2025 40th IEEE/ACM International Conference on Automated Software Engineering (ASE)

RealisticCodeBench: Towards More Realistic
Evaluation of Large Language Models for Code
(Generation

Xiao Yu!, Haoxuan Chen?, Lei Liu?, Xing Hu!, Jacky Wai Keung4, and Xin Xia!*
!The State Key Laboratory of Blockchain and Data Security, Zhejiang University, Hangzhou, China,
xiao.yu@zju.edu.cn, xinghu@zju.edu.cn, xin.xia@acm.org
2School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China,
haoxuan.chen@whut.edu.cn
3Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China, lei.liu@stu.xjtu.edu.cn
4Department of Computer Science, City University of Hong Kong, Hong Kong, China, jacky.keung@cityu.edu.hk

Abstract—Evaluating the code generation capabilities of
Large Language Models (LLMs) remains an open question.
Recently, more advanced benchmarks—such as CoderEval,
EvoCodeBench, and ClassEval—have been introduced to evaluate
LLMs on practical coding tasks from GitHub repositories, such
as non-standalone function generation and class-level code gener-
ation. However, even the most sophisticated LLMs struggle with
these complex tasks; for instance, GPT-4 achieves only a 37.0%
pass@1 on ClassEval. Prior studies show that developers often
discard LLM-generated code or abandon code generation models
when outputs are incorrect or require extensive debugging, which
leads them to rely on LLMs primarily for code generation tasks
that high-performing models can reliably handle.

In response to this gap, we introduce RealisticCodeBench, a
benchmark specifically designed to reflect the types of problems
developers commonly tackle with LLMs. By mining GitHub
repositories for code samples tagged as generated by ChatGPT
or Copilot, we collect real-world coding tasks that capture
typical LLM usage scenarios. We modify these tasks, generate
reference solutions and test cases, and adapt the problems
into multiple programming languages. This effort results in
RealisticCodeBench, comprising a total of 376 programming
problems translated across multiple languages: 361 in Python,
346 in JavaScript, 343 in TypeScript, 307 in Java, and 323
in C++, each with corresponding reference solutions and test
cases. We evaluate 12 general-purpose and code-specific LLMs on
RealisticCodeBench. Our findings reveal that GPT-4.1 achieves
the highest average pass@1 score across languages, closely
followed by DeepSeek-V3-671B, suggesting that DeepSeek-V3-
671B provides a viable open-source alternative to GPT-4.1 for
large companies with sufficient GPU resources and privacy
concerns. CodeGeeX4-9B, a cost-effective model, emerges as a
suitable substitute for GPT-40-mini for individual developers and
smaller organizations with similar privacy considerations. Addi-
tionally, LLM performance discrepancies between HumanEval
and RealisticCodeBench suggest that some LLMs are either
overly specialized for HumanEval-style problems or insufficiently
optimized for real-world coding challenges. Finally, we analyze
failed cases, summarize common LLM limitations, and provide
implications for researchers and practitioners.

Index Terms—Code Generation, Large Language Model,
Benchmark, GitHub

*Corresponding author: Xin Xia, xin.xia@acm.org

2643-1572/25/$31.00 ©2025 IEEE
DOI 10.1109/ASE63991.2025.00248

I. INTRODUCTION

Code generation, which automatically creates code snip-
pets from natural language descriptions, has been widely
adopted to enhance development efficiency and productiv-
ity, attracting significant attention in academic research [1],
[2], [3], [4]. Recent advances in Large Language Models
(LLMs)—trained on massive volumes of both general and
code-specific datasets—have further accelerated progress in
this field [5]. To evaluate the performance of these emerging
LLMs on code generation tasks, several benchmarks have
been introduced, starting with HumanEval [6] and MBPP [7].
Reporting performance on these benchmarks has seemingly
become mandatory for a model to be considered competi-
tive in code generation [8]. Indeed, nearly all new LLMs
released in 2023-2025 highlight code generation results on
one or both of these benchmarks. While they have been
widely used and provide valuable insights, the programming
problems they contain are largely algorithmic and basic pro-
gramming problems, which do not fully reflect the challenges
of real-world coding [9]. To address this, more complex
benchmarks—such as CoderEval [10], EvoCodeBench [11],
ComplexCodeEval [12], and ClassEval [13]—have been de-
veloped to assess LLM performance on more challenging,
practical coding tasks collected from real-world GitHub code
repositories, such as non-standalone function generation and
class-level code generation. These benchmarks offer a deeper
understanding of the upper limits of LLM capabilities when
tackling intricate programming problems.

However, developers currently tend not to rely on LLMs
for overly complex coding tasks, primarily due to the low
success rates of LLMs on more challenging benchmarks.
For example, GPT-3.5 achieves only a 21% pass@]1 rate for
non-standalone function generation on CoderEval [10], while
GPT-4 reaches just a 37.0% pass@1 rate for class-level code
generation on ClassEval [13], which can discourage developers
from using LLMs for such sophisticated code generation tasks.
A large-scale survey conducted by Liang et al. [14] found

3020

that developers often discard LLM-generated code or abandon
the use of code generation models when they fail to meet
functional or non-functional requirements, when developers
struggle to control the models to produce the desired output,
or when significant effort is needed to debug and refine
the LLM-generated code. In other words, while developers
often work on complex programming problems like those in
CoderEval [10], EvoCodeBench [11], ComplexCodeEval [12],
and ClassEval [13], current LLMs are not yet ready to generate
such sophisticated code at scale. Instead, developers are more
likely to use LLMs for more manageable coding tasks that
high-performing models (e.g., GPT-4.1) can generate correctly
without requiring extensive debugging or modification. There-
fore, to better align benchmarks with current developer prac-
tices of using LLMs for code generation, we need to shift our
focus toward understanding the types of code developers are
actually generating with LLMs daily and create benchmarks
based on these practical use cases.

To achieve this, we collect real-world coding tasks that
reflect typical LLM code generation scenarios by mining high-
star GitHub repositories for code samples explicitly labeled as
generated by ChatGPT or Copilot. Specifically, our previous
study [15] find that nearly all LLM-generated code on GitHub
is produced by tools like ChatGPT or Copilot, with very few
samples from other LLMs. Developers frequently annotate
such code snippets with comments like “the code is generated
by ChatGPT,” indicating they are created using these tools.
Using search terms like “generated by ChatGPT”, we leverage
the GitHub REST API to locate and collect relevant Python,
Java, JavaScript, TypeScript, and C++ code samples from
high-star projects, which represent how developers use LLMs
for code generation in real-world scenarios. After collecting
the samples, we carefully filter out overly simplistic, repetitive,
or difficult-to-test codes.

We then make modifications to each sample’s requirements
while preserving the original intent and complexity as much
as possible. Where applicable, we also adjust the number
and types of input and output parameters to further mitigate
data leakage risks. Using ChatGPT-40, we generate reference
solutions for each modified programming problem, followed
by manual corrections. ChatGPT-4o0 also creates multiple
test cases based on the problem descriptions and reference
solutions, which are refined manually to ensure accuracy and
adequate line and branch coverage. Next, we use ChatGPT-
4o to generate multi-language versions of each programming
problem, followed by manual validation of the accuracy of the
translated solutions, test cases, and coverage. It is important
to note that some programming problems do not translate di-
rectly across languages due to language-specific data types or
operations. In such cases, we retain the problems as language-
specific to reflect real-world development practices. Finally,
we invite 13 experienced engineers to assess whether the pro-
gramming problems, including their multi-language versions,
represent realistic development scenarios and if proprietary
developers would also likely use LLMs to solve them. Only
problems approved by a majority (at least 10 out of 13 engi-

neers) are retained. Ultimately, we construct our benchmark,
RealisticCodeBench, comprising 376 programming problems
translated across multiple languages: 361 in Python, 346
in JavaScript, 343 in TypeScript, 307 in Java, and 323 in
C++. Each problem includes corresponding reference solutions
and test cases, spanning 9 distinct domains such as data
structures and algorithms, text processing, file handling, data
visualization and graphic applications, network programming,
and frontend development. This provides a comprehensive
assessment of LLM capabilities on coding challenges that
developers currently address with LLM assistance.

Based on RealisticCodeBench, we conduct extensive exper-
iments on 12 general-purpose and code-specific models com-
monly studied in recent benchmarks, such as GPT-4.1, GPT-
4o0-mini, DeepSeek-V3-671B, Llama 3.1-8B, CodeGeeX4-9B,
DeepSeek-Coder-6.7B, CodeLlama-7B, and StarCoder2-7B.
Across five programming languages, GPT-4.1 achieves the
highest average pass@1 score at 60.65%, with DeepSeek-V3-
671B close behind at 58.86%. This suggests that companies
with sufficient resources and privacy concerns could consider
deploying DeepSeek-V3-671B as an open-source alternative to
GPT-4.1 for everyday coding tasks. CodeGeeX4-9B achieves
an average pass@1 score of 45.75%, compared to GPT-4o-
mini’s 53.11%, showing only a moderate gap between them.
Thus, individual developers and smaller organizations with
similar privacy concerns can deploy CodeGeeX4-9B as an
affordable substitute for GPT-4o0-mini, using a setup with
two NVIDIA GeForce RTX 3090 (24GB) GPUs (approxi-
mately $3,000) to balance privacy, cost, and code genera-
tion performance. Furthermore, we observe substantial per-
formance discrepancies of some LLMs between HumanEval
and RealisticCodeBench. While models like CodeGeeX4-9B
reach impressive pass@1 scores on HumanEval (82.3%) and
DeepSeek-Coder-6.7B scores 78.6%, their performance drops
substantially on RealisticCodeBench’s Python subset (54.02%
and 45.15%, respectively). This suggests that current LLMs
may either be overly specialized for HumanEval-style prob-
lems or lack optimization for practical coding tasks. Finally, by
analyzing failed cases, we identify critical areas where LLMs
fall short in RealisticCodeBench, offering insights into poten-
tial improvements for practical code generation capabilities.

