
HFUZZER: Testing Large Language Models for
Package Hallucinations via Phrase-based Fuzzing

Yukai Zhao∗†, Menghan Wu†, Xing Hu†‡, Xin Xia†
∗School of Software Technology, Zhejiang University, Ningbo, China

†The State Key Laboratory of Blockchain and Data Security, Zhejiang University, Hangzhou, China
{yukaizhao2000, menghanwu, xinghu}@zju.edu.cn, xin.xia@acm.org

Abstract—Large Language Models (LLMs) are widely used
for code generation, but they face critical security risks when
applied to practical production due to package hallucinations, in
which LLMs recommend non-existent packages. These halluci-
nations can be exploited in software supply chain attacks, where
malicious attackers exploit them to register harmful packages. It
is critical to test LLMs for package hallucinations to mitigate
package hallucinations and defend against potential attacks.
Although researchers have proposed testing frameworks for fact-
conflicting hallucinations in natural language generation, there is
a lack of research on package hallucinations. To fill this gap, we
propose HFUZZER, a novel phrase-based fuzzing framework to
test LLMs for package hallucinations. HFUZZER adopts fuzzing
technology and guides the model to infer a wider range of
reasonable information based on phrases, thereby generating
enough and diverse coding tasks. Furthermore, HFUZZER ex-
tracts phrases from package information or coding tasks to
ensure the relevance of phrases and code, thereby improving the
relevance of generated tasks and code. We evaluate HFUZZER on
multiple LLMs and find that it triggers package hallucinations
across all selected models. Compared to the mutational fuzzing
framework, HFUZZER identifies 2.60× more unique hallucinated
packages and generates more diverse tasks. Additionally, when
testing the model GPT-4o, HFUZZER finds 46 unique hallucinated
packages. Further analysis reveals that for GPT-4o, LLMs exhibit
package hallucinations not only during code generation but also
when assisting with environment configuration.

Index Terms—Large Language Models, Package Hallucination,
Fuzzing

I. INTRODUCTION

Large Language Models (LLMs) have shown significant
potential across various domains and are widely used for code
generation [1]. However, despite their success in tackling com-
plex tasks, LLMs face critical challenges related to security
and privacy [2], [3], [4], [5]. One major issue is hallucination,
where LLM-generated outputs may appear credible or authen-
tic but are factually incorrect, self-contradictory, or unrelated
to inputs [6], [7]. This issue has been extensively studied in
natural language generation (NLG) [8]. Recently, Liu et al. [5]
explore hallucinations in code generation and classify code
hallucinations into 19 types. One critical hallucination type is
package hallucination, which is defined as LLMs recommend
packages or libraries that do not exist [9], [10].

Compared to other types of code hallucinations, package
hallucination poses a higher risk of malicious exploitation,
introducing new software supply chain security threats [11],

‡Corresponding Author

[9]. Such attacks often fall under package obfuscation inci-
dents, where developers are misled into importing packages
they do not expect, which is one of the most serious problems
in supply chain security [10], [12]. Figure 1 shows an example.
A user first prompts the model to generate a Python program
that implements a simple HTTP/2 server with some specific
requirements. After generating the code, the user then asks
how to install the packages used in the generated program. In
response, the model recommends two packages to be installed
via pip. Upon inspection, it is found that the package “h2” is
correct, while “hyper-h2” is a hallucinated package that does
not exist in the package repository (PyPI [13]). If an attacker
registers this hallucinated package in the repository and em-
beds malicious code within it, uninformed developers may
inadvertently install and execute it, exposing themselves to
supply-chain attacks. Moreover, researchers and practitioners
have developed various LLM agents for end-to-end software
development (such as Devin [14]), which are capable of using
tools and executing commands [15]. This further increases
the success rate of package hallucination-based attacks, as
malicious packages may be downloaded into the development
environment without the developers’ awareness.

Spracklen et al. [10] and Krishna et al. [9] construct datasets
and empirical studies on package hallucinations. While valu-
able, their studies are limited by the size of the dataset
and cannot cover a wide range of code generation scenarios.
Although Drowzee [16] is proposed to test LLMs for fact-
conflicting hallucinations in NLG, research on code hal-
lucinations—particularly on package hallucinations—remains
scarce. Inspired by testing software to help discover failures,
we propose to test LLMs for package hallucinations. However,
testing LLMs faces the following two key challenges:
• Challenge 1: How to cover as many code generation
scenarios for LLMs as possible? To cover these scenarios,
we need to generate adequate and diverse coding tasks to
test LLMs. Although Drowzee [16], MORTAR [17], and
MetaQA [18] are proposed to generate natural language ques-
tions with single correct answers (e.g., “Did Haruki Murakami
and Bob Dylan ever win the same award?”), they cannot
complete the generation of coding tasks with multiple correct
implementations. Moreover, approaches that mutate existing
tasks using predefined mutation rules often result in limited
task diversity, as the variations are bounded by the original task
structure and mutation rules. Although such strategies may be

