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Abstract—Evaluating the code generation capabilities of
Large Language Models (LLMs) remains an open question.
Recently, more advanced benchmarks—such as CoderEval,
EvoCodeBench, and ClassEval—have been introduced to evaluate
LLMs on practical coding tasks from GitHub repositories, such
as non-standalone function generation and class-level code gener-
ation. However, even the most sophisticated LLMs struggle with
these complex tasks; for instance, GPT-4 achieves only a 37.0%
pass@1 on ClassEval. Prior studies show that developers often
discard LLM-generated code or abandon code generation models
when outputs are incorrect or require extensive debugging, which
leads them to rely on LLMs primarily for code generation tasks
that high-performing models can reliably handle.

In response to this gap, we introduce RealisticCodeBench, a
benchmark specifically designed to reflect the types of problems
developers commonly tackle with LLMs. By mining GitHub
repositories for code samples tagged as generated by ChatGPT
or Copilot, we collect real-world coding tasks that capture
typical LLM usage scenarios. We modify these tasks, generate
reference solutions and test cases, and adapt the problems
into multiple programming languages. This effort results in
RealisticCodeBench, comprising a total of 376 programming
problems translated across multiple languages: 361 in Python,
346 in JavaScript, 343 in TypeScript, 307 in Java, and 323
in C++, each with corresponding reference solutions and test
cases. We evaluate 12 general-purpose and code-specific LLMs on
RealisticCodeBench. Our findings reveal that GPT-4.1 achieves
the highest average pass@1 score across languages, closely
followed by DeepSeek-V3-671B, suggesting that DeepSeek-V3-
671B provides a viable open-source alternative to GPT-4.1 for
large companies with sufficient GPU resources and privacy
concerns. CodeGeeX4-9B, a cost-effective model, emerges as a
suitable substitute for GPT-4o-mini for individual developers and
smaller organizations with similar privacy considerations. Addi-
tionally, LLM performance discrepancies between HumanEval
and RealisticCodeBench suggest that some LLMs are either
overly specialized for HumanEval-style problems or insufficiently
optimized for real-world coding challenges. Finally, we analyze
failed cases, summarize common LLM limitations, and provide
implications for researchers and practitioners.

Index Terms—Code Generation, Large Language Model,
Benchmark, GitHub
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I. INTRODUCTION

Code generation, which automatically creates code snip-

pets from natural language descriptions, has been widely

adopted to enhance development efficiency and productiv-

ity, attracting significant attention in academic research [1],

[2], [3], [4]. Recent advances in Large Language Models

(LLMs)—trained on massive volumes of both general and

code-specific datasets—have further accelerated progress in

this field [5]. To evaluate the performance of these emerging

LLMs on code generation tasks, several benchmarks have

been introduced, starting with HumanEval [6] and MBPP [7].

Reporting performance on these benchmarks has seemingly

become mandatory for a model to be considered competi-

tive in code generation [8]. Indeed, nearly all new LLMs

released in 2023-2025 highlight code generation results on

one or both of these benchmarks. While they have been

widely used and provide valuable insights, the programming

problems they contain are largely algorithmic and basic pro-

gramming problems, which do not fully reflect the challenges

of real-world coding [9]. To address this, more complex

benchmarks—such as CoderEval [10], EvoCodeBench [11],

ComplexCodeEval [12], and ClassEval [13]—have been de-

veloped to assess LLM performance on more challenging,

practical coding tasks collected from real-world GitHub code

repositories, such as non-standalone function generation and

class-level code generation. These benchmarks offer a deeper

understanding of the upper limits of LLM capabilities when

tackling intricate programming problems.

However, developers currently tend not to rely on LLMs

for overly complex coding tasks, primarily due to the low

success rates of LLMs on more challenging benchmarks.

For example, GPT-3.5 achieves only a 21% pass@1 rate for

non-standalone function generation on CoderEval [10], while

GPT-4 reaches just a 37.0% pass@1 rate for class-level code

generation on ClassEval [13], which can discourage developers

from using LLMs for such sophisticated code generation tasks.

A large-scale survey conducted by Liang et al. [14] found
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that developers often discard LLM-generated code or abandon

the use of code generation models when they fail to meet

functional or non-functional requirements, when developers

struggle to control the models to produce the desired output,

or when significant effort is needed to debug and refine

the LLM-generated code. In other words, while developers

often work on complex programming problems like those in

CoderEval [10], EvoCodeBench [11], ComplexCodeEval [12],

and ClassEval [13], current LLMs are not yet ready to generate

such sophisticated code at scale. Instead, developers are more

likely to use LLMs for more manageable coding tasks that

high-performing models (e.g., GPT-4.1) can generate correctly

without requiring extensive debugging or modification. There-

fore, to better align benchmarks with current developer prac-

tices of using LLMs for code generation, we need to shift our

focus toward understanding the types of code developers are

actually generating with LLMs daily and create benchmarks

based on these practical use cases.

To achieve this, we collect real-world coding tasks that

reflect typical LLM code generation scenarios by mining high-

star GitHub repositories for code samples explicitly labeled as

generated by ChatGPT or Copilot. Specifically, our previous

study [15] find that nearly all LLM-generated code on GitHub

is produced by tools like ChatGPT or Copilot, with very few

samples from other LLMs. Developers frequently annotate

such code snippets with comments like “the code is generated

by ChatGPT,” indicating they are created using these tools.

Using search terms like “generated by ChatGPT”, we leverage

the GitHub REST API to locate and collect relevant Python,

Java, JavaScript, TypeScript, and C++ code samples from

high-star projects, which represent how developers use LLMs

for code generation in real-world scenarios. After collecting

the samples, we carefully filter out overly simplistic, repetitive,

or difficult-to-test codes.

We then make modifications to each sample’s requirements

while preserving the original intent and complexity as much

as possible. Where applicable, we also adjust the number

and types of input and output parameters to further mitigate

data leakage risks. Using ChatGPT-4o, we generate reference

solutions for each modified programming problem, followed

by manual corrections. ChatGPT-4o also creates multiple

test cases based on the problem descriptions and reference

solutions, which are refined manually to ensure accuracy and

adequate line and branch coverage. Next, we use ChatGPT-

4o to generate multi-language versions of each programming

problem, followed by manual validation of the accuracy of the

translated solutions, test cases, and coverage. It is important

to note that some programming problems do not translate di-

rectly across languages due to language-specific data types or

operations. In such cases, we retain the problems as language-

specific to reflect real-world development practices. Finally,

we invite 13 experienced engineers to assess whether the pro-

gramming problems, including their multi-language versions,

represent realistic development scenarios and if proprietary

developers would also likely use LLMs to solve them. Only

problems approved by a majority (at least 10 out of 13 engi-

neers) are retained. Ultimately, we construct our benchmark,

RealisticCodeBench, comprising 376 programming problems

translated across multiple languages: 361 in Python, 346

in JavaScript, 343 in TypeScript, 307 in Java, and 323 in

C++. Each problem includes corresponding reference solutions

and test cases, spanning 9 distinct domains such as data

structures and algorithms, text processing, file handling, data

visualization and graphic applications, network programming,

and frontend development. This provides a comprehensive

assessment of LLM capabilities on coding challenges that

developers currently address with LLM assistance.