In summary, our contributions are as follows:

(1) We propose RealisticCodeBench, a benchmark that
aligns with the types of coding problems developers typically
solve with LL.Ms in practical development settings. Our bench-
mark is available in [16].

(2) We systematically benchmark 12 LLMs’ code generation
capabilities using RealisticCodeBench. Based on the results,
we provide implications for researchers and practitioners.

II. BACKGROUND AND RELATED WORK
A. LLMs for Code Generation

Code generation involves creating code snippets based
on given natural language requirements. General LLMs are
typically trained on a combination of general textual data,
code corpora, and instructions. Among the most well-known

3021

general LLMs are GPT-4 [17] and GPT-3.5 [18], both of
which have demonstrated significant capabilities across a wide
range of tasks. Additionally, other general-purpose models like
DeepSeek-V3 [19], Llama 3.1 [20], Phi-3 [21], Mistral [22],
and ChatGLM [23] have gained attention for their capabilities.
Technical reports for these models often emphasize their
strengths not only in general natural language processing tasks
but also their promising potential in code generation.

On the other hand, specialized code LLMs are primarily
trained on large-scale code-specific datasets with tailored in-
structions, often outperforming general-purpose LLMs in code
generation tasks. Notable examples include CodeGen [24],
StarCoder [25], CodeLlama [26], DeepSeek-Coder [27], and
CodeGeeX [28]. For instance, DeepSeek-Coder is trained from
scratch on 2 trillion tokens, with a composition of 87% code
and 13% natural languages in both English and Chinese.
StarCoder2 is trained on 17 programming languages from
the Stack v2 [25]. These models are designed to focus more
specifically on understanding and generating code, typically
demonstrating superior performance in handling code-related
tasks compared to general LLMs.

B. Code Generation Benchmarks

Literature Search: To understand the progress of code
generation benchmarks, we conduct a literature search cov-
ering publications from 2021 to 2025 by using a forward
snowballing approach [35] '. The starting year of 2021 is
selected, as it marks the publication of the earliest prominent
benchmarks for code generation, which include test cases for
evaluating LLMs’ code generation accuracy (i.e., APPS [36],
HumanEval [6], and MBPP [7]). Although earlier code gen-
eration benchmarks, such as Concode [37] and JulCe [38],
were proposed before 2021, they mainly focused on evaluating
deep learning models, like LSTM and Transformer, rather
than LLMs. Moreover, these datasets lacked test cases, relying
instead on metrics like exact accuracy and BLEU to compare
model performance. Consequently, they are rarely used in later
research evaluating LLMs for code generation.

Therefore, our search process begins by gathering all papers
that cite APPS [36], HumanEval [6], and MBPP [7] using
Google Scholar. We then filter these citations to identify
papers proposing new benchmarks or significantly extending
existing ones in the context of code generation, considering
only studies written in English with full text available. We
exclude papers that introduce benchmarks for unrelated fields
(e.g., program repair, code completion, or code translation)
and focus solely on those proposing code generation bench-
marks. For each selected paper, we recursively examine its
citations, focusing on new or updated benchmarks developed.
This process continues until no further relevant papers are
found, ensuring that no significant benchmark developments
are missed during the search. Finally, the overall search pro-
cess results in 57 code generation benchmarks. The identified
benchmarks can be broadly classified into three categories. The

IThis literature review was conducted in April 2025.

first category, comprising 25 papers [39], [40], [41], [42], [43],
[44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54],
[55], [56], [57], [58], [59], [60], [61], [62], [63], focuses on
domain-specific code generation abilities, such as generating
security code [46], [49], [61], VHDL code [53], bioinformatics
code [47], Verilog code [43], data science code [7], [40], [41],
[59], AI code [48], object-oriented code in Java [50], parallel
code [54], Infrastructure-as-Code (IaC) programs [56], web
design [60], etc. The second category, comprising 21 papers
focusing on non-realistic code generation development scenar-
ios [6], [7], [64], [65], [66], [28], [67], [68], [69], [8], [36],
[70], [71], [72], [10], [73], [741, [75], [76], [77], [78], includes
one subset of benchmarks such as HumanEval [6], MBPP [7],
or their modified versions [64], [65], [66], [28], [68], [69],
[33], [64], [65], [33] that focus on pure-method algorithm or
logic tasks and often exhibit exceptionally high performance
on state-of-the-art models. The other subset [74], [76], [72],
[73], [75], such as LiveCodeBench [74] and CodeElo [76],
focus on algorithmic tasks for competitive programming, but
these competitive programming problems are rarely encoun-
tered in real-world development scenarios. The third category,
which includes 11 papers [29], [12], [34], [11], [10], [13],
[301, [32], [31], [33], [9], focuses on evaluating general code
generation capabilities that reflect real-world development
scenarios, which aligns with the goals of our benchmark. Due
to space constraints, we only discuss the difference between
these benchmarks and our RealisticCodeBench.

Table I overviews the 11 benchmarks, including details such
as the year of introduction, target programming language,
the source of programming problems, target code granularity,
the number of programming problems (“#Tasks”), average
lines of code (“#LOC”) in reference solutions, average token
lengths of the task prompt (usually the requirements and
function signature) (“#Tokens”), and the best model perfor-
mance (usually GPT-4) in pass@1. In the table, “_” indicates
that the corresponding information was not provided in the
benchmark paper. Among them, the two benchmarks without
a pass@1 values, the MCoNalLa benchmark [29] focuses
solely on statement-level code generation scenarios collected
from Stack Overflow. In contrast, ComplexCodeEval [12]
includes function-level tasks sourced from real and complex
development environments in GitHub repositories. However,
it lacks test cases to accurately assess the generated code.

For benchmarks involving complex, non-standalone func-
tions and classes [34], [11], [10], [13], [30], [32], low pass@1
scores are mainly due to the intricate dependencies inherent to
these tasks. For example, EvoCodeBench [11], DevEval [30],
and HumanEvo [34] focus on complex function dependencies
or repository-level dependencies, resulting in pass@1 scores
of 20.7%, 53.0%, and 34.5% on GPT-4, respectively. Simi-
larly, ClassEval [13], a benchmark of 100 manually created
Python problems that simulate real-world class generation
scenarios, yielded a 37.0% pass@1 score on GPT-4. In
addition, two benchmarks were created from open source
data. Paul et al. [31] developed ScenEval, collecting various
statements, methods, and classes from open source platforms

3022

TABLE I: The current general code generation benchmarks that reflect the real development scenarios

Benchmark | Year | Language | Source | Granularity | #Tasks | #LOC | #Tokens | Pass@1
MCoNaLa [29] | 2023 | Python | Conala | Statement | 896 | 1 | 276 | -
CoderEval [10] | 2024 | Python, Java | GitHub | Function | 230 | 30 | 1082 | 21.0 % (GPT-3.5)
. Function, B B g
EvoCodeBench [11] ‘ 2024 ‘ Python ‘ GitHub ‘ Repoatons, ‘ 275 ‘ ‘ ‘ 20.7 % (GPT-4)
ClassEval [13] | 2024 | Python \ Manual \ Class | 100 | 457 | 123.7 | 37.0 % (GPT-4)
Function, B B 3
DevEval [30] | 2024 | pywon | eyt | guneon | 1874 | | | 530 % GPT-4)
NCB [9] \ 2024 \ P.‘jggﬂv \ Online Services \ Function \ 402 \ . \ . \ 52.8 % (GPT-4)
W3Resources, Statement,
ScenEval [31] 2024 Java Stack Overflow, Function, 12864 1-50 - 75.6 % (ChatGPT)
Textbooks Class
. GitHub i
BigCodeBench [32] 2024 Python Huagging face, Function 1140 10 - 51.1 % (GPT-40)
roissant
Python, PyPI, . B
ComplexCodeEval [12] \ 2024 \ ythol \ AT \ Function \ 11081 \ 359 \ 278.8 \
Huﬁlﬁlﬁ%vah’ Cl 70.1 %
+, \ 1%
RACE [33] 2024 Python ClassEval, Fun?:%ison 923 B - (GPT—4-ol—li'nm1)
LeetCode
Python, PyPI, Function, B B g
HumanEvo [34] | 2005 | Python. o ByPL | funcuon | 400 | | | 345 % (GPT4)
RealisticCodeBench \ 2025 \ Multilingual \ GitHub \ F“gg;‘s’n’ \ 376 \ 422 \ 124.4 \ 74.52% (GPT-4.1)

like W3Resources, Stack Overflow, and textbooks to cover
a wide range of scenarios. ChatGPT achieved a pass@1 of
75.6% on this relatively simple benchmark. Zheng et al. [33]
combined datasets such as HumanEval, MBPP, ClassEval, and
LeetCode to form RACE, a moderate complexity dataset where
GPT-40-mini and Claude-3.5-Sonnet achieved pass@1 rates of
70.1% and 62.3%, respectively.

In particular, the NCB benchmark [9] shares similarities
with our benchmark, containing 402 high-quality Python and
Java problems carefully selected from natural user queries on
the CodeGeeX online coding platform. However, NCB’s query
problems are not necessarily solvable by LLMs, with GPT-4
achieving a pass@1 of 52.8%. In contrast, our benchmark in-
cludes only LLMs-solvable problems, with developers accept-
ing and uploading these LLM-generated solutions to GitHub.
By collecting LLM-generated code from GitHub, our bench-
mark more accurately reflects scenarios where developers use
LLMs in real-world coding tasks. To better align benchmarks
with current LLM usage practices, we, therefore, introduce
RealisticCodeBench, a benchmark designed to reflect the types
of problem developers commonly tackle with LLMs.

