairs with high similarity in the graph,
there is a risk of overlooking numerous real cloned components.
These missed components may include functional clones and other
cloned components that do not exhibit high textual similarity with
others. To ensure the accurate identification of as many cloned com-
ponents as possible, we introduce a parameter 𝑘 as the threshold
for the minimum similarity between components. When the simi-
larity between a pair of components exceeds this threshold, the two
components can be connected in the graph through a weighted edge.
For example, when 𝑘 = 0.5, it means that the connected nodes in
the graph must have a textual similarity of at least 0.5. The textual
similarity values between these nodes are then assigned as weights to
their respective edges in the graph. Finally, C3 utilizes a community
detection algorithm to identify both textual and functional clones
from the graph based on the structure established by weighted edges.

3.2 Assessing the Refactoring Necessity of Cloned
Components

To enhance developers’ productivity in addressing detrimental cloned
components, we propose a method for assessing the refactoring ne-
cessity of cloned components. Specifically, we introduce six clone
features at the component level that serve as criteria for evaluating

and determining the refactoring priority of cloned components. Next,
based on the findings of a user survey, we assign weights to the
six features. These weighted features are then utilized to assess the
refactoring necessity of different cloned components. We provide a
detailed description of the aforementioned three steps as follows.

3.2.1 Studied Features. In this section, we present six studied
features that effectively capture the impact of cloned components on
software quality and assess their prioritization for refactoring. These
six features are summarized as follows:
F1: Average Clone Ratio (ACR) refers to the overall similarity
of a component to others. Intuitively, developers should prioritize
refactoring components whose source files have substantial clones
in other components. Based on this intuition, we propose this feature
which can be quantified using the following equation:

𝐴𝐶𝑅𝑃 =

∑𝑚
𝑛=0 𝑆𝑖𝑚𝑃𝐶𝑛

𝑚
(3.2)

Here, 𝐴𝐶𝑅𝑃 represents the ACR of Component P, 𝑚 denotes the
number of components that contain cloned files of Component P, and
𝐶𝑛 represents the nth component that contains similar source files to
Component P. 𝑆𝑖𝑚𝑃𝐶𝑛

denotes the similarity between Component P
and the nth component. The value of this feature is ranged between
0 and 1. In particular, when ACR equals 0, it means that there
are no other components whose source files are similar to the files
in the current component. On the other hand, when ACR equals
1, it indicates that all files in the current component have clones
in other components. We provide an example to facilitate better
understanding. In Figure 4, when calculating the ACR of Component
2, denoted as 𝐴𝐶𝑅2, we need to consider all components that contain
similar source files to Component 2, including Component 1 and

Component 3. Based on Equation 3.2, 𝐴𝐶𝑅2 thus equals
3
5+

4
5

2 .
F2: Number of Calls (NCL) refers to the count of calls made to
a cloned component. It serves as a measure of the component’s
importance to the software to a certain extent. Components with a
high value of NCL indicate that they are frequently used and invoked
within the software. These components hold vital functions and take
precedence in developers’ refactoring efforts.
F3: Average File Size (AFS) refers to the average file size of a cloned
component. A component is typically considered a code unit with an
independent functionality. Previous research [42] has revealed that
larger and more complex code units are more likely to exhibit poor
quality and intricate dependencies. Consequently, a component with
a higher AFS may necessitate maintenance and refactoring.
F4: Component Size (CS) refers to the number of source files within
a cloned component. It exhibits a similar trend to AFS, whereby
larger component sizes pose greater challenges for developers in
terms of maintenance, consequently heightening the potential risks
to software quality.
F5: Clone Group Size (CGS) refers to the number of components
within a clone group. A larger clone group indicates that the primary
functionality of cloned components in that group is widely used and
frequently reused within the software. Hence, components within
such clone groups should be assigned high priority for refactoring.
F6: Clones of Components (CC) refers to the number of copies that
exist for a cloned component in the software. When a component
has a substantial number of clones within the software system, it
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indicates potential design issues. Therefore, it is crucial for develop-
ers to prioritize refactoring such components to improve the overall
software quality and maintainability.