Based on RealisticCodeBench, we conduct extensive exper-

iments on 12 general-purpose and code-specific models com-

monly studied in recent benchmarks, such as GPT-4.1, GPT-

4o-mini, DeepSeek-V3-671B, Llama 3.1-8B, CodeGeeX4-9B,

DeepSeek-Coder-6.7B, CodeLlama-7B, and StarCoder2-7B.

Across five programming languages, GPT-4.1 achieves the

highest average pass@1 score at 60.65%, with DeepSeek-V3-

671B close behind at 58.86%. This suggests that companies

with sufficient resources and privacy concerns could consider

deploying DeepSeek-V3-671B as an open-source alternative to

GPT-4.1 for everyday coding tasks. CodeGeeX4-9B achieves

an average pass@1 score of 45.75%, compared to GPT-4o-

mini’s 53.11%, showing only a moderate gap between them.

Thus, individual developers and smaller organizations with

similar privacy concerns can deploy CodeGeeX4-9B as an

affordable substitute for GPT-4o-mini, using a setup with

two NVIDIA GeForce RTX 3090 (24GB) GPUs (approxi-

mately $3,000) to balance privacy, cost, and code genera-

tion performance. Furthermore, we observe substantial per-

formance discrepancies of some LLMs between HumanEval

and RealisticCodeBench. While models like CodeGeeX4-9B

reach impressive pass@1 scores on HumanEval (82.3%) and

DeepSeek-Coder-6.7B scores 78.6%, their performance drops

substantially on RealisticCodeBench’s Python subset (54.02%

and 45.15%, respectively). This suggests that current LLMs

may either be overly specialized for HumanEval-style prob-

lems or lack optimization for practical coding tasks. Finally, by

analyzing failed cases, we identify critical areas where LLMs

fall short in RealisticCodeBench, offering insights into poten-

tial improvements for practical code generation capabilities.

In summary, our contributions are as follows:

(1) We propose RealisticCodeBench, a benchmark that

aligns with the types of coding problems developers typically

solve with LLMs in practical development settings. Our bench-

mark is available in [16].

(2) We systematically benchmark 12 LLMs’ code generation

capabilities using RealisticCodeBench. Based on the results,

we provide implications for researchers and practitioners.

II. BACKGROUND AND RELATED WORK

A. LLMs for Code Generation

Code generation involves creating code snippets based

on given natural language requirements. General LLMs are

typically trained on a combination of general textual data,

code corpora, and instructions. Among the most well-known
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general LLMs are GPT-4 [17] and GPT-3.5 [18], both of

which have demonstrated significant capabilities across a wide

range of tasks. Additionally, other general-purpose models like

DeepSeek-V3 [19], Llama 3.1 [20], Phi-3 [21], Mistral [22],

and ChatGLM [23] have gained attention for their capabilities.

Technical reports for these models often emphasize their

strengths not only in general natural language processing tasks

but also their promising potential in code generation.

On the other hand, specialized code LLMs are primarily

trained on large-scale code-specific datasets with tailored in-

structions, often outperforming general-purpose LLMs in code

generation tasks. Notable examples include CodeGen [24],

StarCoder [25], CodeLlama [26], DeepSeek-Coder [27], and

CodeGeeX [28]. For instance, DeepSeek-Coder is trained from

scratch on 2 trillion tokens, with a composition of 87% code

and 13% natural languages in both English and Chinese.

StarCoder2 is trained on 17 programming languages from

the Stack v2 [25]. These models are designed to focus more

specifically on understanding and generating code, typically

demonstrating superior performance in handling code-related

tasks compared to general LLMs.

B. Code Generation Benchmarks

Literature Search: To understand the progress of code

generation benchmarks, we conduct a literature search cov-

ering publications from 2021 to 2025 by using a forward

snowballing approach [35] 1. The starting year of 2021 is

selected, as it marks the publication of the earliest prominent

benchmarks for code generation, which include test cases for

evaluating LLMs’ code generation accuracy (i.e., APPS [36],

HumanEval [6], and MBPP [7]). Although earlier code gen-

eration benchmarks, such as Concode [37] and JuICe [38],

were proposed before 2021, they mainly focused on evaluating

deep learning models, like LSTM and Transformer, rather

than LLMs. Moreover, these datasets lacked test cases, relying

instead on metrics like exact accuracy and BLEU to compare

model performance. Consequently, they are rarely used in later

research evaluating LLMs for code generation.

Therefore, our search process begins by gathering all papers

that cite APPS [36], HumanEval [6], and MBPP [7] using

Google Scholar. We then filter these citations to identify

papers proposing new benchmarks or significantly extending

existing ones in the context of code generation, considering

only studies written in English with full text available. We

exclude papers that introduce benchmarks for unrelated fields

(e.g., program repair, code completion, or code translation)

and focus solely on those proposing code generation bench-

marks. For each selected paper, we recursively examine its

citations, focusing on new or updated benchmarks developed.

This process continues until no further relevant papers are

found, ensuring that no significant benchmark developments

are missed during the search. Finally, the overall search pro-

cess results in 57 code generation benchmarks. The identified

benchmarks can be broadly classified into three categories. The

1This literature review was conducted in April 2025.

first category, comprising 25 papers [39], [40], [41], [42], [43],

[44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54],

[55], [56], [57], [58], [59], [60], [61], [62], [63], focuses on

domain-specific code generation abilities, such as generating

security code [46], [49], [61], VHDL code [53], bioinformatics

code [47], Verilog code [43], data science code [7], [40], [41],

[59], AI code [48], object-oriented code in Java [50], parallel

code [54], Infrastructure-as-Code (IaC) programs [56], web

design [60], etc. The second category, comprising 21 papers

focusing on non-realistic code generation development scenar-

ios [6], [7], [64], [65], [66], [28], [67], [68], [69], [8], [36],

[70], [71], [72], [10], [73], [74], [75], [76], [77], [78], includes

one subset of benchmarks such as HumanEval [6], MBPP [7],

or their modified versions [64], [65], [66], [28], [68], [69],

[33], [64], [65], [33] that focus on pure-method algorithm or

logic tasks and often exhibit exceptionally high performance

on state-of-the-art models. The other subset [74], [76], [72],

[73], [75], such as LiveCodeBench [74] and CodeElo [76],

focus on algorithmic tasks for competitive programming, but

these competitive programming problems are rarely encoun-

tered in real-world development scenarios. The third category,

which includes 11 papers [29], [12], [34], [11], [10], [13],

[30], [32], [31], [33], [9], focuses on evaluating general code

generation capabilities that reflect real-world development

scenarios, which aligns with the goals of our benchmark. Due

to space constraints, we only discuss the difference between

these benchmarks and our RealisticCodeBench.

Table I overviews the 11 benchmarks, including details such

as the year of introduction, target programming language,

the source of programming problems, target code granularity,

the number of programming problems (“#Tasks”), average

lines of code (“#LOC”) in reference solutions, average token

lengths of the task prompt (usually the requirements and

function signature) (“#Tokens”), and the best model perfor-

mance (usually GPT-4) in pass@1. In the table, “ ” indicates

that the corresponding information was not provided in the

benchmark paper. Among them, the two benchmarks without

a pass@1 values, the MCoNaLa benchmark [29] focuses

solely on statement-level code generation scenarios collected

from Stack Overflow. In contrast, ComplexCodeEval [12]

includes function-level tasks sourced from real and complex

development environments in GitHub repositories. However,

it lacks test cases to accurately assess the generated code.