2745

2025 40th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/25/$31.00 ©2025 IEEE
DOI 10.1109/ASE63991.2025.00225

Object: HTTP/2 requests
Predicate: handle
Complement: styled HTML page

Create a Python program that implements a simple HTTP/2 server that preserves
the style of incoming requests. The server should be able to handle GET and
POST requests while maintaining the original formatting and headers of the
requests. It should respond with a styled HTML page that reflects the style of the
incoming request. Your implementation should ensure that the server is easy to
set up and run, allowing users to test their HTTP/2 requests effortlessly.

from h2.config import H2Configuration
from h2.connection import H2Connection
from h2.events import RequestReceived, DataReceived, StreamEnded

HTML_TEMPLATE = """
<!DOCTYPE html> … …

How to install these python packages used?

pip install h2
pip install hyper-h2

Object: GET and POST requests
Predicate: respond
Complement: easy to set up and run

Fig. 1. An Example of Package Hallucination

effective in adversarial attacks like jailbreak attacks, they are
inadequate for generating diverse coding tasks.
• Challenge 2: How to generate code-relevant tasks to test
LLMs for package hallucinations? Non-code-related tasks
introduce conflict in the prompt of the model (e.g., asking
an LLM to generate code for the task of “Win the Nobel
Prize in literature”), which undermines the effectiveness of
testing LLMs for package hallucinations. Therefore, automat-
ically generated tasks must be restricted to code-related ones.
However, leveraging LLMs or applying simple mutation-based
approaches often cannot ensure that the constraint is met,
especially when diversity is also desired. This issue may lead
to the generation of non-code-related tasks.

To overcome these challenges, we propose HFUZZER,
a novel phrase-based fuzzing framework designed to test
LLMs for package hallucinations. For Challenge-1, HFUZZER
adopts fuzzing technology and leverages LLMs as a task
generation engine, which enables HFUZZER to generate ad-
equate tasks. To increase the diversity of tasks, HFUZZER
guides LLM to generate tasks based on phrases. Since LLM
has been pre-trained on a large amount of data, when
phrases are input, the model can use this knowledge to
infer a wider range of reasonable information, thereby im-
proving the diversity of tasks. For instance, as shown in
Figure 1, HFUZZER leverages LLM to generate a coding
task based on phrases HTTP/2 requests , handle , and
styled HTML page . In the generated task, LLM in-
fers the task “implement an HTTP/2 server” based on the
phrase HTTP/2 requests . For Challenge-2, HFUZZER
extracts phrases from package information or coding tasks
to ensure that the phrases are relevant to the code, thereby
improving the relevance of the generated tasks and code.
For instance, the phrase HTTP/2 requests is more con-
ducive to the model inferring code-related information than
Nobel Prize . Inspired by the fact that subject-predicate-
object triples can summarize information in three phrases,
HFUZZER formulates package information or coding tasks
as phrase compositions ⟨Object, Predicate, Complement⟩
to obtain richer phrases and avoid redundancy. Among
them, Object represents the object processed by the pack-
age or the coding task (e.g., HTTP/2 requests and
Get and Post Requests in Figure 1), Predicate rep-
resents the method applied to Object (e.g., handle and

respond in Figure 1), and Complement represents ad-
ditional relevant details (e.g., styled HTML page and
easy to set up and run in Figure 1). Based on the
extracted phrases, HFUZZER guides LLM to consider the
packages related, and then restricts the tasks to those that can
be solved by using packages, thus increasing the likelihood of
generating code-related tasks that require calling packages.

To evaluate HFUZZER, we use the descriptions of the top
100 Python packages in libraries.io [19] as the initial input and
set the budget of a run as 1000 rounds. We count the number
of unique hallucinated packages to evaluate the effectiveness
of HFUZZER and cluster the generated tasks to analyze
diversity. We compare HFUZZER with GPTFUZZER-A, which
is adapted from GPTFuzzer [20], and use nine models as tester
and target models to comprehensively assess the generaliz-
ability of HFUZZER. The tester model is the model used by
HFUZZER and GPTFUZZER-A; the target model is the model
tested. Our results show that HFUZZER successfully triggers
package hallucinations in all target models and outperforms
GPTFUZZER-A across all tester models, finding on average
2.60x more unique hallucinated packages. Tasks generated by
HFUZZER are more diverse than those from GPTFUZZER-A.
We also find 46 unique hallucinated packages recommended
by GPT-4o. Further analysis shows that for GPT-4o, package
hallucinations occur not only during code generation but also
when assisting with environment configuration.