3.2.2 Weight Assignment for Studied Features. After identify-
ing these clone features, we conduct a user survey to quantitatively
assess the significance of these features in evaluating the refactor-
ing necessity of cloned components. We follow Kitchenham and
Pfleeger’s guidelines for personal opinion surveys [21, 64]. The pro-
cess in this section can be classified into three steps: 1) survey design
and 2) survey distribution and 3) survey analysis. We describe each
step in detail as follows:
�Survey Design. Our survey consists of two parts. The first part
collects demographic information from respondents to filter out
individuals who may not have a strong understanding of our survey.
For this purpose, we ask the question “What best describes your main
responsibilities in your projects?” and provide options, including
1) developer, 2) software tester, 3) software maintainer, 4) user, and
5) other. Respondents are required to select the option that best
describes their job roles in their projects. We only collect and analyze
responses given by developers and maintainers since they are more
likely to have extensive experience in using and developing software
components, compared to other roles with limited involvement in
component development activities.

In the second part of the survey, we present six component-level
features and ask respondents to select the features they believe could
serve as metrics for assessing the refactoring necessity of a cloned
component. We intentionally do not impose a limit on the number
of features they can choose, allowing respondents to select all the
relevant features they find applicable. For example, some respon-
dents may choose F1 and F2, indicating their belief that F1 (Average
Clone Ratio) and F2 (Number of Calls) are two critical factors for
evaluating the necessity of refactoring cloned components. After col-
lecting the responses, we calculate the choice rate for each feature,
which represents the proportion of times the feature is selected com-
pared to the total number of responses. These choice rates are then
utilized as weights for the corresponding clone features, reflecting
the importance of each feature.
�Survey Distribution. To encourage meaningful responses, we
sent email invitations to 120 experienced software practitioners from
Huawei, who have over five years of industry experience, inviting
them to participate in our survey. Given that Huawei follows a
component-level development method [8] in their software systems,
we anticipate that their software practitioners would possess a deeper
understanding of software components. We receive a total of 97
responses, resulting in a response rate of 80.8%. After excluding
responses from individuals whose job roles do not fall under the
categories of developers or maintainers, we are left with 81 valid
responses. Among these, 16 respondents are developers of the system
under study, possessing in-depth knowledge of the system, while the
remaining participants are experienced software practitioners.
�Survey Analysis. After receiving the survey responses, we ana-
lyze the collected data following the guidelines [20]. The analysis
results reveal that F1 (Average Clone Ratio), F2 (Number of Calls),
and F6 (Number of Clones) are the three key features for assessing
the prioritization for refactoring cloned components, as they are
selected by over 55% of the respondents. Particularly, more than

70% of the respondents consider F2 to be a crucial feature. The
second most important features are F1 and F6, with 48 respondents
recognizing their significance, accounting for 59.3% of the total.
Furthermore, F3 (Average File Size) has a selection rate of approx-
imately 22.2%, and F4 (Component Size) has a selection rate of
approximately 25.9%. For each feature, the choice rate is regarded
as its weight, indicating its importance in assessing the necessity of
refactoring cloned components. Therefore, the weights assigned to
the six features are as follows: F1 (0.593), F2 (0.704), F3 (0.222),
F4 (0.259), F5 (0.111), and F6 (0.593).

3.2.3 Determining the Prioritization of Refactoring Cloned
Components. To assess the refactoring necessity of cloned compo-
nents, we utilize the six weighted features to calculate the priority
score of each component using the following equation:

𝑆𝑐𝑜𝑟𝑒 (𝐶𝐶) =
6∑︁

𝑖=1
𝑊𝑖 ×

𝐹𝑖 −𝑀𝑖𝑛(𝐹𝑖 )
𝑀𝑎𝑥 (𝐹𝑖 ) −𝑀𝑖𝑛(𝐹𝑖 )

(3.3)

where 𝑆𝑐𝑜𝑟𝑒 (𝐶𝐶) denotes the score of a cloned component, 𝐹𝑖 repre-
sents the ith feature value of a cloned component, and𝑊𝑖 denotes
the weight assigned to that feature. 𝑀𝑎𝑥 (𝐹𝑖 ) represents the maxi-
mum value among all cloned components’ ith feature values, while
𝑀𝑖𝑛(𝐹𝑖 ) represents the minimum value. A cloned component with a
high score signifies that it should be prioritized for refactoring, as it
has the potential to significantly impact software quality.