For benchmarks involving complex, non-standalone func-

tions and classes [34], [11], [10], [13], [30], [32], low pass@1

scores are mainly due to the intricate dependencies inherent to

these tasks. For example, EvoCodeBench [11], DevEval [30],

and HumanEvo [34] focus on complex function dependencies

or repository-level dependencies, resulting in pass@1 scores

of 20.7%, 53.0%, and 34.5% on GPT-4, respectively. Simi-

larly, ClassEval [13], a benchmark of 100 manually created

Python problems that simulate real-world class generation

scenarios, yielded a 37.0% pass@1 score on GPT-4. In

addition, two benchmarks were created from open source

data. Paul et al. [31] developed ScenEval, collecting various

statements, methods, and classes from open source platforms
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TABLE I: The current general code generation benchmarks that reflect the real development scenarios

Benchmark Year Language Source Granularity #Tasks #LOC #Tokens Pass@1
MCoNaLa [29] 2023 Python Conala Statement 896 1 27.6 -

CoderEval [10] 2024 Python, Java GitHub Function 230 30 108.2 21.0 % (GPT-3.5)

EvoCodeBench [11] 2024 Python GitHub Function,
Repository 275 - - 20.7 % (GPT-4)

ClassEval [13] 2024 Python Manual Class 100 45.7 123.7 37.0 % (GPT-4)

DevEval [30] 2024 Python PyPI Function,
Repository 1874 - - 53.0 % (GPT-4)

NCB [9] 2024 Python,
Java

Online Services Function 402 - - 52.8 % (GPT-4)

ScenEval [31] 2024 Java
W3Resources,

Stack Overflow,
Textbooks

Statement,
Function,

Class
12864 1-50 - 75.6 % (ChatGPT)

BigCodeBench [32] 2024 Python
GitHub,

Huagging face,
Croissant

Function 1140 10 - 51.1 % (GPT-4o)

ComplexCodeEval [12] 2024 Python,
Java

PyPI,
GitHub

Function 11081 35.9 278.8 -

RACE [33] 2024 Python
HumanEval+,

MBPP+,
ClassEval,
LeetCode

Class,
Function

923 - - 70.1 %
(GPT-4-o1-mini)

HumanEvo [34] 2025 Python,
Java

PyPI,
GitHub

Function,
Repository 400 - - 34.5 % (GPT-4)

RealisticCodeBench 2025 Multilingual GitHub Function,
Class 376 42.2 124.4 74.52% (GPT-4.1)

like W3Resources, Stack Overflow, and textbooks to cover

a wide range of scenarios. ChatGPT achieved a pass@1 of

75.6% on this relatively simple benchmark. Zheng et al. [33]

combined datasets such as HumanEval, MBPP, ClassEval, and

LeetCode to form RACE, a moderate complexity dataset where

GPT-4o-mini and Claude-3.5-Sonnet achieved pass@1 rates of

70.1% and 62.3%, respectively.

In particular, the NCB benchmark [9] shares similarities

with our benchmark, containing 402 high-quality Python and

Java problems carefully selected from natural user queries on

the CodeGeeX online coding platform. However, NCB’s query

problems are not necessarily solvable by LLMs, with GPT-4

achieving a pass@1 of 52.8%. In contrast, our benchmark in-

cludes only LLMs-solvable problems, with developers accept-

ing and uploading these LLM-generated solutions to GitHub.

By collecting LLM-generated code from GitHub, our bench-

mark more accurately reflects scenarios where developers use

LLMs in real-world coding tasks. To better align benchmarks

with current LLM usage practices, we, therefore, introduce

RealisticCodeBench, a benchmark designed to reflect the types

of problem developers commonly tackle with LLMs.

III. REALISTICCODEBENCH

Figure 1 outlines RealisticCodeBench’s construction pro-

cess. The pipeline consists of two primary steps: 1) collecting

and filtering high-quality code generated by ChatGPT/Copilot

from GitHub (Section III-A), and 2) constructing the bench-

mark using a semi-automated pipeline supported by ChatGPT-

4o in a conversational window format, which includes adapt-

ing problem requirements, writing reference solutions and

test cases, and generating multi-language versions of each

programming problem (Section III-B). The entire process of

constructing the benchmark, which includes 376 programming

problems across various languages, requires approximately

700 person-hours to complete.

A. Data Collection

ChatGPT/Copilot-Generated Code Collection. Our pre-

vious study [15] find that nearly all code samples generated

by LLMs on GitHub are created using tools like ChatGPT or

Copilot, with very few produced by other LLMs. Developers

often annotate their code with comments such as “the code is
generated by ChatGPT/Copilot” to indicate its origin. These

annotations typically follow the format x+y+z, where x is a

verb from {generated, written, created, implemented, authored,

coded}, y is a preposition from {by, through, using, via, with},

and z is a tool identifier from {ChatGPT, Copilot, GPT-3, GPT-

4}. Following their approach, we use these triplets x+y+z, such

as “generated by ChatGPT” to locate and collect relevant code

snippets via the GitHub REST API. We specifically focus on

code written in Python, Java, JavaScript, TypeScript, and C++,

as these languages not only dominate the landscape of LLM-

generated code on GitHub but are also widely used across

various real-world development domains. To ensure the quality

of collected samples, we first prioritize repositories with high

star ratings to source reputable code. However, many projects

containing ChatGPT-generated code are new and have not

accumulated sufficient stars; thus, we also evaluate the detail

level of README documents and the scale of code volume.

Projects with clear documentation standards, complete code

logic, and practical technical reference value are also included.
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Suitable Programming Problems Filtering. Although we

initially collect over 2,100 ChatGPT/Copilot-generated code

samples from GitHub, not all are suitable for inclusion in

our benchmark. We first manually filter out overly simplistic

code—specifically code with very few lines. This simplicity

is evaluated relative to each language’s practical context (e.g.,

code that merely calculates the Euclidean distance between

two points, which can be implemented in a single line of

Python and thus is filtered out). Additionally, we exclude sam-

ples whose solutions are difficult to test (e.g., those involving

frontend-backend interactions or dependencies on external data

or upstream logic). Finally, we review the remaining samples

to remove overly similar tasks (e.g., multiple samples that

validate if a string is a valid email address), ensuring the

benchmark contains a diverse set of programming problems.

After this filtering process, we obtain 172 refined Python

code samples, 26 refined Java samples, 75 refined JavaScript

samples, 57 refined TypeScript samples, and 46 refined C++

samples. The GitHub links to these code samples, along with

detailed information about the GitHub repositories hosting

them (e.g., star counts, fork counts, contributor numbers, and

commit counts), are available in [16].

B. Benchmark Construction

Once we have collected ChatGPT/Copilot-generated code

samples from GitHub, we move forward with constructing our

benchmark. As shown in Figure 1, each programming problem

in RealisticCodeBench includes an input description (com-

prising the function signature and requirement description).

Additionally, the benchmark contains a reference solution

for each programming problem, which serves as a reference

implementation, along with a test suite to verify the correctness

of the generated code. Typically, LLMs generate code snippets

based on the input descriptions, and the correctness of these

snippets is validated using the provided test suite.