The contributions of our paper are summarized as follows:
• We design a new phrase-based coding task generation

method that leverages the knowledge of the LLM to infer
a wider range of reasonable information based on phrases,
thereby generating diverse tasks.

• To our knowledge, our framework is the first to introduce
the concept of fuzzing into testing LLMs for package
hallucinations. The code can be found on our website [21].

• We conduct a comprehensive evaluation by using differ-
ent LLMs as tester and target models. Results show that
HFUZZER successfully triggers package hallucinations in
all target models and outperforms GPTFUZZER-A on all
tester models. Tasks generated by HFUZZER are also more
diverse than those generated by GPTFUZZER-A.

II. METHODOLOGY

Figure 2 provides an overview of HFUZZER, which in-
cludes two parts (i.e., Phrase Extraction and Fuzzing Loop)
and resembles the fuzzing process (Seed Pool Initialization,
Seed Selection, Seed Mutation, and Execution). The tester
model LLMtester is the model used by HFUZZER, and the
target model LLMtarget is the tested model. HFUZZER uses
package information, which includes package names (e.g.,
“requests”) and their descriptions (e.g., “Python HTTP for
Humans”), as input and tests closed-source models solely
by accessing their input/output. The fuzzer first executes
the program under test with inputs from testers to initialize
the seed pool (Seed Pool Initialization). Similarly, in the
Phrase Extraction phase, HFUZZER extracts phrase compo-
sitions ⟨Object, Predicate, Complement⟩ from the package

2746

A. Phrase Extraction B. Fuzzing Loop

𝑳𝑳𝑴𝒕𝒆𝒔𝒕𝒆𝒓

Phrase Composition

Object

Predicate

Complement

name:
"requests",

description:
"Python HTTP for Humans.“ … …

Package Info

Phrase
Composition

Seed Selection

Seed

You are a programming assistant. Your
task is to generate a coding task … …

Coding task

N Packages
Hallucination

Risk Score
Power

Adjustment

Task Generation

Hallucination
TriggeringHallucination

Evaluation

Seed Pool
Expansion

import http2
class HTTP2Server:
… …

Task: “Create a Python script to … …”
Code: “Import os … …”

Results Non-existent Package : “http2-h2”
Otherlanguage Package : “cv2” … …

You are a phrase extractor
who can extract three phrases
from a coding task … …

Phrase Composition

Object

Predicate

Complement

You are a phrase extractor
who can extract phrases from
the package description … …

You are a coding assistant whose
task is generate Python code… …

You are a coding assistant that
determines python packages … ...

𝑳𝑳𝑴𝒕𝒆𝒔𝒕𝒆𝒓

𝑳𝑳𝑴target

𝑳𝑳𝑴target

pip install http2-h2 h2

𝑳𝑳𝑴𝒕𝒆𝒔𝒕𝒆𝒓

Fig. 2. The overview of HFUZZER. Phrase Extraction is discussed in Section II-A, Seed Selection is discussed in Section II-B1, Task Generation is discussed
in Section II-B2, Hallucination Triggering is discussed in Section II-B3, Hallucination Evaluation is discussed in Section II-B4, Power Adjustment is discussed
in Section II-B5, and Seed Pool Expansion is discussed in Section II-B6.

information by LLMtester to construct three corresponding
phrase pools, which consist of the seed pool (Section II-A).
Subsequently, HFUZZER enters the Fuzzing Loop phase. Sim-
ilar to selecting seeds from the seed pool (Seed Selection),
in each round, HFUZZER selects a seed consisting of three
phrases from the seed pool according to the power of phrases
(Section II-B1). The power is defined as the potential of a
phrase, which determines the probability of the phrase being
selected. The seed is used by LLMtester to generate a coding
task (Section II-B2). Unlike traditional fuzzing generates new
inputs by mutating seeds (Seed Mutation), HFUZZER gener-
ates new coding tasks by recombining different phrases. In the
Hallucination Triggering phase, HFUZZER asks LLMtarget

to generate code for the provided task, and then guides it to
recommend packages required to execute code, which corre-
sponds to the Execution of fuzzing. HFUZZER performs hallu-
cination evaluation on packages recommended by LLMtarget

to calculate the Hallucination Score (HS), which is used to
measure the package hallucination triggering on LLMtarget