4 EVALUATION
In this section, we begin by introducing the industrial system uti-
lized in our study, followed by a detailed description of the dataset
preparation process. Subsequently, we provide an overview of the
experimental settings.

4.1 Industrial System
In our study, we utilize a vast and widely adopted commercial
router platform as our case study dataset. Employed by millions
globally, it encompasses the source code of the latest routing system
version, evolving from four previous iterations. With billions of lines
of code, it spans over 470 file types, including six programming
languages: C (51,830 files), C++ (1,084 files), Python (764 files),
Java (73 files), Lua (22,277 files), and Bash (11,202 files). Each
language has a distinct role, and we prioritize C due to its prominence
within the platform’s statistics.

4.2 Dataset Preparation
In this section, we commence by outlining the process of collecting
components from the studied system. We then present the procedure
for constructing a ground-truth dataset for evaluation purposes.

4.2.1 Software Component Collection. Components in various
software systems can manifest in diverse forms. In our studied sys-
tem, components are packaged using the CMake tool [4]. CMake
is an open-source and cross-platform tool that assists developers in
packaging software products and managing the software compilation
process by generating native configuration files. These configuration
files store essential information about software components, such as
their names and associated source files. Thus, we extract components
from the studied system based on component information recorded
in these configuration files.
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4.2.2 Construction of Ground-Truth Dataset for Evaluation.
To ensure the accuracy and validity of our evaluation experiments,
we meticulously construct a ground-truth dataset by manually iden-
tifying and labeling cloned components. Given the significant cost
of this process, we devise three steps to identify cloned components,
with the goal of minimizing labor costs while ensuring the quality of
the provided labels. Besides, to minimize the possibility of human
error, we engage the expertise of two highly experienced developers
with more than five years of industrial experience in C language
development to carry out the labeling process. Specifically, based
on their experience, they independently follow the three steps we
design to identify cloned components, respectively. Subsequently,
they engage in discussions to address any discrepancies and reach a
consensus, ensuring the integration of their respective findings into
the final version. To evaluate their inter-rater agreement, we employ
Cohen’s Kappa [39], a commonly used metric in research [59, 60].
The analysis reveals a robust value of 0.86, indicating a strong level
of agreement between the two experts. The whole labeling process
spans over a period of three months, during which they diligently
identify 211 clone groups comprising a total of 1,066 components.
Note that manual examination is involved in each step of the labeling
process to ensure accuracy and correctness. In the following sections,
we elaborate on the three steps in detail.

Step 1: Identifying cloned components through package names.
Upon careful examination, we observe that numerous cloned com-
ponents, especially within-project cloned components, exhibit simi-
larities in their package names. For instance, as exemplified in the
second motivation example depicted in Fig. 1, a pair of cloned com-
ponents [9, 10] belonging to the “vdso” package in the Linux system,
displaying identical package names. Drawing from this discovery, to
streamline the labeling process, two developers first identify compo-
nent pairs with identical package names, resulting in a total of 8,548
component pairs. Subsequently, a meticulous manual examination is
carried out to determine whether each pair of components is cloned
based on components’ comments and source code. If substantial
similarities are identified, the components are assigned identical
labels and organized into corresponding clone groups according to
their shared functionalities.

Step 2: Identifying cloned components through file names.
Aside from package names, source files with the same name often
exhibit a high degree of similarity, as exemplified by the second
pair of cloned components in the motivation example. Therefore,
after completing Step One, the two developers focus on identifying
component pairs with similar file names from the remaining com-
ponents. Specifically, they select component pairs where more than
half of the source file names in both components exhibit similarities
greater than 0.8 to each other. This yields 13,613 component pairs
meeting these criteria, which are then manually labeled based on
functionality and source code.

Step 3: Identifying cloned components from the remaining
ones. After completing the aforementioned two steps, over 1,100
components are unlabeled. They manually examine these remaining
components and assign them to respective clone groups based on
their functionalities. As a result, in this step, they identify a total of
152 pairs of functionally cloned components.

4.3 Experimental Settings
We implement C3 using Python, and our experiments are conducted
on Ubuntu v20.04.1 64-bit OS with an RTX3090-24GB GPU, ensur-
ing reliable and replicable results. The replication package provides
additional information on model settings for easy access.