III. REALISTICCODEBENCH

Figure | outlines RealisticCodeBench’s construction pro-
cess. The pipeline consists of two primary steps: 1) collecting
and filtering high-quality code generated by ChatGPT/Copilot
from GitHub (Section III-A), and 2) constructing the bench-
mark using a semi-automated pipeline supported by ChatGPT-
4o in a conversational window format, which includes adapt-
ing problem requirements, writing reference solutions and
test cases, and generating multi-language versions of each

programming problem (Section III-B). The entire process of
constructing the benchmark, which includes 376 programming
problems across various languages, requires approximately
700 person-hours to complete.

A. Data Collection

ChatGPT/Copilot-Generated Code Collection. Our pre-
vious study [15] find that nearly all code samples generated
by LLMs on GitHub are created using tools like ChatGPT or
Copilot, with very few produced by other LLMs. Developers
often annotate their code with comments such as “the code is
generated by ChatGPT/Copilot” to indicate its origin. These
annotations typically follow the format x+y+z, where x is a
verb from {generated, written, created, implemented, authored,
coded}, y is a preposition from {by, through, using, via, with},
and z is a tool identifier from {ChatGPT, Copilot, GPT-3, GPT-
4}. Following their approach, we use these triplets x+y+z, such
as “generated by ChatGPT” to locate and collect relevant code
snippets via the GitHub REST API. We specifically focus on
code written in Python, Java, JavaScript, TypeScript, and C++,
as these languages not only dominate the landscape of LLM-
generated code on GitHub but are also widely used across
various real-world development domains. To ensure the quality
of collected samples, we first prioritize repositories with high
star ratings to source reputable code. However, many projects
containing ChatGPT-generated code are new and have not
accumulated sufficient stars; thus, we also evaluate the detail
level of README documents and the scale of code volume.
Projects with clear documentation standards, complete code
logic, and practical technical reference value are also included.

3023

Suitable Programming Problems Filtering. Although we
initially collect over 2,100 ChatGPT/Copilot-generated code
samples from GitHub, not all are suitable for inclusion in
our benchmark. We first manually filter out overly simplistic
code—specifically code with very few lines. This simplicity
is evaluated relative to each language’s practical context (e.g.,
code that merely calculates the Euclidean distance between
two points, which can be implemented in a single line of
Python and thus is filtered out). Additionally, we exclude sam-
ples whose solutions are difficult to test (e.g., those involving
frontend-backend interactions or dependencies on external data
or upstream logic). Finally, we review the remaining samples
to remove overly similar tasks (e.g., multiple samples that
validate if a string is a valid email address), ensuring the
benchmark contains a diverse set of programming problems.
After this filtering process, we obtain 172 refined Python
code samples, 26 refined Java samples, 75 refined JavaScript
samples, 57 refined TypeScript samples, and 46 refined C++
samples. The GitHub links to these code samples, along with
detailed information about the GitHub repositories hosting
them (e.g., star counts, fork counts, contributor numbers, and
commit counts), are available in [16].

B. Benchmark Construction

Once we have collected ChatGPT/Copilot-generated code
samples from GitHub, we move forward with constructing our
benchmark. As shown in Figure 1, each programming problem
in RealisticCodeBench includes an input description (com-
prising the function signature and requirement description).
Additionally, the benchmark contains a reference solution
for each programming problem, which serves as a reference
implementation, along with a test suite to verify the correctness
of the generated code. Typically, LLMs generate code snippets
based on the input descriptions, and the correctness of these
snippets is validated using the provided test suite.

Modification of Programming Problems. Since most of
the original code samples only indicate that they are generated
by ChatGPT or Copilot without describing their functional-
ity, we first leverage ChatGPT-40’s advanced capabilities in
code comment generation [79] to produce concise summaries
for each code sample. This is solely intended to help us
clearly understand the code’s core functionality, facilitating
the modification of programming problems. Data leakage is
a concern because many LLMs are pre-trained on code from
GitHub, which can lead to inadvertent memorization of spe-
cific content [80], [81]. Consequently, these models may solve
programming tasks by recalling solutions they encountered
during pre-training. To mitigate this risk, we apply substantial
modifications to the requirements of the original code samples,
while striving to preserve the code’s original intent and task
complexity. Additionally, we modify the number and types of
input and output parameters where feasible. In the adapted
function signatures—consistent with mainstream benchmarks
like HumanEval, which outline implementation requirements
for LLLMs. These requirements include only basic specifica-
tions: they omit specific steps for task solutions, avoid pre-

listing boundary conditions, and instead clarify the function’s
objectives, input parameters, and return value constraints for
each programming language. For instance, one GitHub project
with over 30 stars includes a method that converts a SQL string
with named parameters (e.g., $variable) to a format compatible
with asyncpg (using $1, $2, etc.) and returns the new SQL
string and the list of values in the correct order [82]. The input
parameters are defined as sg/ (the original SQL string with
named parameters) and params (a dictionary of parameters),
while the output is a tuple (new_sql_string, list_of_values). In
our modified requirement (as shown in Figure 1), we specify:
Convert a SQL query from named parameters to positional
parameters, the named parameters flag is the given delimiter.
Return a dictionary of positional_sql, param_list, execute_sql,
increasing inputs to three and changing output to a dictionary.

Reference Solution Generation. We then use ChatGPT-40
to generate solutions for each adapted programming problem
by providing the problem description (including the function
signature and requirement description) as prompts. To effec-
tively prevent potential data leakage risks that may occur
during the process of generating solutions, we have defaulted
to enabling the chat history closure function provided by
OpenAl 2> when using ChatGPT-40. When chat history is
disabled, the subsequent conversation content initiated will
not be used for model training and optimization. Although
ChatGPT-40 is a highly capable tool, it can still produce
incorrect code during generation. Therefore, each solution is
meticulously reviewed by three programmers, each with over
four years of coding experience, to ensure accuracy. If any
bugs are identified by one of the programmers, they revise
the code to correct the errors. The revised version is then
reviewed by the other two programmers to confirm that the
corrections are accurate, ensuring that the reference solutions
are both reliable and error-free. These reference solutions are
not used directly as evaluation benchmarks but are included
to support the development of test cases and facilitate future
research efforts.

Test Case Generation. We also utilize ChatGPT-4o0 to
generate high-quality test cases for each adapted programming
problem. The prompt starts with the instruction: ‘“Please create
test cases for this programming problem and the reference
solution. Ensure that the test cases cover a wide range of
inputs, including typical use cases, edge cases, corner cases,
and invalid inputs.” Following this, the prompt includes the
problem description and reference solution. After the test cases
are generated, the same three programmers review and correct
any issues related to formatting or outputs. If an error is
identified, the programmer revises the test cases. The updated
cases are then reviewed by the other two programmers to
validate corrections. Once this process is complete, the line
and branch coverage for each function is reassessed. We use
PyTest for Python, JUnit for Java, JavaScript, and TypeScript,
and Catch2 for C++ to calculate this coverage. If coverage
is still below 100%, one of the programmers manually writes

Zhttps://openai.com/index/new-ways-to-manage-your-data-in-chatgpt/

3024

- — - — Benchmark Construction- - — - — - — — - — - — - — . — - — . — . —. —>

~

S

4 Modify the requirements

Reference Solution

. ©

!
|
| T
4+ Modify the number and types of || | l lfmp(m e e /N Import Statements
input and output parameters | ChatGPT-40 2 | from typing import Dict, Any Function Signature
Manual Modification | (|) | | 3 |defconvert named_to_positional _query(sql: str, params:
- . d| L develoners | || ST e e ! Generate a solution il Dict[str, Any], delimiter: str) -> Dict[str, Any]:
= Mine code ¢ frn evelopers Generate modlﬁed problem and several test cases | N """C oL
¢ createdl ufmg LLMs requirements and function signature \||/ L onvert a SQL query Remfime P
oot 16 result = {}
Modified Problem) Omﬁi | |17| param_pattern= rf"\{delimiter} (\w+)"
- ilot- 1 import re Stateme! N
‘ r 2100+ ChatGPT/Copilot: ’ 2 from typing import Dict, Any Import Statements Manually fix all | 40 # Return the final result containing the positional SQL,
Generated Code 3 def convert_named_to_positional_query(sql: str, params: ually Hix a D #p list, and executed SQL.
Including 5 languages cht[str Any], delimiter: str) -> Dict[str, Any]: errors in the solution 42| retumn {
4 Function Signature and test cases 43 posmonal "sql positional_sql,
P ((5 Convert a SQL query from named parameters to | 44 "param_list": values,
= the named flag is the M ES "execute_sql": execute_sql
Python Java TS C++ g)l(‘éiﬁt‘;elslgiuwr Return a dlct nf positional_sql, param_list, | 46 RerferencelSolution
o Bt . .;/_._4_.._4_._._._. _________________ —]
I 7 G (str)(ghe[SQLA s amed p i C Test Suite N
. 8 params (Dict[str, An} wu(mary mappmg namex 1 def test basic named paramet 1f):
£2 Manually filter out overly simple, aranieters 10 their yalues. 2 esqlei s‘l‘zsﬁts’é‘%':'elrﬁgdmr:'::r: e username = Susername AND age = $age"
Y untestable, and duplicate code 9 delimiter (str): The delimiter used for the named 3 "username”’; "john_doe", "age": 30}
’ |l parameters in the SQL query.such as $.#,: | 4
10 | Return: 5 SELECT * FROM users WHERE username = $1 AND age = $2",
\/ 11 cht[str Any]l A dictionary containing: 6
12 - 'positional_sql': The St maL query wn.h positional 7 “execute_sql": SthCT *FROM users WHERE username = john_doe AND age = 30"}
placehnlders 8 result = convert_named_to_positional_query(sql, params, delimiter) .
E 376 High-Quality 13 - 'param | h?tl A list of values corresponding to the 9 self.assertEqual(result, expected) Test Case 1
o ositional parameters. ||| e
<H> Code Samples 1 - Eﬁﬁ?ﬁiﬁé I': The SQL query with actual values 55| def test_sql_with_empty_string_parameter(seln: e e s
15 Requirement Description
- J

Fig. 1: The overview of the construction pipeline for RealisticCodeBench

additional test cases to achieve full complete coverage where
possible. These additional test cases are also reviewed by the
other two programmers to ensure their correctness.