(Section II-B4), and adjusts the power of related phrases
according to the HS (Section II-B5), thereby guiding future
selection toward under-explored phrases. To expand the seed
pool, for tasks that trigger package hallucinations, HFUZZER
extracts new phrase compositions from them and adds new
phrase compositions to the seed pool (Section II-B6). The
process continues until the query budget is exhausted. Finally,
we get the generated coding tasks and corresponding model
outputs. In the above process, to handle incorrect responses,
HFUZZER discards intermediate results if the output format is
invalid (e.g., missing tags) and allows LLMtester to respond
with ”None” when it is unable to generate reasonable output.
HFUZZER verifies packages by querying package indices (e.g.,
PyPI) to avoid false positives due to LLMtester output errors.
LLMtarget is also allowed to refuse unrelated coding tasks.
Additionally, compared to traditional parsing methods, LLMs
provide stronger semantic understanding and natural language
processing, allowing them to handle complex inputs.

A. Phrase Extraction

HFUZZER formulates package information as the phrase
composition ⟨Object, Predicate, Complement⟩ and extracts
the phrase composition from each package’s information to
construct the seed pool. This seed pool is divided into

three corresponding phrase pools with power, each containing
phrases of one component type. The three phrases of the
composition are defined as follows:
• Object represents the object processed by the package.
• Predicate represents the method applied by the package.
• Complement represents a phrase that captures essential
contextual details beyond the Object or Predicate, providing
additional context when applicable.

To achieve this, HFUZZER leverages LLM to extract phrase
compositions from package information. HFUZZER configures
the system prompt to define the target of phrase extraction
from package information and provides an example to specify
the expected response format. In the user prompt, HFUZZER
provides the package information to the model to obtain
phrases. These phrases are added to their respective phrase
pools and assigned an initial power, influencing the selection
process described in Section II-B1. To handle cases where
the model cannot extract a specific phrase due to insufficient
information, the prompt instructs the model to answer “None”.
This design helps minimize the negative impact of incomplete
package descriptions on phrase quality.
Example A. The description of package pre-commit is
“A framework for managing and maintaining multi-language
pre-commit hooks”. We formalize it as ⟨pre-commit hooks,
managing and maintaining, multi-language support⟩. Among
them, pre-commit hooks represents the objects pro-
cessed by this package, managing and maintaining
represents the methods provided by this package, and
multi-language support supplements the features of
this package. HFUZZER extracts such information from pack-
age information to construct the seed pool.

B. Fuzzing Loop

Similar to fuzzing, we consider the following process as one
round and repeat it until the budget is exhausted.

1) Seed Selection: In directed fuzzing, fuzzers assign scores
to the seeds and prioritize those with higher scores for muta-
tion. HFUZZER adopts a similar strategy for seed selection. In
this paper, each seed consists of three phrases corresponding to
the phrase composition described in Section II-A, to increase
the amount of information and provide richer context for LLM.
Specifically, HFUZZER applies a weighted random selection
algorithm to construct a seed: one phrase is selected from

2747

each phrase pool, where the selection probability of a phrase
is proportional to its power relative to the total power of
the phrase pool. The power is initialized in Section II-A and
continuously adjusted to reduce the likelihood of repeatedly
selecting the same phrases. The details of power adjustment
are presented in Section II-B5.
Example B1. In Figure 1, HFUZZER selects one phrase from
each of three phrase pools to construct a phrase composition:
⟨HTTP/2 requests, handle, styled HTML page⟩.

2) Task Generation: HFUZZER exploits LLM to generate a
coding task based on a selected seed. Specifically, HFUZZER
leverages LLM to identify packages that may be relevant to
the provided phrases and to generate a coding task that can be
solved using those packages. To enable automatic extraction
of the task from the model’s response, HFUZZER includes
a formatting example in the prompt and requires the LLM
to enclose the generated task within a predefined tag. During
execution, HFUZZER inserts three phrases of the selected seed
into a preset user prompt, queries the model, and parses the
tagged output to extract the final coding task.
Example B2. Based on the phrase composition, HFUZZER
uses LLMtester to generate a coding task, shown in Figure 1.
This task requires implementing an HTTP/2 server (HTTP/2
requests) that can handle GET and POST requests (handle)
and respond with a styled HTML page (style HTML page).