Modification of Programming Problems. Since most of

the original code samples only indicate that they are generated

by ChatGPT or Copilot without describing their functional-

ity, we first leverage ChatGPT-4o’s advanced capabilities in

code comment generation [79] to produce concise summaries

for each code sample. This is solely intended to help us

clearly understand the code’s core functionality, facilitating

the modification of programming problems. Data leakage is

a concern because many LLMs are pre-trained on code from

GitHub, which can lead to inadvertent memorization of spe-

cific content [80], [81]. Consequently, these models may solve

programming tasks by recalling solutions they encountered

during pre-training. To mitigate this risk, we apply substantial

modifications to the requirements of the original code samples,

while striving to preserve the code’s original intent and task

complexity. Additionally, we modify the number and types of

input and output parameters where feasible. In the adapted

function signatures—consistent with mainstream benchmarks

like HumanEval, which outline implementation requirements

for LLMs. These requirements include only basic specifica-

tions: they omit specific steps for task solutions, avoid pre-

listing boundary conditions, and instead clarify the function’s

objectives, input parameters, and return value constraints for

each programming language. For instance, one GitHub project

with over 30 stars includes a method that converts a SQL string

with named parameters (e.g., $variable) to a format compatible

with asyncpg (using $1, $2, etc.) and returns the new SQL

string and the list of values in the correct order [82]. The input

parameters are defined as sql (the original SQL string with

named parameters) and params (a dictionary of parameters),

while the output is a tuple (new sql string, list of values). In

our modified requirement (as shown in Figure 1), we specify:

Convert a SQL query from named parameters to positional
parameters, the named parameters flag is the given delimiter.
Return a dictionary of positional sql, param list, execute sql,
increasing inputs to three and changing output to a dictionary.

Reference Solution Generation. We then use ChatGPT-4o

to generate solutions for each adapted programming problem

by providing the problem description (including the function

signature and requirement description) as prompts. To effec-

tively prevent potential data leakage risks that may occur

during the process of generating solutions, we have defaulted

to enabling the chat history closure function provided by

OpenAI 2 when using ChatGPT-4o. When chat history is

disabled, the subsequent conversation content initiated will

not be used for model training and optimization. Although

ChatGPT-4o is a highly capable tool, it can still produce

incorrect code during generation. Therefore, each solution is

meticulously reviewed by three programmers, each with over

four years of coding experience, to ensure accuracy. If any

bugs are identified by one of the programmers, they revise

the code to correct the errors. The revised version is then

reviewed by the other two programmers to confirm that the

corrections are accurate, ensuring that the reference solutions

are both reliable and error-free. These reference solutions are

not used directly as evaluation benchmarks but are included

to support the development of test cases and facilitate future

research efforts.

Test Case Generation. We also utilize ChatGPT-4o to

generate high-quality test cases for each adapted programming

problem. The prompt starts with the instruction: “Please create

test cases for this programming problem and the reference

solution. Ensure that the test cases cover a wide range of

inputs, including typical use cases, edge cases, corner cases,

and invalid inputs.” Following this, the prompt includes the

problem description and reference solution. After the test cases

are generated, the same three programmers review and correct

any issues related to formatting or outputs. If an error is

identified, the programmer revises the test cases. The updated

cases are then reviewed by the other two programmers to

validate corrections. Once this process is complete, the line

and branch coverage for each function is reassessed. We use

PyTest for Python, JUnit for Java, JavaScript, and TypeScript,

and Catch2 for C++ to calculate this coverage. If coverage

is still below 100%, one of the programmers manually writes

2https://openai.com/index/new-ways-to-manage-your-data-in-chatgpt/
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Data Collection

Real
Code Repository

Benchmark Construction

Test cases

46
45
44
43

40
41

15

14

13

Function Signature

10

12
11

9

8
7
6

5
4

3
2
1

Requirement Description"""
substituted in.               
'execute_sql': The SQL query with actual values -            
positional parameters.               
'param_list': A list of values corresponding to the -            
placeholders               
'positional_sql': The SQL query with positional -            

Dict[str, Any]: A dictionary containing:        
Returns:    

parameters in the SQL query.such as $,#,:             
delimiter (str): The delimiter used for the named         

parameters to their values.             
params (Dict[str, Any]): A dictionary mapping named         
sql (str): The SQL query containing named parameters        

Args:    
execute_sql

param_list,positional_sql,eturn a dict ofRgiven delimiter.
the named parameters flag is the positional parameters,

Convert a SQL query from named parameters to     
"""

> Dict[str, Any]:-Dict[str, Any], delimiter: str) 
def convert_named_to_positional_query(sql: str, params: 

Import Statements
Modified Problem

from typing import Dict, Any
import re

58

17
16

......
Test Case 5

Test Case 1

        ......         
:def test_sql_with_empty_string_parameter(self)    

self.assertEqual(result, expected)        
result = convert_named_to_positional_query(sql, params, delimiter)        

"execute_sql": "SELECT * FROM users WHERE username = john_doe AND age = 30"}            
"param_list": ["john_doe", 30],            

expected = { "positional_sql": "SELECT * FROM users WHERE username = $1 AND age = $2",        
delimiter = "$"        
params = {"username": "john_doe", "age": 30}        
sql = "SELECT * FROM users WHERE username = $username AND age = $age"        

def test_basic_named_parameters(self):   
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Test Suite

Reference Solution}    
"execute_sql": execute_sql        
"param_list": values,        
"positional_sql": positional_sql,        

return {    
parameter list, and executed SQL.#     

# Return the final result containing the positional SQL,     
    ......  

param_pattern = rf"\{delimiter}(\w+)"    
result = {}      

42

15
5
4

3
2
1

Requirement Description"""
......Convert a SQL query     

"""

Function Signature

> Dict[str, Any]:-Dict[str, Any], delimiter: str) 
def convert_named_to_positional_query(sql: str, params: 

Import Statements
Reference Solution

from typing import Dict, Any
import re
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Fig. 1: The overview of the construction pipeline for RealisticCodeBench

additional test cases to achieve full complete coverage where

possible. These additional test cases are also reviewed by the

other two programmers to ensure their correctness.

Multi-Language Version Creation. To create multi-

language versions of each programming problem in Realistic-

CodeBench, we leverage ChatGPT-4o for translation and adap-

tation across Python, Java, JavaScript, TypeScript, and C++.

The process begins with a structured prompt containing the

original problem, reference solution, and specific instructions

to adapt code to each language’s conventions. This includes

placing docstrings before function declarations in languages

like Java, JavaScript, TypeScript, and C++, and modifying

symbols in docstrings (e.g., replacing single quotes with

double quotes where necessary). Additionally, we ensure that

function parameter types are accurately matched to the syntax

and typing conventions of each language. For both reference

solutions and test cases, we tailor naming conventions to

each language’s standards. JavaScript, Java, and TypeScript

adopt camelCase, while C++ and Python adhere to snake case.

Certain programming tasks may not translate directly across

languages due to unique data types or operations. In such

cases, we retain the language-specific nature of the problem

to reflect real-world coding practices. For example, a Python

programming problem that calculates and returns the memory

size of an object (such as a PyTorch tensor or NumPy array)

remains in Python, as PyTorch and NumPy are specific to the

Python ecosystem and do not have direct equivalents in Java,

JavaScript, TypeScript, or C++. After initial translation, the

same three programmers thoroughly review each version and

test cases, making any necessary corrections or adjustments

for coding standards and language nuances. If any language

version has incomplete line and branch coverage, additional

test cases are created and validated to address gaps.