5 RESULTS
To gain a comprehensive understanding of the performance of C3

and our assessment method, we analyze our evaluation results by
addressing three research questions (RQs):

(1) RQ1: How effective is C3 under different parameter settings?
(2) RQ2: Which community detection algorithm is optimal for C3?
(3) RQ3: How effective is our assessment method?

5.1 RQ1: How effective is C3 under different
parameter settings?

5.1.1 Motivation. Our study is the first to introduce a novel clone
detector, C3, designed to automatically identify cloned components
in software systems. In this RQ, we aim to 1) validate the effective-
ness of C3 and 2) determine the optimal for the parameter 𝑘 .
5.1.2 Method. To determine the optimal setting for 𝑘 , we evaluate
the performance of C3 under various parameter configurations. In
this evaluation, we vary the parameter 𝑘 from 0 to 1 in steps of 0.1.
Additionally, in this RQ, C3 employs the Louvain algorithm [19]
as the community detection algorithm for identifying cloned com-
ponents. Note that since there are no previous studies proposing
similar tools for the identification of cloned components, no baseline
methods are available for comparison with the performance of C3.
5.1.3 Metrics. We utilize three commonly used evaluation metrics
to validate C3’s performance, including, Precision, Recall, and F1-
score. Precision quantifies the percentage of accurately identified
cloned components out of all the components detected by C3. On
the other hand, Recall measures the proportion of C3’s detected
components that account for real cloned components in the dataset.
In addition, we evaluate the running time (Time) of C3 during the
clone detection process.
5.1.4 Results. Table 1 summarizes C3 performance for varying
𝑘, highlighting the best results. From these results, the following
observations arise:

1) C3 can effectively detect cloned components, and 0.6 is the
optimal setting for the parameter 𝑘. As shown in Table 1, C3

Table 1: The performance of C3 under different 𝑘 .
Parameter(k) Precision Recall F1-score Time(s)

k = 0 0.58 0.90 0.61 4.97
k = 0.1 0.66 0.91 0.68 3.74
k = 0.2 0.69 0.90 0.72 3.38
k = 0.3 0.73 0.91 0.75 2.66
k = 0.4 0.80 0.92 0.81 2.12
k = 0.5 0.86 0.92 0.85 2.13
k = 0.6 0.93 0.91 0.90 2.56
k = 0.7 0.93 0.87 0.86 1.50
k = 0.8 0.94 0.79 0.82 1.34
k = 0.9 0.93 0.77 0.80 1.05
k = 1.0 0.92 0.73 0.76 0.80

Avg. 0.82 0.86 0.78 2.39
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Table 2: The performance of the C3 using different algorithms.
Girvan–Newman Algorithm Fast-Greedy Modularity-Maximization Algorithm Louvain Algorithm

Parameter(K) Precision Recall F1-score Time(s) Precision Recall F1-score Time(s) Precision Recall F1-score Time(s)

K = 0 0.54 0.89 0.57 3.33 0.58 0.90 0.61 1.30 0.58 0.90 0.61 0.52
K = 0.1 0.63 0.90 0.66 3.09 0.65 0.90 0.68 0.67 0.66 0.91 0.68 0.24
K = 0.2 0.69 0.89 0.71 3.81 0.69 0.90 0.72 1.06 0.69 0.90 0.72 0.27
K = 0.3 0.73 0.91 0.75 2.86 0.73 0.91 0.75 0.99 0.73 0.91 0.75 0.21
K = 0.4 0.80 0.91 0.81 4.29 0.80 0.92 0.81 0.55 0.80 0.92 0.81 0.20
K = 0.5 0.85 0.92 0.85 3.33 0.86 0.92 0.85 0.65 0.86 0.92 0.85 0.18
K = 0.6 0.93 0.91 0.90 4.05 0.93 0.91 0.90 0.37 0.93 0.91 0.90 0.19
K = 0.7 0.93 0.87 0.86 5.00 0.93 0.87 0.86 0.38 0.93 0.87 0.86 0.19
K = 0.8 0.93 0.80 0.82 3.33 0.94 0.80 0.82 0.32 0.94 0.79 0.82 0.10
K = 0.9 0.93 0.77 0.80 3.09 0.93 0.77 0.80 0.16 0.93 0.77 0.80 0.06
K = 1.0 0.92 0.72 0.76 3.81 0.92 0.73 0.76 0.15 0.92 0.73 0.76 0.07