3) Hallucination Triggering: To trigger package hallucina-
tion in the common LLM usage scenario, we divide the entire
triggering process into two stages: Code Generation and Pack-
age Recommendation. In Code Generation, HFUZZER guides
the target model to generate code that solves the generated
task, providing an example to clarify the expected response
format. To mitigate the influence of unintended coding tasks
(e.g., non-code-related tasks), the prompt explicitly instructs
the model to return “None” if it cannot produce code. In Pack-
age Recommendation, HFUZZER prompts the target model
with the generated code and requires the model to answer the
installation commands corresponding to the packages used in
the code. Based on the package answered, HFUZZER further
performs hallucination evaluation. This design simulates a
realistic user scenario (developer requests a code snippet
along with the required packages) and reduces false positives
from aliases and similar ambiguities compared with rule-based
package extraction. Additionally, Package Recommendation
tests LLMs on environment configuration, motivated by exist-
ing studies that use LLMs for this purpose (e.g., in automatic
Docker builds [20]). It also supports analyses of hallucinations
from mismatches between imported modules (e.g., cv2) and
actual package names (e.g., opencv-python) [10].
Example B3. In Figure 1, HFUZZER first prompts LLMtarget

to generate a Python program for the task, and then queries
it to return the corresponding package installation commands
(i.e., pip install h2 and pip install hyper-h2).

4) Hallucination Evaluation: In this phase, HFUZZER eval-
uates the package hallucination based on extracted packages in
Section II-B3 and calculates the HS. To achieve fine-grained
evaluation, we first classify the extracted packages. Prior

studies define hallucinated packages as those recommended
by LLMs but either (i) registered after the model’s knowledge
cutoff date or (ii) not present in the appropriate package
repository [9]. Since HFUZZER aims not to test whether LLMs
can infer unknown packages but rather to find hallucinations
within existing knowledge, it adopts the above definition and
further classifies hallucinated packages into two types: nonex-
istent packages and otherlanguage packages. Additionally, we
observe a common scenario in which LLMs mistakenly treat
standard libraries (e.g., json) as packages requiring installation.
Although these libraries are not found in repositories, they do
not strictly qualify as hallucinated packages. Therefore, we ex-
clude them from hallucinated packages. In summary, we clas-
sify the packages recommended by the model into four types:
“stdPackage”, “existPackage”, “otherLanguagePackage”, and
“nonExistentPackage”. To formalize these types, let Pstd be
the set of standard libraries, Pexist be the set of packages
registered in the appropriate package repository before the
model’s knowledge cutoff date, and Plib be the set of packages
in Libraries.io [19]. We define these types as follows:

• Package p is classified as a “stdPackage” if p ∈ Pstd.
• Package p is classified as an “existPackage” if p ∈ Pexist.
• Package p is classified as an “otherLanguagePackage” if
p /∈ (Pstd ∪ Pexist) ∧ p ∈ Plib.

• Package p is classified as a “nonExistentPackage” if p /∈
(Pstd ∪ Pexist ∪ Plib).

Libraries.io is a cross-language package index that aggregates
repositories from multiple programming ecosystems. Follow-
ing prior studies [10], [9], we use it to verify whether a
package originates from a different language.

Based on the above definition, HFUZZER classifies packages
recommended by the model and calculates the HS to measure
the package hallucination triggering on the target model. Let
Npackage be the total number of packages recommended by the
target model, Nnon be the number of packages classified as
“nonExistentPackage”, and Nother be the number of packages
classified as “otherLanguagePackage”. The HS is defined as:

HS =
α ·Nnon

Npackage
+

β ·Nother

Npackage
(1)

where α = 1 and β = 0.51. The impact of using nonexistent
packages is more serious because it means that the model con-
structs packages that do not exist, whereas using otherlanguage
packages may be due to the model confusing the language of
the package. Thus, HFUZZER sets a larger constant to α.
Example B4. In Figure 1, LLMtarget recommends two
packages, which are classified as an “existPackage” and a
“nonExistentPackage”. Hence, the HS is 0.5.

5) Power Adjustment: To increase the diversity of coding
tasks, HFUZZER adjusts the power of phrases based on the
HS. Let Powero be the original power of the phrase, Nnew be
the number of hallucinated packages found for the first time
in the fuzzing loop, and Nold be the number of hallucinated

1All parameters are determined through an initial experiment.