Expert Review. We engage 13 experienced engineers (re-

cruited via our industry connections as volunteers) to assess if

the programming problems collected from GitHub could also

represent coding tasks proprietary developers might address

using LLMs (the three programmers mentioned earlier are

not included in this group). Nearly three-quarters of these

engineers come from major IT companies (e.g., Microsoft,

Huawei, ByteDance, Tencent, Alibaba, Bilibili, and Meituan),

while the rest are from smaller IT companies. With an average

of 7.7 years of software development experience (ranging from

4 to 11 years and a median of 6 years), these engineers

bring valuable industry insights to our benchmark validation.

Over the past one to two years, they have used either their

company’s internal LLM tools or external tools like Chat-

GPT in their daily coding tasks. We task these engineers

with assessing whether the programming problems (including

their multi-language variants) align with realistic development

scenarios—specifically, whether developers would realistically

use LLMs to solve such similar problems in practical software

development. We distribute the tasks to engineers via online

documents (e.g., Google Docs), and they provide independent

feedback by crossing out tasks that fail to meet these criteria.

Only those programming problems approved by a majority

(at least 10 out of 13 engineers) are retained, ensuring the

benchmark mirrors tasks developers are likely to employ

LLMs for in practical projects. Ultimately, 4 programming

problems are excluded. For example, one problem involves

creating a logging class to print log information, as developers

typically use established logging frameworks (e.g., logging in

Python or Log4j in Java) rather than implementing custom

logging logic.

C. Benchmark Characteristics

The final benchmark comprises 376 programming problems

translated across multiple languages: 361 in Python, 346 in

JavaScript, 343 in TypeScript, 307 in Java, and 323 in C++,

each accompanied by reference solutions and test cases. These
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TABLE II: The detailed statistics of the benchmark

Language
Param
(min)

Param
(max)

Param
(mean)

Sol
(min)

Sol
(max)

Sol
(mean)

Prompt
(mean)

Python 1 10 2.05 3 166 35.03 125.02
Java 1 8 1.98 8 205 55.43 115.93
JavaScript 1 10 2.12 3 181 37.57 121.81
TypeScript 1 9 2.09 4 189 39.84 127.74
C++ 1 8 1.98 6 192 42.94 131.38
Average 1 9 2.04 4.8 192 42.16 124.4

376 problems include 364 function-based tasks and 12 class-

based code generation tasks. Table II shows the detailed

statistics of the benchmark across the five languages, including

the number of function parameters per task (Param), the

number of lines of reference solution code (Sol), and the

number of tokens in each task prompt (Prompt). The average

number of parameters across the five languages is 2.04. The

average number of LOC in the reference solutions across

these languages is 42.2. The average token length of code

generation prompts—including requirement descriptions and

function signatures—is 124.4. This complexity is greater than

that seen in benchmarks such as HumanEval and MBPP but

lower than that in benchmarks designed for more complex

development scenarios like ClassEval. This suggests that our

tasks and code generation requirements are more challenging

than those in HumanEval but less so than those in ClassEval.

These 376 tasks cover nine distinct domains: data structures

and algorithms, text processing, file handling, mathematical

problems and scientific computing, date and time processing,

data visualization and graphic applications, network program-

ming, frontend development, and security. To systematically

define these domains, we adopt a rigorous two-stage labeling

process involving three authors. First, two authors indepen-

dently label 40% of the tasks selected at random; any dis-

crepancies arising from this stage are resolved in consultation

with the third author to unify domain definitions. They then

proceed to independently label the remaining 60% of the tasks,

with residual discrepancies addressed through collaborative

discussion to ensure consistency across all annotations. This

diversity in task domains also introduces a range of complex

input data types, which are classified into eight categories:

strings, sequences, numbers, matrices, dictionaries, functions,

complex data, and files. The first six are common basic

data types. Among these, sequences refer to ordered data

structures such as arrays and tuples; numbers include integers,

floating-point values, and boolean values (represented as 0 or

1); and complex data encompasses language-specific unique

data types—for example, DataFrames in Python, Objects

in JavaScript/TypeScript, and Structs in C++. Files include

development-related data files in various formats (e.g., CSV,

XLSX, JSON, JSONL, XML, YAML) as well as image files

and office documents (e.g., PDF, DOCX, DOC). This diverse

input not only mirrors the complexity of real-world software

development but also strengthens the broad applicability of the

benchmark.

TABLE III: The overview of the 12 evaluated LLMs

Model Name Organization Sizes Release Time Open-Source

General

GPT-4.1 [17] OpenAI - 2025

GPT-4o-mini [83] OpenAI - 2024

DeepSeek-V3 [19] DeepSeek 671B 2024 �
Llama 3.1 [20] Meta 8B 2024 �
Phi-3 [21] Microsoft 7B 2024 �
Mistral [22] Mistral AI 7B 2024 �
ChatGLM [23] THUDM 6B 2024 �

Coding

CodeGeex4 [28] THUDM 9B 2023 �
DeepSeek-Coder [27] DeepSeek 6.7B 2024 �
StarCoder2 [25] BigCode 7B 2024 �
CodeGen2.5 [24] Salesforce 7B 2023 �
CodeLlama [26] Meta 7B 2023 �

IV. EXPERIMENTAL SETUP

We aim to comprehensively evaluate a diverse range of

general-purpose and code-specific models that have been

widely studied in recent code generation benchmarks [13].

Table III provides an overview of the LLMs examined,

with the “Organization” column indicating the institution that

developed the LLM, the “Sizes” column indicating model

sizes in billions of parameters, the “Release Time” showing

when the LLM was released, and “Open-Source” indicating

whether the model’s weights are publicly available. Overall,

we evaluate 12 LLMs to ensure a thorough examination of

the generalizability. Due to resource constraints, we limit our

investigation to open-source models (except DeepSeek-V3)

with parameter sizes of 10 billion, excluding smaller models

(under 5 billion parameters) due to their limited efficacy.

Additionally, we focus on models with relatively similar

parameter sizes to minimize the impact of size differences

and facilitate clearer performance comparisons across models.

For closed-source modwels like GPT-4.1 and GPT-4o-mini, we

use the OpenAI API interface 3. For DeepSeek-V3, we rely

on the DeepSeek API interface, as this model, while open-

sourced, requires 8 GPUs with 80GB memory each to run

in BF16 format for inference. For other open-source models,

we obtain publicly released versions, with a preference for

instruct versions trained using instruction fine-tuning, from

official repositories and follow the provided documentation

for setup and usage. These open-source models are run on a

computational infrastructure featuring two NVIDIA GeForce

RTX 3090-24GB GPUs. The maximum generation length for

each solution is limited to 512 tokens to maintain consistency

across models and prevent excessively long outputs.

We assess code generation performance using two distinct

search strategies. In the greedy search setting, we generate a

single code solution (n=1) per task by greedily choosing the

most likely next token at each step, providing a deterministic

3During benchmark construction, we use ChatGPT-4o in a conversational
window format; however, during evaluation, we employ different OpenAI
models (GPT-4.1 and GPT-4o-mini) via their API. Critically, the evaluation
process is entirely independent of benchmark construction, thus minimizing
the risk of data leakage.
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evaluation of the models’ performance, with temperature=0

and top-p=1.0. Additionally, we use nucleus sampling to

generate 10 code solutions (n=10) per task, with top-p=0.95

and temperature=0.8, to explore the models’ ability to produce

diverse outputs. Following established practices in code gener-

ation evaluation [6], [1], [10], we employ the pass@k metric

to assess the functional correctness of generated code. For

each problem, LLMs generate n code solutions, k of which are

randomly selected for testing against reference test cases. The

pass@k score measures the percentage of RealisticCodeBench

problems, where at least one of the k-generated solutions is

correct (i.e., passes all test cases). In our experiments, we

report pass rates for k = 1, 3, and 5. For greedy search,

we set n = 1 to compute pass@1, while for sampling-based

evaluation, n = 10 is used to calculate pass@3 and pass@5. To

mitigate high sampling variance, we adopt HumanEval’s [6]

unbiased estimator of pass@3 and pass@5, ensuring reliable

and consistent evaluations of LLM performance across our

benchmark.