Multi-Language Version Creation. To create multi-
language versions of each programming problem in Realistic-
CodeBench, we leverage ChatGPT-4o for translation and adap-
tation across Python, Java, JavaScript, TypeScript, and C++.
The process begins with a structured prompt containing the
original problem, reference solution, and specific instructions
to adapt code to each language’s conventions. This includes
placing docstrings before function declarations in languages
like Java, JavaScript, TypeScript, and C++, and modifying
symbols in docstrings (e.g., replacing single quotes with
double quotes where necessary). Additionally, we ensure that
function parameter types are accurately matched to the syntax
and typing conventions of each language. For both reference
solutions and test cases, we tailor naming conventions to
each language’s standards. JavaScript, Java, and TypeScript
adopt camelCase, while C++ and Python adhere to snake_case.
Certain programming tasks may not translate directly across
languages due to unique data types or operations. In such
cases, we retain the language-specific nature of the problem
to reflect real-world coding practices. For example, a Python
programming problem that calculates and returns the memory
size of an object (such as a PyTorch tensor or NumPy array)
remains in Python, as PyTorch and NumPy are specific to the
Python ecosystem and do not have direct equivalents in Java,
JavaScript, TypeScript, or C++. After initial translation, the
same three programmers thoroughly review each version and
test cases, making any necessary corrections or adjustments
for coding standards and language nuances. If any language
version has incomplete line and branch coverage, additional
test cases are created and validated to address gaps.

Expert Review. We engage 13 experienced engineers (re-
cruited via our industry connections as volunteers) to assess if

the programming problems collected from GitHub could also
represent coding tasks proprietary developers might address
using LLMs (the three programmers mentioned earlier are
not included in this group). Nearly three-quarters of these
engineers come from major IT companies (e.g., Microsoft,
Huawei, ByteDance, Tencent, Alibaba, Bilibili, and Meituan),
while the rest are from smaller IT companies. With an average
of 7.7 years of software development experience (ranging from
4 to 11 years and a median of 6 years), these engineers
bring valuable industry insights to our benchmark validation.
Over the past one to two years, they have used either their
company’s internal LLM tools or external tools like Chat-
GPT in their daily coding tasks. We task these engineers
with assessing whether the programming problems (including
their multi-language variants) align with realistic development
scenarios—specifically, whether developers would realistically
use LLM:s to solve such similar problems in practical software
development. We distribute the tasks to engineers via online
documents (e.g., Google Docs), and they provide independent
feedback by crossing out tasks that fail to meet these criteria.
Only those programming problems approved by a majority
(at least 10 out of 13 engineers) are retained, ensuring the
benchmark mirrors tasks developers are likely to employ
LLMs for in practical projects. Ultimately, 4 programming
problems are excluded. For example, one problem involves
creating a logging class to print log information, as developers
typically use established logging frameworks (e.g., logging in
Python or Log4j in Java) rather than implementing custom
logging logic.

C. Benchmark Characteristics

The final benchmark comprises 376 programming problems
translated across multiple languages: 361 in Python, 346 in
JavaScript, 343 in TypeScript, 307 in Java, and 323 in C++,
each accompanied by reference solutions and test cases. These

3025

TABLE II: The detailed statistics of the benchmark

TABLE III: The overview of the 12 evaluated LLMs

Language Param | Param | Param Sol Sol Sol Prompt
(min) | (max) | (mean)| (min)| (max)| (mean)| (mean)
Python 1 10 2.05 3 166 35.03 | 125.02
Java 1 8 1.98 8 205 5543 | 11593
JavaScript 1 10 2.12 3 181 37.57 | 121.81
TypeScript 1 9 2.09 4 189 39.84 | 127.74
C++ 1 8 1.98 6 192 4294 | 131.38
Average 1 9 2.04 4.8 192 42.16 124.4

376 problems include 364 function-based tasks and 12 class-
based code generation tasks. Table II shows the detailed
statistics of the benchmark across the five languages, including
the number of function parameters per task (Param), the
number of lines of reference solution code (Sol), and the
number of tokens in each task prompt (Prompt). The average
number of parameters across the five languages is 2.04. The
average number of LOC in the reference solutions across
these languages is 42.2. The average token length of code
generation prompts—including requirement descriptions and
function signatures—is 124.4. This complexity is greater than
that seen in benchmarks such as HumanEval and MBPP but
lower than that in benchmarks designed for more complex
development scenarios like ClassEval. This suggests that our
tasks and code generation requirements are more challenging
than those in HumanEval but less so than those in ClassEval.

These 376 tasks cover nine distinct domains: data structures
and algorithms, text processing, file handling, mathematical
problems and scientific computing, date and time processing,
data visualization and graphic applications, network program-
ming, frontend development, and security. To systematically
define these domains, we adopt a rigorous two-stage labeling
process involving three authors. First, two authors indepen-
dently label 40% of the tasks selected at random; any dis-
crepancies arising from this stage are resolved in consultation
with the third author to unify domain definitions. They then
proceed to independently label the remaining 60% of the tasks,
with residual discrepancies addressed through collaborative
discussion to ensure consistency across all annotations. This
diversity in task domains also introduces a range of complex
input data types, which are classified into eight categories:
strings, sequences, numbers, matrices, dictionaries, functions,
complex data, and files. The first six are common basic
data types. Among these, sequences refer to ordered data
structures such as arrays and tuples; numbers include integers,
floating-point values, and boolean values (represented as 0 or
1); and complex data encompasses language-specific unique
data types—for example, DataFrames in Python, Objects
in JavaScript/TypeScript, and Structs in C++. Files include
development-related data files in various formats (e.g., CSV,
XLSX, JSON, JSONL, XML, YAML) as well as image files
and office documents (e.g., PDF, DOCX, DOC). This diverse
input not only mirrors the complexity of real-world software
development but also strengthens the broad applicability of the
benchmark.

Model Name Organization Sizes Release Time Open-Source
GPT-4.1 [17] OpenAl - 2025
GPT-40-mini [83] OpenAl - 2024
DeepSeek-V3 [19] DeepSeek 671B 2024 v
General Llama 3.1 [20] Meta 8B 2024 v
Phi-3 [21] Microsoft 7B 2024 v
Mistral [22] Mistral Al 7B 2024 v
ChatGLM [23] THUDM 6B 2024 v
CodeGeex4 [28] THUDM 9B 2023 v
DeepSeek-Coder [27] DeepSeek 6.7B 2024 v
Coding StarCoder2 [25] BigCode 7B 2024 v
CodeGen2.5 [24] Salesforce 7B 2023 v
CodeLlama [26] Meta 7B 2023 v

IV. EXPERIMENTAL SETUP

We aim to comprehensively evaluate a diverse range of
general-purpose and code-specific models that have been
widely studied in recent code generation benchmarks [13].
Table III provides an overview of the LLMs examined,
with the “Organization” column indicating the institution that
developed the LLM, the “Sizes” column indicating model
sizes in billions of parameters, the “Release Time” showing
when the LLM was released, and “Open-Source” indicating
whether the model’s weights are publicly available. Overall,
we evaluate 12 LLMs to ensure a thorough examination of
the generalizability. Due to resource constraints, we limit our
investigation to open-source models (except DeepSeek-V3)
with parameter sizes of 10 billion, excluding smaller models
(under 5 billion parameters) due to their limited efficacy.
Additionally, we focus on models with relatively similar
parameter sizes to minimize the impact of size differences
and facilitate clearer performance comparisons across models.
For closed-source modwels like GPT-4.1 and GPT-40-mini, we
use the OpenAl API interface °. For DeepSeek-V3, we rely
on the DeepSeek API interface, as this model, while open-
sourced, requires 8 GPUs with 80GB memory each to run
in BF16 format for inference. For other open-source models,
we obtain publicly released versions, with a preference for
instruct versions trained using instruction fine-tuning, from
official repositories and follow the provided documentation
for setup and usage. These open-source models are run on a
computational infrastructure featuring two NVIDIA GeForce
RTX 3090-24GB GPUs. The maximum generation length for
each solution is limited to 512 tokens to maintain consistency
across models and prevent excessively long outputs.

We assess code generation performance using two distinct
search strategies. In the greedy search setting, we generate a
single code solution (n=1) per task by greedily choosing the
most likely next token at each step, providing a deterministic

3During benchmark construction, we use ChatGPT-40 in a conversational
window format; however, during evaluation, we employ different OpenAl
models (GPT-4.1 and GPT-4o0-mini) via their API. Critically, the evaluation
process is entirely independent of benchmark construction, thus minimizing
the risk of data leakage.

3026

evaluation of the models’ performance, with temperature=0
and top-p=1.0. Additionally, we use nucleus sampling to
generate 10 code solutions (n=10) per task, with top-p=0.95
and temperature=0.8, to explore the models’ ability to produce
diverse outputs. Following established practices in code gener-
ation evaluation [6], [1], [10], we employ the pass@k metric
to assess the functional correctness of generated code. For
each problem, LLMs generate n code solutions, k of which are
randomly selected for testing against reference test cases. The
pass @k score measures the percentage of RealisticCodeBench
problems, where at least one of the k-generated solutions is
correct (i.e., passes all test cases). In our experiments, we
report pass rates for k = 1, 3, and 5. For greedy search,
we set n = 1 to compute pass@1, while for sampling-based
evaluation, n = 10 is used to calculate pass@3 and pass@5. To
mitigate high sampling variance, we adopt HumanEval’s [6]
unbiased estimator of pass@3 and pass@35, ensuring reliable
and consistent evaluations of LLM performance across our
benchmark.