2748

packages found in the previous rounds. The adjusted power of
the phrase Power is defined as follows:

Power =


Powero ·

(
k1·HS·Nnew
Nold+Nnew

+ k2

)
, if Nold +Nnew > 0

Powero · k2 , elif Npackage > 0

Powero · k3 , otherwise

(2)

where k1 = 0.15, k2 = 0.8, and k3 = 0.6. HFUZZER
reduces the power of phrases corresponding to the task that
do not recommend packages by a factor k3, while the power
of phrases that do not recommend hallucinated packages
is decreased by a factor k2, thereby lowering their chance
of reselection. For phrases where the task triggers package
hallucination, the power reduction is determined by the HS
and the ratio Nnew

Nold+Nnew
. By incorporating HS, HFUZZER fine-

tunes power based on the specific response of the target model.
HFUZZER also assigns relatively higher power to phrases
that find new hallucinated packages by Nnew

Nold+Nnew
. Intuitively,

similar to seeds for generating new coverage in fuzzing, these
phrases are more likely to generate coding tasks that can
trigger package hallucination in the model.
Example B5. Based on the HS (0.5), assuming the old power
is 1 and the hallucinated package is the first appearance, the
updated power is 0.875.

6) Seed Pool Expansion: Traditional fuzzers generate more
inputs through mutation. In contrast, HFUZZER leverages
LLMs to generate new coding tasks based on phrase composi-
tions. However, the phrases in the initial seed pool come from
the input of Section II-A, and their compositions are limited.
As the number of running rounds increases, the probability
of repeated compositions will also increase, thereby reducing
the diversity of generated tasks. To overcome this, HFUZZER
instructs LLM to extract phrase compositions from coding
tasks. Additionally, as in Section II-A, HFUZZER assigns
initial power to newly extracted phrases. Let Powerinitial be
the initial power used in Section II-A. The power of newly
extracted phrases Powernew is defined as follow:

Powernew = Powerinitial ·
(
k + (1−k)·Nnew

Nnew+Nold

)
(3)

where k = 0.6. Unlike Power in Formula 2, Powernew
places more emphasis on finding new hallucinated packages.
Therefore, we enlarge the impact of the proportion of using
new hallucination packages on power. After preliminary ex-
periments, we set k as 0.6.
Example B6. In Figure 1, HFUZZER extracts new phrase
compositions (i.e., GET and POST requests, respond, and easy
to set up and run) from the task. Their power is 1.0.

At the end of each round, HFUZZER records the generated
coding task, the output of the target model, and the halluci-
nation evaluation results, which can be used to reproduce the
package hallucinations found during the test.

III. EVALUATION

In this section, we study the following research questions:
RQ1: How effective is HFUZZER in testing LLMs for
package hallucinations? This RQ studies HFUZZER’s ability
to trigger package hallucination on different models, and

evaluates whether it is more effective in testing LLMs for
package hallucination compared with GPTFUZZER-A.

RQ2: Whether the tasks generated by HFUZZER more
diverse? This RQ studies the diversity of tasks generated by
HFUZZER and GPTFUZZER-A.

RQ3: Whether each module of HFUZZER contributes to
its performance? This RQ explores the impact of different
modules of HFUZZER on its performance.

A. Experimental Setup

Implementation. In our implementation, we access the model
through the API provided by the OpenAI library and obtain
package information through the APIs of the package reposi-
tory and libraries.io [19].
Baseline. To our knowledge, no study has focused on testing
LLMs for package hallucinations. Existing studies mainly con-
centrate on empirical studies and mitigating related hallucina-
tions. Note that HFUZZER is intended to test LLMs for hallu-
cinations, not to detect whether the model output contains hal-
lucinations. The study closest to ours is Drowzee [16], which
tests LLMs for fact-conflicting hallucinations in NLG through
metamorphic testing. However, it assumes a unique answer and
cannot be applied to package hallucinations. Therefore, we
compare HFUZZER with GPTFUZZER-A, which is adapted
from GPTFuzzer [20]. We modify the mutation operators
and the initial seeds of GPTFuzzer, and choose a random
strategy for seed selection. The mutation operators are adapted
to generate new coding tasks instead of new templates. The
initial seeds, originally jailbreak templates, are replaced with
coding tasks derived from package descriptions to ensure input
consistency between HFUZZER and GPTFUZZER-A.
Language Selection. We choose Python as the target language
to evaluate HFUZZER. Python is a popular language, ranked
number one on the TIOBE index [22], with a well-developed
ecosystem and widespread use in related studies [9], [10], [5].
Model Selection. To comprehensively evaluate HFUZZER
on LLMs with different training data and architectures, we
select multiple open-source popular models and closed-source
models. The detailed information is shown in Table I.