V. EXPERIMENTAL RESULTS

A. RQ1: How do LLMs perform on our RealisticCodeBench
benchmark?

Table IV presents the pass@1, pass@3, and pass@5 met-

rics for the 12 evaluated LLMs on our RealisticCodeBench

benchmark, with the top performances for both general and

coding-specific LLMs highlighted in bold. GPT-4.1 achieves

the highest average pass@1 across the five languages, with

an average pass@1 score of 60.65%, followed by DeepSeek-

V3 and GPT-4o-mini, which achieves an average pass@1 of

58.86% and 53.11%, respectively. GPT-4.1’s average pass@1

surpasses that of DeepSeek-V3 by 1.79%. In Python, GPT-4.1

leads by a margin of 5.27%, yet the gap is much smaller in

JavaScript and C++ (from 3.1% to 4.05%), with DeepSeek-

V3 even outperforming GPT-4.1 in Java and TypeScript by

2.6% and 0.87%. Compared to GPT-4o-mini, DeepSeek-

V3 achieves a 5.75% higher average pass@1. This perfor-

mance trend remains consistent for pass@3, while for average

pass@5, DeepSeek-V3 slightly surpasses GPT-4.1. Overall,

these results highlight the superior code generation capabilities

of GPT-4.1, DeepSeek-V3, and GPT-4o-mini. As an open-

source model, DeepSeek-V3 offers a viable alternative for

organizations capable of deploying 8 GPUs with 80GB of

memory for inference, making it a competitive substitute

for GPT-4.1 in code generation tasks. Among the smaller-

parameter open-source models, CodeGeeX4 stands out as the

best performer, achieving an average pass@1 score of 45.75%,

with DeepSeek-Coder following closely at 38.08%. Notably,

the difference between CodeGeeX4 and GPT-4o-mini in the

programming languages is not large, ranging from 1.73% in

JavaScript to 10.52% in Python. Additionally, among these

small-parameter open-source models, code LLMs generally

outperform general LLMs, primarily because code LLMs have

been trained on more source code.

Figure 2 illustrates the number of problems each of the

top five LLMs solved on their first attempt across five pro-

TABLE IV: The pass@1, pass@3, and pass@5 scores (%) of

the 12 LLMs on our RealisticCodeBench benchmark

Model Python Java JavaScript TypeScript C++ Average
Pass@1

General

GPT-4.1 74.52 53.75 65.03 54.52 55.42 60.65
GPT-4o-mini 64.54 48.53 55.49 48.69 48.30 53.11
DeepSeek-V3 69.25 56.35 60.98 55.39 52.32 58.86
Llama 3.1 44.87 22.48 40.17 32.36 21.67 32.31
Phi-3 42.66 20.20 43.35 32.94 22.29 32.29
Mistral 32.13 22.48 31.21 17.20 21.36 24.88
ChatGLM 21.84 10.42 21.10 15.16 8.05 15.31

Coding

CodeGeex4 54.02 37.46 53.76 41.69 41.80 45.75
DeepSeek-Coder 45.15 31.92 40.17 38.19 34.98 38.08
StarCoder2 42.11 25.41 38.15 32.94 30.34 33.79
CodeGen2.5 40.78 24.10 36.42 29.57 20.12 30.20
CodeLlama 43.24 22.80 36.71 34.99 30.65 33.68

Pass@3

General

GPT-4.1 77.63 56.28 68.45 58.84 59.28 64.10
GPT-4o-mini 69.47 53.56 59.47 53.36 52.64 57.70
DeepSeek-V3 75.32 57.63 64.16 57.61 54.17 61.78
Llama 3.1 46.25 26.41 44.37 35.22 23.39 35.13
Phi-3 44.39 23.64 45.81 34.73 25.95 34.90
Mistral 34.54 23.95 35.62 20.56 22.91 27.52
ChatGLM 24.20 11.30 22.67 17.14 9.74 17.01

Coding

CodeGeex4 55.79 41.33 54.98 44.83 45.27 48.44
DeepSeek-Coder 48.42 33.78 44.13 41.30 36.06 40.74
StarCoder2 46.71 27.67 42.48 36.32 32.47 37.13
CodeGen2.5 42.05 25.43 40.36 33.58 22.81 32.85
CodeLlama 44.90 25.49 40.22 37.96 34.94 36.70

Pass@5

General

GPT-4.1 79.89 60.04 71.68 63.29 63.47 67.67
GPT-4o-mini 72.26 56.05 63.37 57.14 55.82 60.93
DeepSeek-V3 77.55 59.17 68.04 61.35 59.08 65.04
Llama 3.1 50.94 29.23 46.91 36.76 25.39 37.85
Phi-3 46.23 25.70 46.27 36.04 29.48 36.74
Mistral 35.70 26.22 36.76 23.65 25.04 29.47
ChatGLM 26.30 13.25 24.18 19.97 10.32 18.80

Coding

CodeGeex4 58.83 42.46 59.24 54.03 46.73 52.26
DeepSeek-Coder 50.81 36.19 45.62 43.57 38.34 42.91
StarCoder2 49.39 28.76 46.55 39.68 35.08 39.89
CodeGen2.5 44.37 28.41 41.29 35.04 24.23 34.67
CodeLlama 48.56 28.57 43.03 38.18 36.37 38.94

gramming languages. The central overlapping sections of the

Venn diagrams show the programming problems all models

can solve, indicating a shared baseline competence. However,

the distinct segments unique to each model highlight their spe-

cific strengths. GPT-4.1 and DeepSeek-V3 stand out with the

largest unique areas, demonstrating their superior performance

in solving programming problems that other models cannot,

which underscores their stronger performance.

There are notable differences in pass@1 scores across

the five programming languages. Python consistently shows

higher pass rates across all models, with GPT-4.1 achieving

an 74.52% pass@1, while languages like Java and C++ have

comparatively lower scores. This disparity may stem from

Python’s extensive presence in LLM training data and its

simpler syntax, which likely contributes to better performance

on Python tasks. Across all models, the improvement from

pass@1 to pass@3 and pass@5 remains relatively modest. For

instance, GPT-4.1’s pass rate rises from 60.65% at pass@1 to

67.67% at pass@5, DeepSeek-V3 improves from 58.86% to

65.04%, and GPT-4o-mini from 53.11% to 60.93%. We calcu-

late the Levenshtein distance and conduct manual inspections

for cases where models failed to solve the problem, revealing

that the generated code among the five responses remained
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Fig. 2: The number of problems solved by the models

relatively similar. This observation indicates a lack of diversity

in the generated solutions, suggesting that LLMs may not

possess the depth of understanding necessary to solve certain

complex problems effectively, even when allowed to generate

multiple attempts.