Avg. 0.81 0.86 0.77 3.63 0.81 0.87 0.78 0.59 0.81 0.87 0.78 0.20

exhibits remarkable performance, achieving a precision of 0.93, a
recall of 0.91, and an F1-score of 0.90 at 𝑘 = 0.6. On average, C3

consistently achieves high performance with precision and recall
scores exceeding 0.8. Even at the poorest parameter setting of 𝑘 = 0,
C3 still demonstrates a high recall of 0.90 and an F1-score exceeding
0.6. These results validate the effectiveness of C3 in identifying
cloned components.

2) From a time-cost perspective, C3 detects component-level
clones with high efficiency. As depicted in Table 1, we can observe
a clear decrease in the running time of C3 as the value of 𝑘 increases.
C3 requires 4.97 seconds to obtain detection results when 𝑘 = 0,
which represents the highest time cost among different settings.
Conversely, the lowest time cost is only 0.8 seconds when 𝑘 = 1.
Additionally, when the optimal value of 𝑘 (i.e., 𝑘 = 0.6) is used, C3

requires only 2.56 seconds to provide the detection results. Based
on the above findings, it is evident that C3 is a highly efficient tool
for component-level clone detection, as it is capable of delivering
detection results within mere few seconds.

3) The precision and recall performances demonstrate diver-
gent trends with changes in the parameter 𝑘. As presented in
Table 1, the recall performance gradually declines from 0.9 to 0.73
as the value of 𝑘 increases. This trend can be attributed to the for-
mation of a richer structure among components when 𝑘 has a lower
value, which leads to a higher recall rate. However, it should be
noted that some edges in this complex structure are created based on
a low similarity between component pairs. As 𝑘 increases, numerous
component pairs remain unconnected in the graph, causing the used
detection algorithm to overlook many clones, resulting in a decrease
in recall. Different from the recall, the precision exhibits an upward
trend as 𝑘 varies from 0 to 1. This is because that a higher value of 𝑘
ensures that the components connected in the graph exhibit a higher
similarity to others. Consequently, the components identified by C3

are more likely to be real clones, leading to higher precision values.

✍ RQ1 ▶ In summary, C3 demonstrates a strong ability to ac-
curately identify cloned components, achieving an impressive F1-
score of 0.90. Moreover, it efficiently generates groups of cloned
components with minimal time cost, taking no more than five sec-
onds. C3 achieves its best performance when the parameter is set to
the optimal value of 0.6. ◀

5.2 RQ2: Which community detection algorithm is
optimal for C3?

5.2.1 Motivation. We employ the community detection algorithm
to identify cloned components from the graph structure. To deter-
mine the most suitable algorithm for C3, in this RQ, we conduct
a comparison experiment to evaluate the performance of C3 when
using different community detection algorithms.
5.2.2 Method. In this RQ, we utilize three widely used com-
munity detection algorithms, namely the Louvain algorithm [5],
Girvan–Newman algorithm [6], and Fast-Greedy Modularity Max-
imization algorithm [7], to identify component-level clone groups
from the constructed graph structure, respectively. We compare their
performance under different 𝑘 settings to determine the most effec-
tive algorithm for C3.
5.2.3 Metrics. Similar to RQ1, we employ the same set of metrics
to evaluate the performance of C3 when using different community
detection algorithms, including precision, recall, F1-score, and run-
ning time (Time). Note that in this context, the running time refers
specifically to the time required for the algorithm’s execution phase.
5.2.4 Results. Our experimental results are illustrated in Table 2.
According to the results, we observe the following findings:

1) The three algorithms achieve comparable performance
in the precision, recall, and F1-score. As shown in Table 2, on
average, both the Girvan–Newman algorithm and the Fast-Greedy
Modularity-Maximization algorithm achieve precision, recall, and
F1-score values of 0.81, 0.87, and 0.78, respectively. While, the Gir-
van–Newman algorithm shows a slightly lower recall performance
of 0.86 compared to the other two algorithms, with a decrease of 0.1.
Furthermore, all three algorithms demonstrate their best performance
when the parameter 𝑘 is set to 0.6, achieving 0.90 in F1-score.