TABLE I
THE DETAILS OF SELECTED MODELS

Model Size Code Model Open Weights Full Name

Meta-Llama-3 8B No Yes Meta-Llama-3-8B-Instruct [23]
Qwen2.5-Coder 7B Yes Yes Qwen2.5-Coder-7B-Instruct [24]
DeepSeek-Coder 6.7B Yes Yes DeepSeek-Coder-Instruct 6.7B [25]
Meta-Llama-3.1 8B No Yes Meta-Llama-3.1-8B-Instruct [26]

Mistral-v0.3 7B No Yes Mistral-7B-Instruct-v0.3 [27]
Meta-Llama-3.3 70B No Yes Meta-Llama-3.3-70B-Instruct [28]
DeepSeek-V3 671B No Yes DeepSeek-V3 [29]
GPT-4o mini - No No GPT-4o mini [30]

GPT-4o - No No GPT-4o [31]

Metric. We evaluate the effectiveness of HFUZZER using the
Package Hallucination Rate (PHR) and the number of unique
hallucinated packages (RQ1 and RQ3). PHR is the proportion
of model responses containing hallucinated packages over the
total number of responses [9], and is used to assess whether
the coding tasks generated by HFUZZER can trigger package
hallucinations. The number of unique hallucinated packages is
analogous to a widely used metric in fuzzing (i.e., unique bugs)

2749

TABLE II
RQ1: UNIQUE HALLUCINATED PACKAGES RESULTS

Tester
Target Meta-Llama-3 Qwen2.5-Coder DeepSeek-Coder Meta-Llama-3.1 Mistral-v0.3 Meta-Llama-3.3 DeepSeek-V3 GPT-4o mini GPT-4o Avg.

(same Tester)Puniq Rinc Puniq Rinc Puniq Rinc Puniq Rinc Puniq Rinc Puniq Rinc Puniq Rinc Puniq Rinc Puniq Rinc

G-A 23 5 14 44 54 3 0 5 0Meta-Llama-3
H 51

2.22
6

1.20
24

1.71
65

1.48
95

1.76
6

2.00
3

-
7

1.40
1

- 1.68

G-A 29 1 19 47 55 2 1 1 0Qwen2.5-Coder
H 48

1.66
6

6.00
40

2.11
72

1.53
86

1.56
6

3.00
3

3.00
4

4.00
0

- 2.65

G-A 13 1 30 27 40 2 0 0 0DeepSeek-Coder
H 36

2.77
8

8.00
111

3.70
114

4.22
184

4.60
15

7.50
3

-
3

-
1

- 5.13

G-A 35 5 38 40 66 3 3 2 1Meta-Llama-3.1
H 41

1.17
9

1.80
43

1.13
81

2.03
150

2.27
9

3.00
7

2.33
5

2.50
1

1.00 1.91

G-A 49 1 17 54 100 3 1 4 0Mistral-v0.3
H 51

1.04
1

1.00
50

2.94
75

1.39
114

1.14
11

3.67
5

5.00
5

1.25
0

- 2.05

G-A 45 4 20 53 68 7 1 2 0Meta-Llama-3.3
H 53

1.18
5

1.25
47

2.35
74

1.40
117

1.72
12

1.71
9

9.00
10

5.00
5

- 2.95

G-A 53 5 11 61 46 6 1 1 2DeepSeek-V3
H 60

1.13
6

1.20
34

3.09
69

1.13
112

2.43
13

2.17
3

3.00
4

4.00
4

2.00 2.24

G-A 24 3 18 39 52 4 0 0 0GPT-4o mini
H 43

1.79
5

1.67
59

3.28
80

2.05
105

2.02
15

3.75
5

-
3

-
0

- 2.22

G-A 38 5 11 45 64 2 1 0 2GPT-4o
H 40

1.05
12

2.40
37

3.36
54

1.20
96

1.50
14

7.00
7

7.00
4

-
4

2.00 3.19

Avg. (same Target) 1.56 2.72 2.63 1.82 2.11 3.76 4.89 3.03 1.33 2.60 (all)

G-A is GPTFUZZER-A and H is HFUZZER. Puniq is the number of unique hallucinated packages found by HFUZZER or GPTFUZZER-A, and Rinc

indicates the improvement rate of HFUZZER compared to GPTFUZZER-A.