� Answer to RQ1: GPT-4.1 achieves the highest aver-

age pass@1 across five languages, closely followed by

the open-source model DeepSeek-V3. Among smaller-

parameter open-source models, CodeGeeX4 stands out

with strong performance, with a small gap from GPT-

4o-mini.

B. RQ2: How does the performance of LLMs differ between
RealisticCodeBench and HumanEval?

In this section, we compare the pass@1 performance of

12 LLMs on RealisticCodeBench and HumanEval. We omit

more complex benchmarks like ClassEval and CoderEval,

where all LLMs’s pass@1 scores are generally low, making

it challenging to assess performance correlation with Real-

isticCodeBench. Figure 3 displays a scatter plot illustrating

the pass@1 performance of the 12 LLMs on HumanEval

and RealisticCodeBench (Python). The scatter plot includes

a green dashed line representing a linear fit and a light blue

region indicating variance, suggesting that 8 of the LLMs

exhibit linearly proportional growth in performance between

HumanEval and RealisticCodeBench. This observation implies

that, in most cases, RealisticCodeBench reflects the coding

abilities of LLMs similarly to HumanEval. For instance,

the performance gap between GPT-4.1 and DeepSeek-V3

remains relatively small across both HumanEval and Re-

alisticCodeBench (Python). However, some models such as

CodeGeeX4, Llama 3.1, DeepSeek-Coder, and Phi-3 display

notably mismatched performances, as highlighted in the red-

shaded area. Specifically, CodeGeeX4 drops substantially from

a pass@1 of 82.3% on HumanEval to 54.02% on Realis-

ticCodeBench (Python); Llama 3.1 decreases from 72.6% to

44.87%; DeepSeek-Coder falls from 78.6% to 45.15%; and

Phi-3 declines from 61.0% to 42.66%.

Fig. 3: The performance comparison of pass@1 for 12 LLMs

between HumanEval and RealisticCodeBench (Python)

Several factors may explain this phenomenon. First,

some LLMs’ training sets might be overly optimized for

HumanEval-style problems. Previous studies [74], [9], [84],

[8] indicate that high performance on HumanEval often re-

sults from overfitting, as it is widely used and its data

may contaminate LLM pre-training datasets. For example,

Achiam et al. [17] reported that 25% of HumanEval had

been contaminated in ChatGPT pre-training corpus. Addi-

tionally, contamination may arise from instruction fine-tuning

datasets [8], as noted by Phi [85], [86], which reported con-

siderable overlap between synthetic prompts and specific test

samples in HumanEval. Second, RealisticCodeBench poses

more challenging tasks than HumanEval, as it is designed

to better reflect real-world coding scenarios where develop-

ers intend to use LLMs. RealisticCodeBench also adjusts

requirements and parameters to prevent data leakage, thus

revealing limitations in the generalization abilities of models

like DeepSeek-Coder, Llama 3.1, and CodeGeeX4 when faced

with real-world requirements and leakage-free tasks.

� Answer to RQ2: LLMs generally perform worse on

RealisticCodeBench compared to HumanEval, with sub-

stantial performance drops observed in models such as

CodeGeeX4, Llama 3.1, DeepSeek-Coder, and Phi-3.

C. RQ3: What are the common errors during code generation
on RealisticCodeBench?

We further analyze cases where the highest-performing

GPT-4.1 generates incorrect code within five attempts. In

instances where GPT-4.1 fails to produce a correct solution

during these first five tries, we extend the generation process

to ten attempts. Most of these additional attempts yield correct

solutions, suggesting that generating multiple responses with

GPT-4.1 often leads to accurate answers. However, some

problems remain unresolved. We identify three primary types

of issues, as illustrated in Figure 4.

(1) Lack of Robust Method Parameter Handling and
Edge Case Coverage: A common issue in GPT-4.1’s gen-

erated code involves inadequate parameter validation, missing

range checks, or incomplete format verification. For example,
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def is_valid_coordinate(coord: str) -> bool:
   ...
   try:
       if not coord:
           return False
       if coord[-1].upper() in ['N', 'S', 'E', 'W']:            
           coord_value = coord[:-1]                             
           direction = coord[-1].upper()                        
       else:                                                    
           coord_value = coord                                  
           direction = None                                     
       parts = coord.split('.')
       if len(parts) > 2:
           return False
       if parts[0].startswith('-'):
           num_part = parts[0][1:]
       else:
           num_part = parts[0]
       if not num_part.isdigit():
           return False
       if len(parts) == 2 and not parts[1].isdigit():
           return False
       value = float(coord_value)                               
       if direction in ['N', 'S']:                              
           return -90 <= value <= 90                            
       elif direction in ['E', 'W']:                            
           return -180 <= value <= 180                          
       else:                                                    
           return (-90 <= value <= 90) or (-180 <= value <= 180)
       return True
   except:
       return False

CCorrect Code

Correct Code

Correct Code

Error Code

(a) Example 1: Lack of Robust Method Parameter Handling
and Edge Case Coverage

CCorrect Code

Correct Code

Correct Code

Correct Code

from typing import Union,List
import re
def split_html_content(
        html: str,
        target_tags: Union[List[str], None] = None,
        preserve_whitespace: bool = False
) -> List[str]:
    ...
    tag_pattern = "|".join(target_tags)                                  
    pattern = fr"(<({tag_pattern})\b[^>]*>.*?</\2>)|([^<]+)"             
    tag_pattern = "|".join(f"({tag})" for tag in target_tags)            
    escaped_tags = "|".join(re.escape(tag) for tag in target_tags)       
    pattern = f'(<({escaped_tags})\\b[^>]*>.*?</\\2>)|([^<]+)'           
 
    matches = re.finditer(pattern, html, re.DOTALL)
    result = []
    ...

Error Code

Error Code

(b) Example 2: Incorrect or Inadequately Comprehensive
Regex

from typing import *
import numpy as np
import pandas as pd
def compute_pi_to_digits(digits: int) -> str:
    ...
    for _ in range(digits):                                   
    iterations = int(math.log(digits) / math.log(2)) + 3      
    for _ in range(iterations):                               
        a_next = (a + b) / 2
        b = (a * b).sqrt()
        t -= p * (a - a_next) ** 2

Correct Code

Correct Code

Correct Code

Error Code

(c) Example 3: Incorrect Mathematical Formula Application

Fig. 4: The three common error cases in GPT-4.1 code

generation

in Example 1, when tasked with implementing a function to

check if a string conforms to the specification for latitude and

longitude identifiers, GPT-4.1 only verifies whether the format

consists of numbers, while failing to check the valid value

ranges. Latitudes should be within the range of -90 to 90, and

longitudes within -180 to 180, but the generated code lacks this

critical validation. By incorporating 1-2 specific test cases into

the prompt, such as invalid values like “91.5” for latitude or

“-181.3” for longitude, GPT-4.1 can generate corrected code,

demonstrating its reliance on explicit prompt guidance for such

constraints.

(2) Incorrect or Inadequately Comprehensive Regex:
Another common issue is incorrect or inadequately compre-

hensive regex implementation. For example, in Example 2,

when tasked with splitting an HTML string into tag blocks

and non-tag text blocks based on specified markers, GPT-

4.1 generates a flawed regular expression. This regex fails to

handle cases where there are multiple consecutive segments of

non-tag text within the HTML structure, leading to incorrect

partitioning of content. This underscores that when using GPT-

4.1 to generate regex-involving code, users should verify cov-

erage of all scenarios or explicitly provide pattern examples.