2) The Girvan-Newman algorithm costs the longest running
time, while the Louvain algorithm incurs the least amount of
time, making it the most suitable algorithm for C3. In Table 2, it
can be observed that the Girvan-Newman algorithm has the longest
running time, ranging from 3s to 5s, to obtain the results. On average,
its time cost exceeds that of the second algorithm by more than six
times, and it is ten times higher than that of the last algorithm. In
contrast, the Louvain algorithm only requires an average of 0.2s to
obtain the clone results. Even when 𝑘 = 0, the Louvain algorithm
only takes 0.52s, which is still lower than the time cost of other
algorithms when 𝑘 = 0. Hence, the Louvain algorithm exhibits the
lowest time cost among these three algorithms. Considering that
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the three algorithms exhibit comparable performance and the Lou-
vain algorithm has the lowest running time, the Louvain algorithm
emerges as the most optimal choice for C3.

3) The Girvan-Newman algorithm demonstrates poor per-
formance in both classification accuracy and time cost at low
𝑘 values. Although the three algorithms achieve similar overall
classification performance, we observe that the Girvan-Newman
algorithm performs worse than the other two algorithms when the
value of 𝑘 is low. Specifically, compared to the other two algorithms,
the Girvan-Newman algorithm exhibits a decrease of 0.4 in preci-
sion and F1-score when 𝑘 = 0. Furthermore, when 𝑘 = 0.1 and
𝑘 = 0.2, the precision and recall performance only reach 0.65 and
0.89, respectively, which is 0.2 and 0.1 lower than the average per-
formance of the other two algorithms. In terms of time cost, the
Girvan-Newman algorithm exhibits the longest execution time to
obtain the clone results. Therefore, the Girvan-Newman algorithm
is the least suitable choice for C3.
✍ RQ2 ▶ In summary, taking into account both classification
accuracy and time cost, the Louvain algorithm stands out as the
optimal choice for C3 in detecting cloned components. Conversely,
the Girvan-Newman algorithm is deemed the least suitable option
for C3. ◀

5.3 RQ3: How effective is our assessment method?
5.3.1 Motivation. In this RQ, our objective is to verify the ef-
fectiveness and usefulness of the assessment method and the six
proposed clone features in measuring the refactoring necessity of
cloned components.

5.3.2 Method. To achieve our goal, we conduct a user study to
validate the correctness of the assessment method and the usefulness
of the six clone features. To ensure the accuracy of the evaluation and
mitigate human error, we randomly choose 100 cloned components.
Based on these selected components, we create ten distinct surveys,
each containing information about ten cloned components. This
information includes the names of the components, as well as the
values of the six features for the involved components. Note that the
cloned components in different surveys are different.

We invited 30 experienced developers, each with over five years
of experience in C language development, to participate in the user
study. Leveraging their expertise and knowledge, they assess the
refactoring necessity of cloned components that the survey contains.
To further minimize human error, three of the 30 respondents are
grouped together and assigned the same survey. In our survey, they
were required to rank the cloned components to describe the level
of the refactoring necessity of the cloned components based on the
feature values of the components as well as their own working expe-
rience. In addition, we encouraged respondents to suggest additional
features that they believe can serve as assessment metrics but are not
included in our survey.

We validate the accuracy of the ranking results obtained from
our method by comparing them with the responses provided by
the participants. Since each survey is assigned to three respondents
simultaneously, we consider each individual response as the ground
truth ranking result and then compare this with the ranking result
generated by our assessment method to determine the correctness of
our method. Therefore, the accuracy of our assessment method for

each different survey is calculated by averaging the results obtained
from the three surveys that are identical to it, providing an overall
measure of our method’s performance.
5.3.3 Metrics. Three well-known evaluation metrics (i.e., MAP@N
Recall@N , and NDCG@N ) in recommendation tasks [65] are used
in this RQ. MAP calculates the average of the Average Precision
(AP) for the performance of our assessment method. Recall@N (Re-
call at N) represents the proportion of correctly identified cloned
components among the top-N ranking results. 𝑁𝐷𝐶𝐺@𝑁 (Normal-
ized Discounted Cumulative Gain at N) evaluates the effectiveness
of our method based on the relevance and ranking of cloned compo-
nents. It considers the positions of relevant components in the ranked
list and assigns higher scores to cloned components that are both
relevant and ranked higher. The 𝑁𝐷𝐶𝐺@𝑁 value is normalized to a
range of 0 to 1, with 1 indicating the highest level of relevance and
ranking accuracy. In our study, 𝑁 is set to 3, 5, and 7, respectively.
5.3.4 Results. Our user study results are presented in Table 3.
Based on these results, we can draw the following observations:

1) Our assessment method effectively prioritizes cloned com-
ponents with a high refactoring necessity. Our assessment method
achieves high performance with 97.4% and 92.8% in terms of
MAP@N and AR@N, respectively, validating the effectiveness of
our method. Specifically, the majority of evaluation results exceed
90% in all metrics. Furthermore, 7 out of 10 surveys achieve a
perfect score of 100% in both MAP@3 and AR@3, indicating a
strong agreement between our ranking results and the responses from
participants. Compared to MAP@N and AR@N, the NDCG@N
metric specifically emphasizes the correctness of the ranking order
in the results. Our method demonstrates excellent performance in
NDCG@N, achieving an average NDCG@N score of 98.6%. This
high score indicates the accuracy and correctness of the ranking
order provided by our method.

2) The six clone features prove to be valuable in assessing
the refactoring necessity of cloned components. Given the high
performance of our method across all three metrics, it provides strong
evidence supporting the value of the six clone features in assessing
the refactoring necessity of cloned components. This is evident
because if the proposed features were ineffective for assessment, the
ranking results provided by our method would significantly deviate
from the respondents’ replies. Therefore, the consistent and accurate
performance of our method serves as an indication of the usefulness
of the six features.
Other potential features. Out of all the responses received, only two
respondents suggest the inclusion of new features in our assessment

Table 3: The performance of our assessment method.

Survey
MAP@N(%) Recall@N(%) NDCG@N(%)

3 5 7 3 5 7 3 5 7

S1 100 94.9 100 100 86.7 100 100 98.8 99.7
S2 100 95.9 100 100 80 95.2 99.8 98.3 99.7
S3 100 89.5 90.8 100 73.3 90.4 100 95.6 96.0
S4 100 100 97.7 100 100 85.7 100 100 97.5
S5 97.2 95.1 98.6 88.9 80 95.2 98.5 97.9 98.4
S6 100 100 95.7 100 100 81.0 100 99.8 97.4
S7 92.8 100 100 77.8 100 100 97.2 99.4 99.4
S8 100 97.8 98.9 100 86.7 95.2 100 97.8 99.3
S9 100 100 100 100 100 100 97.9 98.2 96.7

S10 95.6 96.7 85.7 88.9 93.3 85.7 99.2 98.8 96.9
Avg. 98.6 97.0 96.7 95.6 90 92.8 99.3 98.5 98.1

MAvg. 97.4 92.8 98.6
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method. One respondent proposes considering the dependencies
of a cloned component as a metric during the assessment. After
careful deliberation, we acknowledge the usefulness of this metric
in assessing the necessity of components for refactoring. A cloned
component with complex dependencies in software, being called by
many other code units or calling many other code units, signifies its
significance to the software. However, we note that this metric bears
a strong resemblance to one of the proposed metrics, namely F2:
NCL (Number of Calls), which also captures the calling relationships
among components. On the other hand, another respondent suggests
incorporating the intellectual property rights of cloned components
as an assessment metric. However, after thorough consideration, we
determine that this feature does not provide substantial guidance
in selecting cloned components with a high refactoring necessity.
As a result, we decide not to include the suggested features in our
component-level clone feature set. The results demonstrate that the
selection of the six features is comprehensive overall.
✍ RQ3 ▶ In summary, our assessment method effectively pri-
oritizes cloned components with a high refactoring necessity by
utilizing the six comprehensive and useful features. ◀