V. EXPERIMENTAL RESULTS

A. RQI: How do LLMs perform on our RealisticCodeBench
benchmark?

Table IV presents the pass@1, pass@3, and pass@5 met-
rics for the 12 evaluated LLMs on our RealisticCodeBench
benchmark, with the top performances for both general and
coding-specific LLMs highlighted in bold. GPT-4.1 achieves
the highest average pass@1 across the five languages, with
an average pass@1 score of 60.65%, followed by DeepSeek-
V3 and GPT-40-mini, which achieves an average pass@1 of
58.86% and 53.11%, respectively. GPT-4.1’s average pass@1
surpasses that of DeepSeek-V3 by 1.79%. In Python, GPT-4.1
leads by a margin of 5.27%, yet the gap is much smaller in
JavaScript and C++ (from 3.1% to 4.05%), with DeepSeek-
V3 even outperforming GPT-4.1 in Java and TypeScript by
2.6% and 0.87%. Compared to GPT-4o0-mini, DeepSeek-
V3 achieves a 5.75% higher average pass@]1. This perfor-
mance trend remains consistent for pass@3, while for average
pass@5, DeepSeek-V3 slightly surpasses GPT-4.1. Overall,
these results highlight the superior code generation capabilities
of GPT-4.1, DeepSeek-V3, and GPT-40-mini. As an open-
source model, DeepSeek-V3 offers a viable alternative for
organizations capable of deploying 8 GPUs with 80GB of
memory for inference, making it a competitive substitute
for GPT-4.1 in code generation tasks. Among the smaller-
parameter open-source models, CodeGeeX4 stands out as the
best performer, achieving an average pass@ 1 score of 45.75%,
with DeepSeek-Coder following closely at 38.08%. Notably,
the difference between CodeGeeX4 and GPT-40-mini in the
programming languages is not large, ranging from 1.73% in
JavaScript to 10.52% in Python. Additionally, among these
small-parameter open-source models, code LLMs generally
outperform general LLMs, primarily because code LLMs have
been trained on more source code.

Figure 2 illustrates the number of problems each of the
top five LLMs solved on their first attempt across five pro-

TABLE IV: The pass@1, pass@3, and pass@5 scores (%) of
the 12 LLMs on our RealisticCodeBench benchmark

Model Python Java JavaScript TypeScript C++ Average
Pass@1
GPT-4.1 7452 5375 65.03 5452 55.42 60.65
GPT-40-mini 64.54 4853 5549 48.69 48.30 53.11
General DeepSeek-V3 69.25 56.35 60.98 5539 52.32 58.86
Llama 3.1 44.87 2248 40.17 3236 21.67 32.31
Phi-3 42,66 2020 43.35 3294 2229 3229
Mistral 32.13 2248 31.21 17.20 21.36 24.88
ChatGLM 21.84 1042 21.10 15.16 8.05 1531
CodeGeex4 54.02 3746 53.76 41.69 41.80 45.75
DeepSeek-Coder 45.15 31.92 40.17 38.19 34.98 38.08
Coding StarCoder2 42.11 2541 38.15 3294 3034 33.79
CodeGen2.5 40.78 24.10 36.42 29.57 20.12 30.20
CodeLlama 4324 2280 36.71 3499 30.65 33.68
Pass@3
GPT-4.1 77.63 5628 68.45 58.84 59.28 64.10
GPT-40-mini 69.47 5356 5947 5336 52.64 57.70
General DeepSeek-V3 7532 57.63 64.16 57.61 54.17 61.78
Llama 3.1 46.25 2641 4437 3522 23.39 3513
Phi-3 4439 2364 4581 3473 25.95 34.90
Mistral 3454 2395 35.62 20.56 2291 27.52
ChatGLM 2420 1130 22.67 17.14 974 17.01
CodeGeex4 5579 41.33 5498 44.83 45.27 48.44
DeepSeek-Coder 48.42 33.78 44.13 41.30 36.06 40.74
Coding StarCoder2 46.71 27.67 4248 3632 3247 37.13
CodeGen2.5 42.05 2543 40.36 3358 22.81 32.85
CodeLlama 4490 2549 40.22 37.96 34.94 36.70
Pass@5
GPT-4.1 79.89 60.04 71.68 63.29 63.47 67.67
GPT-40-mini 7226 56.05 63.37 57.14 55.82 60.93
General DeepSeek-V3 7755 59.17 68.04 61.35 59.08 65.04
Llama 3.1 50.94 2923 4691 36.76 25.39 37.85
Phi-3 46.23 2570 @ 46.27 36.04 29.48 36.74
Mistral 3570 2622 36.76 23.65 25.04 29.47
ChatGLM 2630 1325 2418 19.97 10.32 18.80
CodeGeex4 58.83 4246 59.24 54.03 46.73 52.26
DeepSeek-Coder 50.81 36.19 45.62 43.57 3834 42091
Coding StarCoder2 49.39 2876 46.55 39.68 35.08 39.89
CodeGen2.5 4437 2841 41.29 35.04 24.23 34.67
CodeLlama 48.56 28.57 43.03 38.18 36.37 38.94

gramming languages. The central overlapping sections of the
Venn diagrams show the programming problems all models
can solve, indicating a shared baseline competence. However,
the distinct segments unique to each model highlight their spe-
cific strengths. GPT-4.1 and DeepSeek-V3 stand out with the
largest unique areas, demonstrating their superior performance
in solving programming problems that other models cannot,
which underscores their stronger performance.

There are notable differences in pass@1 scores across
the five programming languages. Python consistently shows
higher pass rates across all models, with GPT-4.1 achieving
an 74.52% pass@1, while languages like Java and C++ have
comparatively lower scores. This disparity may stem from
Python’s extensive presence in LLM training data and its
simpler syntax, which likely contributes to better performance
on Python tasks. Across all models, the improvement from
pass@1 to pass@3 and pass@5 remains relatively modest. For
instance, GPT-4.1’s pass rate rises from 60.65% at pass@1 to
67.67% at pass@5, DeepSeek-V3 improves from 58.86% to
65.04%, and GPT-40-mini from 53.11% to 60.93%. We calcu-
late the Levenshtein distance and conduct manual inspections
for cases where models failed to solve the problem, revealing
that the generated code among the five responses remained

3027

GPT4o-mini

GPTdo-mini
GPT-4.1 4

16 @ DeepSeek-v3 152
n 10 - 7

8
717 %8

DeepSeek-v3

DeepSeek-Coder DeepSeek-Coder |
CodeGeext CodeGeext

(a)Python (@)Java

GPT4o-mini GPT4o-mini

GPT4o-mini

GPT-4.1 2
DeepSeek-v3 6

DeepSeek-Coder DeepSeek-Coder DeepSeek-Coder
CodeGeexd

CodeGeexd

CodeGeex4

(c)JavaSeript (d)JavaSeript (d)C+

Fig. 2: The number of problems solved by the models

relatively similar. This observation indicates a lack of diversity
in the generated solutions, suggesting that LLMs may not
possess the depth of understanding necessary to solve certain
complex problems effectively, even when allowed to generate
multiple attempts.

w

Answer to RQ1: GPT-4.1 achieves the highest aver-
age pass@1 across five languages, closely followed by
the open-source model DeepSeek-V3. Among smaller-
parameter open-source models, CodeGeeX4 stands out
with strong performance, with a small gap from GPT-
4o-mini.

B. RQ2: How does the performance of LLMs differ between
RealisticCodeBench and HumanEval?

In this section, we compare the pass@1 performance of
12 LLMs on RealisticCodeBench and HumanEval. We omit
more complex benchmarks like ClassEval and CoderEval,
where all LLMs’s pass@]1 scores are generally low, making
it challenging to assess performance correlation with Real-
isticCodeBench. Figure 3 displays a scatter plot illustrating
the pass@1 performance of the 12 LLMs on HumanEval
and RealisticCodeBench (Python). The scatter plot includes
a green dashed line representing a linear fit and a light blue
region indicating variance, suggesting that 8 of the LLMs
exhibit linearly proportional growth in performance between
HumanEval and RealisticCodeBench. This observation implies
that, in most cases, RealisticCodeBench reflects the coding
abilities of LLMs similarly to HumanEval. For instance,
the performance gap between GPT-4.1 and DeepSeek-V3
remains relatively small across both HumanEval and Re-
alisticCodeBench (Python). However, some models such as
CodeGeeX4, Llama 3.1, DeepSeek-Coder, and Phi-3 display
notably mismatched performances, as highlighted in the red-
shaded area. Specifically, CodeGeeX4 drops substantially from
a pass@1 of 82.3% on HumanEval to 54.02% on Realis-
ticCodeBench (Python); Llama 3.1 decreases from 72.6% to
44.87%; DeepSeek-Coder falls from 78.6% to 45.15%; and
Phi-3 declines from 61.0% to 42.66%.

CodeGeex4
30 o+ DeepSeeR-Coder

o Llama 3.1

HumanEval (%)
W
(=

20 30 40 50 60 70 80 90
RealisticCodeBench (%)

Fig. 3: The performance comparison of pass@1 for 12 LLMs
between HumanEval and RealisticCodeBench (Python)

Several factors may explain this phenomenon. First,
some LLMs’ training sets might be overly optimized for
HumanEval-style problems. Previous studies [74], [9], [84],
[8] indicate that high performance on HumanEval often re-
sults from overfitting, as it is widely used and its data
may contaminate LLM pre-training datasets. For example,
Achiam et al. [17] reported that 25% of HumanEval had
been contaminated in ChatGPT pre-training corpus. Addi-
tionally, contamination may arise from instruction fine-tuning
datasets [8], as noted by Phi [85], [86], which reported con-
siderable overlap between synthetic prompts and specific test
samples in HumanEval. Second, RealisticCodeBench poses
more challenging tasks than HumanEval, as it is designed
to better reflect real-world coding scenarios where develop-
ers intend to use LLMs. RealisticCodeBench also adjusts
requirements and parameters to prevent data leakage, thus
revealing limitations in the generalization abilities of models
like DeepSeek-Coder, Llama 3.1, and CodeGeeX4 when faced
with real-world requirements and leakage-free tasks.