(3) Incorrect Mathematical Formula Application: For

problems involving mathematical algorithms, GPT-4.1 occa-

sionally misinterprets algorithmic properties when the prompt

does not explicitly clarify them. For example, in Example 3,

when tasked with generating code for the Gauss-Legendre

algorithm to calculate π to a specified number of decimal

places, GPT-4.1 demonstrates a misunderstanding of the al-

gorithm. The Gauss-Legendre algorithm exhibits quadratic

convergence, requiring only log2(digits) iterations rather than

digits iterations, yet the generated code uses the incorrect

number of iterations. When we explicitly state the quadratic

convergence property and the correct iteration formula in the

prompt, GPT-4.1 generates accurate code, emphasizing the

need for precise algorithmic descriptions when dealing with

complex mathematical computations.

� Answer to RQ3: Common errors in GPT-4.1’s code

generation on RealisticCodeBench include insufficient

handling of edge cases and method parameter robust-

ness, incorrect or inadequately comprehensive regex,

and the misapplication of mathematical formulas.

VI. DISCUSSION

A. Implications

Unlike widely-used benchmarks like HumanEval-focused

on algorithmic and basic programming tasks—our benchmark

reflects the types of code developers commonly generate

with LLMs in real-world development scenarios. Compared

to other GitHub-derived benchmarks like CoderEval and

CodeEvoBench-designed to test the upper limits of LLM capa-

bilities and provide insights for improving LLM performance

in handling complex tasks—our benchmark offers a comple-

mentary perspective. While we recognize these benchmarks’

value, ours serves as a practical supplement, offering insights

from real-world LLM usage scenarios. In addition, similar to

CoderEval and CodeEvoBench, our benchmark remains chal-

lenging even for advanced models: GPT-4.1 achieves a pass@1

rate of only 74.52% in Python, indicating 25.48% of tasks

cannot be solved correctly in one attempt. This highlights the

need for continuous improvement across all LLM categories,

from small-parameter models to large-scale architectures, and

validates the utility of our benchmark—since even state-of-the-

art models do not exhibit perfect performance. Therefore, we

recommend that newly developed LLMs be evaluated using
our benchmark to give developers a clearer understand-
ing of model performance on tasks that reflect current,
practical coding needs that LLMs can address reliably.

Given data privacy concerns, as noted by Liang et al. [14],

41% of developers fear LLMs accessing private codebases

due to data privacy concerns. Our findings indicate that open-

source models like DeepSeek-V3 and CodeGeeX4-9B offer

privacy-conscious alternative. The performance differential

between DeepSeek-V3 and GPT-4.1, with an average pass@1

gap of only 1.79%, suggests that DeepSeek-V3, despite requir-

ing a robust hardware setup of 8 GPUs with 80GB each, is

a feasible choice for well-resourced enterprises that prioritize
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data privacy. CodeGeeX4-9B shows competitive performance

compared to the proprietary model GPT-4o-mini on some

programming languages; for instance, in Python, it achieves

a pass@1 rate of 54.02% and a pass@5 rate of 58.83%,

narrowing the accuracy gap with GPT-4o-mini (pass@1 of

64.54%) to only 5.71% when generating multiple solutions.

Moreover, CodeGeeX4-9B’s operational feasibility on a server

equipped with dual NVIDIA GeForce RTX 3090 (24GB)

GPUs—costing around $3,000—makes it a cost-effective op-

tion for individual developers and small firms. However,

for deploying larger models with parameters exceeding 9B,

higher-end GPUs like the NVIDIA A100 or A800 would

be required, with starting costs around $20,000. Thus, for
enterprises with substantial funding and a focus on data
privacy, DeepSeek-V3 is recommended, while CodeGeeX4-
9B is advised for privacy-conscious developers or smaller
companies on tighter budgets.

The error case analysis in Section V-C underscores the need
for research focused on enhancing LLM robustness in
handling boundary conditions, domain-specific formulas,
and accurate and comprehensive regular expressions im-
plementations. For tasks requiring robust parameter handling

and comprehensive edge case coverage, developers should

include specific test cases within the prompt to highlight

these aspects effectively. For mathematical or formula-based

problems, developers should provide explicit formulas within

the prompt to guide the model toward accurate computations,

thereby reducing the risk of errors due to incorrect formula

application. These strategies can collectively enhance LLM

reliability in code generation tasks.

B. Threats to Validity

We evaluate a single closed-source LLM (the GPT series

from OpenAI), despite the existence of other closed-source

models such as Google’s Gemini. The decision to focus on

OpenAI’s GPT models is based on their widespread use

and demonstrated effectiveness. However, this may introduce

selection bias, as other models might perform differently under

similar conditions. Moreover, Liang et al. [14] found that 41%

of developers are hesitant to use LLMs due to concerns that

code generation tools could access their private codebases.

To address this, we prioritize the exploration of open-source

LLMs. In total, we examine five general-purpose open-source

LLMs and five code-specific open-source LLMs to mitigate

bias and broaden our analysis. Additionally, our computational

resources—two NVIDIA GeForce RTX 3090 GPUs—limit

our ability to evaluate larger open-source models like Star-

Coder 15B and DeepSeek-Coder-V2 16B, which trigger out-

of-memory errors during testing. As a result, our analysis

is restricted to models with a maximum size of 10 billion

parameters. We plan to expand our evaluation to include larger

LLMs as more computational resources become available.

Our benchmark focuses exclusively on code explicitly la-

beled as LLM-generated on GitHub, with the goal of reflecting

how open-source developers use LLMs. However, it is likely

that only some developers annotate their LLM-generated code

as such—a factor that could skew the task distribution within

our benchmark. Further, the limited number of programming

problems (376) may not fully capture the diversity of real-

world coding tasks; this scale is currently constrained by the

extensive manual effort required (approximately 700 person-

hours). With the increasing use of LLMs in open-source

development, we plan to expand our benchmark by incorpo-

rating more programming problems from GitHub and other

repositories.

To mitigate potential risks of data leakage, we adapt the

programming problems derived from GitHub code, altering the

types and quantities of input/output parameters. We calculate

the Levenshtein distance between the original GitHub code

and the LLM-generated code, finding substantial differences.

For example, the Levenshtein distance between the original

GitHub Python code and the GPT-4.1-generated code for

the adapted problem is 509.27. Additionally, we manually

review the original GitHub code and the LLM-generated code,

confirming that they are indeed very dissimilar, suggesting

minimal risk of data leakage.

VII. CONCLUSION

We develop RealisticCodeBench to better align with the

types of coding tasks developers commonly address using

LLMs. This benchmark includes 361 Python, 346 JavaScript,

343 TypeScript, 307 Java, and 323 C++ problems, reflecting

developers’ everyday coding needs. Experimental evaluations

of 12 LLMs reveal that, while GPT-4.1 achieves the highest

average pass@1, open-source models like DeepSeek-V3 and

CodeGeeX4 can serve as viable alternatives for companies

and smaller organizations focused on privacy, cost-efficiency,

and robust code generation. In comparing performance gaps

between HumanEval and RealisticCodeBench, we find that

some LLMs may be overly optimized for HumanEval-style

problems rather than practical coding applications. Lastly, our

analysis of failed cases highlights critical areas where LLMs

fall short in RealisticCodeBench, identifying opportunities for

improvement in handling complex, real-world coding tasks.
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