6 THREATS TO VALIDITY
Internal validity: When selecting the appropriate detector for
identifying file-level clones, we carefully considered a variety of
tools, such as RtvNN [57], Deckard [30], ASTNN [63], SCDetec-
tor [58], DeepSim [66], TreeCen [29], and even large language
models (LLMs) [25, 27]. This rigorous selection process is aimed
at ensuring the effectiveness and advancement of C3. However, we
observe that the majority of existing tools are primarily designed to
detect function-level clones, while LLMs cannot exhibit satisfactory
performance in identifying duplicated components due to limitations
in training data. Hence, we select SourcererCC [51] as the most suit-
able option. Furthermore, we explore the use of other graph-based
clustering algorithms to identify cloned components. However, we
observe that most of these algorithms generate clusters based on
factors such as distance, density, or hierarchical structures among
nodes, rather than considering the structural relationships among
nodes. As a result, these algorithms are not well-suited for applica-
tion in our study. To ensure the accuracy of our code implementation,
we conduct comprehensive testing of our approach’s source code
during the automatic evaluation phase.
External validity: Despite evaluating C3 solely on an industrial-
scale product, this product consists of billions of lines of code and
C3 achieves impressive performance on this dataset. This result
suggests the potential for C3’s generalizability and practicality to
other codebases. To mitigate the potential threat of biased metrics,
we consider two broad categories of performance metrics, each
encompassing three distinct metrics.
Construct validity: The manual examination may introduce human
errors, including evaluators’ level of attentiveness and subjectivity.
To address these concerns, we adopt two strategies. Firstly, we de-
sign multiple distinct surveys to minimize the impact of individual
biases. Secondly, we hire highly experienced software practitioners
who possess a minimum of five years of experience in developing
software. Moreover, our dataset primarily consists of textual clones,
with functional clones representing only a small portion. While this

distribution may favor the performance of C3, it aligns with the
typical ratio of textual clones to semantic clones found in real-world
software systems.

7 RELATED WORK
We summarise related studies focusing on code clone detection at
different clone granularities, which can be classified into three cate-
gories [44, 47, 56]: statement/line-level, function/method-level, and
file-level clone detection method. Specifically, some studies propose
line-level code clone detectors [16–18, 23, 30–35, 37]. Johnson et
al. [31] propose a clone detector, which is a pioneer in textual-based
clone detection and leverages a fingerprinting technique to find out
line-level code clones. NICAD [45, 46], as a text-based detector, can
effectively identify line-level clones, and the full NICAD [22] also
uses flexible code normalization and filtering techniques for remov-
ing the small differences between code fragments and thus identifies
Type-3 clones. Most of the proposed clone detectors identify clones
at the function granularity [14, 24, 38, 48, 50, 52, 55, 57, 58, 67].
Su et al. [55] propose an In-Vivo Clone Detection technique named
HitoshiIO to detect functional cloned fragments (i.e., methods) or
functions in arbitrary programs. Compared with HitoshiIO, Mathew
et al. [38] present an improved function-level code clone detector
called SLACC for identifying cross-language clones by using the
dynamic analysis method. Wu et al. [58] propose another new func-
tional clone detection approach named SCDetector, by combining
the static program analysis technique and the knowledge of the so-
cial network. Only a few studies focused on identifying cloned files
[13, 54, 57]. Singh et al. [54] present a hybrid approach, which
combines text-based and metric-based analysis of programs, for
the detection of structural cloned files, where structural cloned files
denote the files which consist of lower-level smaller clones with
similar code fragments. Akram et al. [13] propose a novel clone de-
tector at file-level granularity by leveraging the index-based features
extraction technique (IBFET).

8 CONCLUSIONS AND FUTURE WORK
In this paper, we propose C3, a novel clone detector designed to
identify cloned components in software systems, aiming to reduce
development and maintenance costs. To optimize the elimination
process of cloned components, we propose six component-level
clone features and introduce an assessment method that assists devel-
opers in prioritizing components based on their refactoring necessity.
To validate the effectiveness of C3, we apply it to a large-scale in-
dustrial product and evaluate its performance in detecting cloned
components. Our experimental results demonstrate that C3 is highly
effective in identifying cloned components from software, achieving
an impressive F1-score of 0.9. Furthermore, we conduct a user study
to validate the accuracy of our assessment method and assess the
practicality of the six clone features. Our user study results confirm
the accuracy of our method, highlighting the significant role played
by the six proposed features in the assessment process. In the future,
our aim is to expand C3’s utility by bolstering its ability to identify
cloned components across diverse programming languages.
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