=

Answer to RQ2: LLMs generally perform worse on
RealisticCodeBench compared to HumanEval, with sub-
stantial performance drops observed in models such as
CodeGeeX4, Llama 3.1, DeepSeek-Coder, and Phi-3.

C. RQ3: What are the common errors during code generation
on RealisticCodeBench?

We further analyze cases where the highest-performing
GPT-4.1 generates incorrect code within five attempts. In
instances where GPT-4.1 fails to produce a correct solution
during these first five tries, we extend the generation process
to ten attempts. Most of these additional attempts yield correct
solutions, suggesting that generating multiple responses with
GPT-4.1 often leads to accurate answers. However, some
problems remain unresolved. We identify three primary types
of issues, as illustrated in Figure 4.

(1) Lack of Robust Method Parameter Handling and
Edge Case Coverage: A common issue in GPT-4.1’s gen-
erated code involves inadequate parameter validation, missing
range checks, or incomplete format verification. For example,

3028

def is_valid_coordinate(coord: str) -> bool:
try:
if not coord:
return False
if coord[-1].upper() in [* N 'S', 'E', 'W']:
coord_value = coord[:-
direction = coord[-1]. upper()
else:
coord_value = coord
direction = None
parts = coord.split('.")
if len(parts) > 2:
return False
if parts[0]. startsw1th§ }
num_part = parts[0][1:
else:
num_part = parts[0]
if not num_part.isdigit():
return False
if len(parts) == 2 and not parts[1].isdigit():
return False
value = float(coord value
if direction in ['NT 8
return -90 <= value <= 90
elif direction in ['E' 18
return -180 <= valle <= 180
else:
return (-90 <= value <= 90) or (-180 <= value <= 180)
excegif“m True Correct Code
return False

(a) Example 1: Lack of Robust Method Parameter Handling
and Edge Case Coverage

Correct Code

from typing import Union,List
import re
def split_html_content(
html: str,
target_tags: Union[List[str], None] = None,
preserve_whitespace: bool = False
-> List[str
) serl: Error Code
tag pattern = "|".join(target_tags)
"(<({tag_| pattern})\b[A>]*> *2¢/\2>) | ([*<]+)"
"]o1n(F ({tag})" for tag 1n target_tags)
escaped_- tags = "|".join(re.escape(tag) f ag in target_ tags)
pattern = ' (<({escaped tags})\\b[*>]*>. *></\\Z>)|([<]+)"

matches = re.finditer(pattern, html, re.DOTALL)
result = []

Correct Code

(b) ']'E'xample 2: Incorrect or Inadequately Comprehensive
Regex

from typing import *
import” numpy as np
import pandas as pd
def compute_pi_to_digits(digits: int) -> str:
Error Code
for _ in range(digits):
iterations = int(math.log(digits) / math.log(2)) + 3
for _ in Pange(lteratlons)
a_next = b) / 2
b= (a * b) sqrt()
t -=p * (a - a_next) ** 2

(c) Example 3: Incorrect Mathematical Formula Application

Correct Code

Fig. 4: The three common error cases in GPT-4.1 code
generation

in Example 1, when tasked with implementing a function to
check if a string conforms to the specification for latitude and
longitude identifiers, GPT-4.1 only verifies whether the format
consists of numbers, while failing to check the valid value
ranges. Latitudes should be within the range of -90 to 90, and
longitudes within -180 to 180, but the generated code lacks this
critical validation. By incorporating 1-2 specific test cases into
the prompt, such as invalid values like “91.5” for latitude or
“-181.3” for longitude, GPT-4.1 can generate corrected code,
demonstrating its reliance on explicit prompt guidance for such
constraints.

(2) Incorrect or Inadequately Comprehensive Regex:
Another common issue is incorrect or inadequately compre-
hensive regex implementation. For example, in Example 2,
when tasked with splitting an HTML string into tag blocks
and non-tag text blocks based on specified markers, GPT-
4.1 generates a flawed regular expression. This regex fails to
handle cases where there are multiple consecutive segments of
non-tag text within the HTML structure, leading to incorrect
partitioning of content. This underscores that when using GPT-
4.1 to generate regex-involving code, users should verify cov-

erage of all scenarios or explicitly provide pattern examples.

(3) Incorrect Mathematical Formula Application: For
problems involving mathematical algorithms, GPT-4.1 occa-
sionally misinterprets algorithmic properties when the prompt
does not explicitly clarify them. For example, in Example 3,
when tasked with generating code for the Gauss-Legendre
algorithm to calculate 7 to a specified number of decimal
places, GPT-4.1 demonstrates a misunderstanding of the al-
gorithm. The Gauss-Legendre algorithm exhibits quadratic
convergence, requiring only log,(digits) iterations rather than
digits iterations, yet the generated code uses the incorrect
number of iterations. When we explicitly state the quadratic
convergence property and the correct iteration formula in the
prompt, GPT-4.1 generates accurate code, emphasizing the
need for precise algorithmic descriptions when dealing with
complex mathematical computations.

w

Answer to RQ3: Common errors in GPT-4.1’s code
generation on RealisticCodeBench include insufficient
handling of edge cases and method parameter robust-
ness, incorrect or inadequately comprehensive regex,
and the misapplication of mathematical formulas.

VI. DISCUSSION
A. Implications

Unlike widely-used benchmarks like HumanEval-focused
on algorithmic and basic programming tasks—our benchmark
reflects the types of code developers commonly generate
with LLMs in real-world development scenarios. Compared
to other GitHub-derived benchmarks like CoderEval and
CodeEvoBench-designed to test the upper limits of LLM capa-
bilities and provide insights for improving LLM performance
in handling complex tasks—our benchmark offers a comple-
mentary perspective. While we recognize these benchmarks’
value, ours serves as a practical supplement, offering insights
from real-world LLM usage scenarios. In addition, similar to
CoderEval and CodeEvoBench, our benchmark remains chal-
lenging even for advanced models: GPT-4.1 achieves a pass@1
rate of only 74.52% in Python, indicating 25.48% of tasks
cannot be solved correctly in one attempt. This highlights the
need for continuous improvement across all LLM categories,
from small-parameter models to large-scale architectures, and
validates the utility of our benchmark—since even state-of-the-
art models do not exhibit perfect performance. Therefore, we
recommend that newly developed LLLMs be evaluated using
our benchmark to give developers a clearer understand-
ing of model performance on tasks that reflect current,
practical coding needs that LLMs can address reliably.

Given data privacy concerns, as noted by Liang et al. [14],
41% of developers fear LLMs accessing private codebases
due to data privacy concerns. Our findings indicate that open-
source models like DeepSeek-V3 and CodeGeeX4-9B offer
privacy-conscious alternative. The performance differential
between DeepSeek-V3 and GPT-4.1, with an average pass@1
gap of only 1.79%, suggests that DeepSeek-V3, despite requir-
ing a robust hardware setup of 8 GPUs with 80GB each, is
a feasible choice for well-resourced enterprises that prioritize

3029

data privacy. CodeGeeX4-9B shows competitive performance
compared to the proprietary model GPT-40-mini on some
programming languages; for instance, in Python, it achieves
a pass@] rate of 54.02% and a pass@5 rate of 58.83%,
narrowing the accuracy gap with GPT-40-mini (pass@1 of
64.54%) to only 5.71% when generating multiple solutions.
Moreover, CodeGeeX4-9B’s operational feasibility on a server
equipped with dual NVIDIA GeForce RTX 3090 (24GB)
GPUs—costing around $3,000—makes it a cost-effective op-
tion for individual developers and small firms. However,
for deploying larger models with parameters exceeding 9B,
higher-end GPUs like the NVIDIA A100 or A800 would
be required, with starting costs around $20,000. Thus, for
enterprises with substantial funding and a focus on data
privacy, DeepSeek-V3 is recommended, while CodeGeeX4-
9B is advised for privacy-conscious developers or smaller
companies on tighter budgets.

The error case analysis in Section V-C underscores the need
for research focused on enhancing LLM robustness in
handling boundary conditions, domain-specific formulas,
and accurate and comprehensive regular expressions im-
plementations. For tasks requiring robust parameter handling
and comprehensive edge case coverage, developers should
include specific test cases within the prompt to highlight
these aspects effectively. For mathematical or formula-based
problems, developers should provide explicit formulas within
the prompt to guide the model toward accurate computations,
thereby reducing the risk of errors due to incorrect formula
application. These strategies can collectively enhance LLM
reliability in code generation tasks.

B. Threats to Validity

We evaluate a single closed-source LLM (the GPT series
from OpenAl), despite the existence of other closed-source
models such as Google’s Gemini. The decision to focus on
OpenAl's GPT models is based on their widespread use
and demonstrated effectiveness. However, this may introduce
selection bias, as other models might perform differently under
similar conditions. Moreover, Liang et al. [14] found that 41%
of developers are hesitant to use LLMs due to concerns that
code generation tools could access their private codebases.
To address this, we prioritize the exploration of open-source
LLMs. In total, we examine five general-purpose open-source
LLMs and five code-specific open-source LLMs to mitigate
bias and broaden our analysis. Additionally, our computational
resources—two NVIDIA GeForce RTX 3090 GPUs—Ilimit
our ability to evaluate larger open-source models like Star-
Coder 15B and DeepSeek-Coder-V2 16B, which trigger out-
of-memory errors during testing. As a result, our analysis
is restricted to models with a maximum size of 10 billion
parameters. We plan to expand our evaluation to include larger
LLMs as more computational resources become available.

Our benchmark focuses exclusively on code explicitly la-
beled as LLM-generated on GitHub, with the goal of reflecting
how open-source developers use LLMs. However, it is likely
that only some developers annotate their LLM-generated code

as such—a factor that could skew the task distribution within
our benchmark. Further, the limited number of programming
problems (376) may not fully capture the diversity of real-
world coding tasks; this scale is currently constrained by the
extensive manual effort required (approximately 700 person-
hours). With the increasing use of LLMs in open-source
development, we plan to expand our benchmark by incorpo-
rating more programming problems from GitHub and other
repositories.

To mitigate potential risks of data leakage, we adapt the
programming problems derived from GitHub code, altering the
types and quantities of input/output parameters. We calculate
the Levenshtein distance between the original GitHub code
and the LLM-generated code, finding substantial differences.
For example, the Levenshtein distance between the original
GitHub Python code and the GPT-4.1-generated code for
the adapted problem is 509.27. Additionally, we manually
review the original GitHub code and the LLM-generated code,
confirming that they are indeed very dissimilar, suggesting
minimal risk of data leakage.

VII. CONCLUSION

We develop RealisticCodeBench to better align with the
types of coding tasks developers commonly address using
LLMs. This benchmark includes 361 Python, 346 JavaScript,
343 TypeScript, 307 Java, and 323 C++ problems, reflecting
developers’ everyday coding needs. Experimental evaluations
of 12 LLMs reveal that, while GPT-4.1 achieves the highest
average pass@1, open-source models like DeepSeek-V3 and
CodeGeeX4 can serve as viable alternatives for companies
and smaller organizations focused on privacy, cost-efficiency,
and robust code generation. In comparing performance gaps
between HumanEval and RealisticCodeBench, we find that
some LLMs may be overly optimized for HumanEval-style
problems rather than practical coding applications. Lastly, our
analysis of failed cases highlights critical areas where LLMs
fall short in RealisticCodeBench, identifying opportunities for
improvement in handling complex, real-world coding tasks.

ACKNOWLEDGEMENTS

This research is supported by National Key R&D Program
of China (No. 2024YFB4506400).

REFERENCES

[1] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and
W. Chen, “Codet: Code generation with generated tests,” arXiv preprint
arXiv:2207.10397, 2022.

[2] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code generation
via chatgpt,” ACM Transactions on Software Engineering and Method-
ology, vol. 33, no. 7, pp. 1-38, 2024.

[3] Z. Sun, X. Du, Z. Yang, L. Li, and D. Lo, “Ai coders are among
us: Rethinking programming language grammar towards efficient code
generation,” in Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2024, pp. 1124-1136.

[4] X. Yu, L. Liu, X. Hu, J. W. Keung, J. Liu, and X. Xia, “Fight fire with
fire: How much can we trust chatgpt on source code-related tasks?” IEEE
Transactions on Software Engineering, vol. 50, no. 12, pp. 3435-3453,
2024.

3030

[5]

[6

=

[8]

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

X. Yu, Z. Zhang, F. Niu, X. Hu, X. Xia, and J. Grundy, “What makes a
high-quality training dataset for large language models: A practitioners’
perspective,” in Proceedings of the 39th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2024, Sacramento,
CA, USA, October 27 - November 1, 2024. ACM, 2024, pp. 656—668.
M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman ef al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

A. Matton, T. Sherborne, D. Aumiller, E. Tommasone, M. Alizadeh,
J. He, R. Ma, M. Voisin, E. Gilsenan-McMahon, and M. Gallé,
“On leakage of code generation evaluation datasets,” arXiv preprint
arXiv:2407.07565, 2024.

S. Zhang, H. Zhao, X. Liu, Q. Zheng, Z. Qi, X. Gu, Y. Dong, and
J. Tang, “Naturalcodebench: Examining coding performance mismatch
on humaneval and natural user queries,” in Findings of the Association
for Computational Linguistics ACL 2024, 2024, pp. 7907-7928.

H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma, G. Liang, Y. Li,
Q. Wang, and T. Xie, “Codereval: A benchmark of pragmatic code
generation with generative pre-trained models,” in Proceedings of the
46th IEEE/ACM International Conference on Software Engineering,
2024, pp. 1-12.

J. Li, G. Li, X. Zhang, Y. Dong, and Z. Jin, “Evocodebench: An evolving
code generation benchmark aligned with real-world code repositories,”
arXiv preprint arXiv:2404.00599, 2024.

J. Feng, J. Liu, C. Gao, C. Y. Chong, C. Wang, S. Gao, and X. Xia,
“Complexcodeeval: A benchmark for evaluating large code models on
more complex code,” arXiv preprint arXiv:2409.10280, 2024.

X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha,
X. Peng, and Y. Lou, “Evaluating large language models in class-level
code generation,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2024, pp. 1-13.

J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on
the usability of ai programming assistants: Successes and challenges,”
in Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, 2024, pp. 1-13.

X. Yu, L. Liu, X. Hu, J. Liu, and X. Xia, “Where are large language mod-
els for code generation on github?” arXiv preprint arXiv:2406.19544,
2024.

Anonymity, “Supplemental materials,” https://github.com/XIAOYU-CS/
RealisticCodeBench, 2025.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, pp. 681-694, 2020.

A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, C. Ruan et al., “Deepseek-v3 technical report,” arXiv preprint
arXiv:2412.19437, 2024.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The llama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah,
H. Awadalla, N. Bach, A. Bahree, A. Bakhtiari, H. Behl et al., “Phi-
3 technical report: A highly capable language model locally on your
phone,” arXiv preprint arXiv:2404.14219, 2024.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. I. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier er al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

T. GLM, A. Zeng, B. Xu, B. Wang, C. Zhang, D. Yin, D. Rojas, G. Feng,
H. Zhao, H. Lai et al., “Chatglm: A family of large language models
from glm-130b to glm-4 all tools,” arXiv preprint arXiv:2406.12793,
2024.

E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou, “Code-
gen2: Lessons for training 1lms on programming and natural languages,”
arXiv preprint arXiv:2305.02309, 2023.

A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei et al., “Starcoder 2 and the stack
v2: The next generation,” arXiv preprint arXiv:2402.19173, 2024.

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

3031

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez et al., “Code 1lama: Open foundation
models for code,” arXiv preprint arXiv:2308.12950, 2023.

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen,
X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language
model meets programming—the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, L. Shen,
Z. Wang, A. Wang, Y. Li et al., “Codegeex: A pre-trained model
for code generation with multilingual benchmarking on humaneval-x,”
in Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 5673-5684.

Z. Wang, G. Cuenca, S. Zhou, F. F. Xu, and G. Neubig, “Mconala: a
benchmark for code generation from multiple natural languages,” arXiv
preprint arXiv:2203.08388, 2022.

J. Li, G. Li, Y. Zhao, Y. Li, H. Liu, H. Zhu, L. Wang, K. Liu,
Z. Fang, L. Wang et al., “Deveval: A manually-annotated code gen-
eration benchmark aligned with real-world code repositories,” arXiv
preprint arXiv:2405.19856, 2024.

D. G. Paul, H. Zhu, and I. Bayley, “Sceneval: A benchmark for scenario-
based evaluation of code generation,” arXiv preprint arXiv:2406.12635,
2024.

T. Y. Zhuo, M. C. Vu, J. Chim, H. Hu, W. Yu, R. Widyasari, I. N. B.
Yusuf, H. Zhan, J. He, 1. Paul et al., “Bigcodebench: Benchmarking
code generation with diverse function calls and complex instructions,”
arXiv preprint arXiv:2406.15877, 2024.

J. Zheng, B. Cao, Z. Ma, R. Pan, H. Lin, Y. Lu, X. Han, and L. Sun,
“Beyond correctness: Benchmarking multi-dimensional code generation
for large language models,” arXiv preprint arXiv:2407.11470, 2024.
D. Zheng, Y. Wang, E. Shi, R. Zhang, Y. Ma, H. Zhang, and Z. Zheng,
“Humanevo: An evolution-aware benchmark for more realistic evalu-
ation of repository-level code generation,” in 2025 [EEE/ACM 47th
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2025, pp. 764-764.

C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
international conference on evaluation and assessment in software
engineering, 2014, pp. 1-10.

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo,
C. Burns, S. Puranik, H. He, D. Song et al., “Measuring coding challenge
competence with apps,” arXiv preprint arXiv:2105.09938, 2021.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping language
to code in programmatic context,” arXiv preprint arXiv:1808.09588,
2018.

R. Agashe, S. Iyer, and L. Zettlemoyer, “Juice: A large scale distantly
supervised dataset for open domain context-based code generation,”
arXiv preprint arXiv:1910.02216, 2019.

Y. Lai, C. Li, Y. Wang, T. Zhang, R. Zhong, L. Zettlemoyer, W.-
t. Yih, D. Fried, S. Wang, and T. Yu, “Ds-1000: A natural and
reliable benchmark for data science code generation,” in International
Conference on Machine Learning. PMLR, 2023, pp. 18 319-18 345.
S. Chandel, C. B. Clement, G. Serrato, and N. Sundaresan, “Training
and evaluating a jupyter notebook data science assistant,” arXiv preprint
arXiv:2201.12901, 2022.

J. Huang, C. Wang, J. Zhang, C. Yan, H. Cui, J. P. Inala, C. Clement,
N. Duan, and J. Gao, “Execution-based evaluation for data science code
generation models,” arXiv preprint arXiv:2211.09374, 2022.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624, pp.
1092-1097, 2022.

M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating
large language models for verilog code generation,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). 1EEE,
2023, pp. 1-8.

X. Tang, Y. Liu, Z. Cai, Y. Shao, J. Lu, Y. Zhang, Z. Deng, H. Hu,
K. An, R. Huang et al., “Ml-bench: Evaluating large language models
and agents for machine learning tasks on repository-level code,” arXiv
e-prints, pp. arXiv—2311, 2023.

R. Li, J. Fu, B.-W. Zhang, T. Huang, Z. Sun, C. Lyu, G. Liu, Z. Jin,
and G. Li, “Taco: Topics in algorithmic code generation dataset,” arXiv
preprint arXiv:2312.14852, 2023.

M. L. Siddiq and J. C. Santos, “Securityeval dataset: mining vulner-
ability examples to evaluate machine learning-based code generation

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

techniques,” in Proceedings of the 1st International Workshop on Mining
Software Repositories Applications for Privacy and Security, 2022, pp.
29-33.

X. Tang, B. Qian, R. Gao, J. Chen, X. Chen, and M. B. Gerstein,
“Biocoder: a benchmark for bioinformatics code generation with large
language models,” Bioinformatics, vol. 40, no. Supplement_1, pp. i266—
1276, 2024.

Y. Xia, Y. Chen, T. Shi, J. Wang, and J. Yang, “Aicodereval: Improving
ai domain code generation of large language models,” arXiv preprint
arXiv:2406.04712, 2024.

Y. Fu, E. Baker, and Y. Chen, “Constrained decoding for secure code
generation,” arXiv preprint arXiv:2405.00218, 2024.

J. Cao, Z. Chen, J. Wu, S.-C. Cheung, and C. Xu, “Javabench:
A benchmark of object-oriented code generation for evaluating large
language models,” in Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering, 2024, pp. 870-882.
Q. Shi, M. Tang, K. Narasimhan, and S. Yao, “Can language models
solve olympiad programming?” arXiv preprint arXiv:2404.10952, 2024.
T. Wu, W. Wu, X. Wang, K. Xu, S. Ma, B. Jiang, P. Yang, Z. Xing,
Y.-F. Li, and G. Haffari, “Versicode: Towards version-controllable code
generation,” arXiv preprint arXiv:2406.07411, 2024.

P. Vijayaraghavan, L. Shi, S. Ambrogio, C. Mackin, A. Nitsure,
D. Beymer, and E. Degan, “Vhdl-eval: A framework for evaluat-
ing large language models in vhdl code generation,” arXiv preprint
arXiv:2406.04379, 2024.

D. Nichols, J. H. Davis, Z. Xie, A. Rajaram, and A. Bhatele, “Can
large language models write parallel code?” in Proceedings of the 33rd
International Symposium on High-Performance Parallel and Distributed
Computing, 2024, pp. 281-294.

P. Haller, J. Golde, and A. Akbik, “Pecc: Problem extraction and coding
challenges,” arXiv preprint arXiv:2404.18766, 2024.

P. T. J. Kon, J. Liu, Y. Qiu, W. Fan, T. He, L. Lin, H. Zhang, O. M. Park,
G. S. Elengikal, Y. Kang et al., “lac-eval: A code generation benchmark
for infrastructure-as-code programs.”

D. Zan, B. Chen, Z. Lin, B. Guan, Y. Wang, and J.-G. Lou, “When
language model meets private library,” arXiv preprint arXiv:2210.17236,
2022.

D. Zan, B. Chen, D. Yang, Z. Lin, M. Kim, B. Guan, Y. Wang, W. Chen,
and J.-G. Lou, “Cert: continual pre-training on sketches for library-
oriented code generation,” arXiv preprint arXiv:2206.06888, 2022.

S. Ouyang, D. Huang, J. Guo, Z. Sun, Q. Zhu, and J. M. Zhang, “Ds-
bench: A realistic benchmark for data science code generation,” arXiv
preprint arXiv:2505.15621, 2025.

K. Xu, Y. Mao, X. Guan, and Z. Feng, “Web-bench: A Ilm code
benchmark based on web standards and frameworks,” arXiv preprint
arXiv:2505.07473, 2025.

C. Dilgren, P. Chiniya, L. Griffith, Y. Ding, and Y. Chen, “Secrepobench:
Benchmarking 1lms for secure code generation in real-world reposito-
ries,” arXiv preprint arXiv:2504.21205, 2025.

Y. Peng, J. Wan, Y. Li, and X. Ren, “Coffe: A code efficiency benchmark
for code generation,” arXiv preprint arXiv:2502.02827, 2025.

Y. Cui, “Tests as prompt: A test-driven-development benchmark for 1lm
code generation,” arXiv preprint arXiv:2505.09027, 2025.

F. Cassano, J. Gouwar, D. Nguyen, S. Nguyen, L. Phipps-Costin,
D. Pinckney, M.-H. Yee, Y. Zi, C. J. Anderson, M. Q. Feldman et al.,
“Multipl-e: A scalable and extensible approach to benchmarking neural
code generation,” arXiv preprint arXiv:2208.08227, 2022.

B. Athiwaratkun, S. K. Gouda, Z. Wang, X. Li, Y. Tian, M. Tan, W. U.
Ahmad, S. Wang, Q. Sun, M. Shang et al., “Multi-lingual evaluation of
code generation models,” arXiv preprint arXiv:2210.14868, 2022.

J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

H. M. Babe, S. Nguyen, Y. Zi, A. Guha, M. Q. Feldman, and C. J.
Anderson, “Studenteval: a benchmark of student-written prompts for
large language models of code,” arXiv preprint arXiv:2306.04556, 2023.
C. S. Xia, Y. Deng, and L. Zhang, “Top leaderboard ranking= top coding
proficiency, always? evoeval: Evolving coding benchmarks via Ilm,”
arXiv preprint arXiv:2403.19114, 2024.

R. Qiu, W. W. Zeng, H. Tong, J. Ezick, and C. Lott, “How efficient
is llm-generated code? a rigorous & high-standard benchmark,” arXiv
preprint arXiv:2406.06647, 2024.

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

3032

Y. Hao, G. Li, Y. Liu, X. Miao, H. Zong, S. Jiang, Y. Liu, and
H. Wei, “Aixbench: A code generation benchmark dataset,” arXiv
preprint arXiv:2206.13179, 2022.

Z. Wang, S. Zhou, D. Fried, and G. Neubig, “Execution-based evaluation
for open-domain code generation,” arXiv preprint arXiv:2212.10481,
2022.

L. Fu, H. Chai, S. Luo, K. Du, W. Zhang, L. Fan, J. Lei, R. Rui, J. Lin,
Y. Fang et al., “Codeapex: A bilingual programming evaluation bench-
mark for large language models,” arXiv preprint arXiv:2309.01940,
2023.

J. Dai, J. Lu, Y. Feng, R. Ruan, M. Cheng, H. Tan, and Z. Guo, “Mhpp:
Exploring the capabilities and limitations of language models beyond
basic code generation,” arXiv preprint arXiv:2405.11430, 2024.

N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang,
A. Solar-Lezama, K. Sen, and I. Stoica, “Livecodebench: Holistic and
contamination free evaluation of large language models for code,” arXiv
preprint arXiv:2403.07974, 2024.

M. A. M. Khan, M. S. Bari, D. Long, W. Wang, M. R. Parvez,
and S. Joty, “Xcodeeval: An execution-based large scale multilingual
multitask benchmark for code understanding, generation, translation and
retrieval,” in Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2024, pp. 6766—
6805.

S. Quan, J. Yang, B. Yu, B. Zheng, D. Liu, A. Yang, X. Ren, B. Gao,
Y. Miao, Y. Feng et al., “Codeelo: Benchmarking competition-level code
generation of 1lms with human-comparable elo ratings,” arXiv preprint
arXiv:2501.01257, 2025.

W. Hu, J. Duan, C. Wei, L. Zhang, Y. Zhang, and K. Xu, “Dynacode:
A dynamic complexity-aware code benchmark for evaluating large
language models in code generation,” arXiv preprint arXiv:2503.10452,
2025.

S. Wang, Z. Wang, D. Ma, Y. Yu, R. Ling, Z. Li, F. Xiong, and W. Zhang,
“Codeflowbench: A multi-turn, iterative benchmark for complex code
generation,” arXiv preprint arXiv:2504.21751, 2025.

W. Sun, C. Fang, Y. You, Y. Miao, Y. Liu, Y. Li, G. Deng, S. Huang,
Y. Chen, Q. Zhang et al., “Automatic code summarization via chatgpt:
How far are we?” arXiv preprint arXiv:2305.12865, 2023.

A. Elangovan, J. He, and K. Verspoor, “Memorization vs. generalization:
Quantifying data leakage in nlp performance evaluation,” arXiv preprint
arXiv:2102.01818, 2021.

N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson et al., “Extracting training
data from large language models,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2633-2650.

jerber, “fastgql,” https://github.com/jerber/fastgql/blob/
4c308e742685¢e0alcf4dc6d05f29ctbaea2d039a/fastgql/query_builders/
sql/query_builder.py#L.464, 2025.

A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark,
A. Ostrow, A. Welihinda, A. Hayes, A. Radford et al., “Gpt-40 system
card,” arXiv preprint arXiv:2410.21276, 2024.

D. Zheng, Y. Wang, E. Shi, R. Zhang, Y. Ma, H. Zhang, and Z. Zheng,
“Towards more realistic evaluation of llm-based code generation: an
experimental study and beyond,” arXiv preprint arXiv:2406.06918,
2024.

S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. Del Giorno,
S. Gopi, M. Javaheripi, P. Kauffmann, G. de Rosa, O. Saarikivi et al.,
“Textbooks are all you need,” arXiv preprint arXiv:2306.11644, 2023.
Y. Li, S. Bubeck, R. Eldan, A. Del Giorno, S. Gunasekar, and Y. T. Lee,
“Textbooks are all you need ii: phi-1.5 technical report,” arXiv preprint
arXiv:2309.05463, 2023.