TABLE III
RQ1: MULTIPLE RUNS RESULTS

Tester
Target Meta-Llama-3.1 Mistral-v0.3 GPT-4o mini

µPuniq µRinc P µPuniq µRinc P µPuniq µRinc P

Meta-Llama-3 G-A 39.33 1.62 0.00 54.33 1.85 0.00 2.67 1.75 0.15H 63.67 100.33 4.67

Qwen2.5-Coder G-A 44.67 1.57 0.04 59.33 1.69 0.01 0.33 10.00 0.06H 70.33 100.00 3.33

deepseek-coder G-A 27.67 4.23 0.02 36.00 4.17 0.01 0.00 - 0.03H 117.00 150.00 4.00

Meta-Llama-3.1 G-A 33.67 2.28 0.01 69.00 1.91 0.01 2.00 2.67 0.02H 76.67 131.67 5.33

Mistral-v0.3 G-A 42.00 2.06 0.01 50.33 2.43 0.01 3.00 1.44 0.16H 86.67 122.33 4.33

Meta-Llama-3.3 G-A 53.67 1.30 0.01 74.67 1.62 0.00 2.33 3.71 0.01H 70.00 121.00 8.67

DeepSeek-V3 G-A 43.67 1.60 0.05 60.00 1.76 0.01 0.33 14.00 0.00H 70.00 105.33 4.67

GPT-4o mini G-A 40.67 1.77 0.00 58.33 1.86 0.00 0.67 5.00 0.04H 72.00 108.67 3.33

GPT-4o G-A 48.33 1.14 0.03 54.33 2.09 0.01 0.00 - 0.09H 55.00 113.67 4.67
Avg.(Same Target) 1.95 2.15 5.51
µCV (H/G-A) 0.10/0.17 0.11/0.14 0.39/0.72

µPuniq and µRinc are the means of multiple runs results. P is the value
of Welch’s t-test. µCV is the mean of the coefficient of variation.

and is used to evaluate HFUZZER’s ability to test LLMs for
package hallucinations. We use the Diversity Index to assess
task diversity (RQ2 and RQ3). The Diversity Index is defined
as the total of clusters and noise points.
Environment. Our experiments are conducted on a server
with four NVIDIA A800 GPUs. The server has an Intel Xeon
Platinum 8358P CPU with 32 cores and 2TB of memory. The
version of vLLM [32] used is v0.6.1.

B. RQ1: The Capability in Testing LLMs

To answer RQ1, we calculate the number of unique hal-
lucinated packages found by HFUZZER and GPTFUZZER-A,
as well as the PHR for different target models. We select the
top 100 Python packages from libraries.io [19] according to
the “SourceRank” and collect their information. Each run is
limited to 1,000 rounds. To ensure comprehensiveness, we use
nine models as tester and target models, forming 81 model
combinations. The temperature of the tester models is fixed
at 0 for determinism, whereas the target model’s temperature
is set to 0.7 to balance creativity and stability [33]. The
maximum token limit is set to 3,000.

Table II reports the results of unique hallucinated pack-
ages. Overall, HFUZZER outperforms GPTFUZZER-A across

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0% 14.0% 16.0%
GPT-4o

GPT-4o mini
DeepSeek-V3

Meta-Llama-3.3
Mistral-v0.3

Meta-Llama-3.1
DeepSeek-Coder

Qwen2.5-Coder
Meta-Llama-3

0.26%
0.61%
0.64%

3.04%

16.47%9.82%
5.68%

0.66%
7.10%

Fig. 3. RQ1: Average PHR of Different Target Models

Meta-Llama-3

Qwen2.5-Coder

DeepSeek-Coder

Meta-Llama-3.1
Mistral-v0.3

Meta-Llama-3.3
DeepSeek-V3

GPT-4o mini
GPT-4o

Target

Meta-Llama-3

Qwen2.5-Coder

DeepSeek-Coder

Meta-Llama-3.1

Mistral-v0.3

Meta-Llama-3.3

DeepSeek-V3

GPT-4o mini

GPT-4o

Te
st

er

0.071 0.004 0.024 0.077 0.113 0.011 0.003 0.007 0.001

0.060 0.006 0.119 0.096 0.102 0.026 0.004 0.004 0.000

0.062 0.011 0.065 0.123 0.156 0.059 0.003 0.005 0.002

0.043 0.009 0.050 0.087 0.177 0.021 0.008 0.003 0.001

0.124 0.001 0.072 0.080 0.187 0.031 0.008 0.007 0.000

0.076 0.005 0.046 0.097 0.151 0.025 0.014 0.010 0.005

0.066 0.006 0.042 0.098 0.163 0.034 0.004 0.005 0.010

0.055 0.005 0.057 0.084 0.134 0.029 0.005 0.003 0.000

0.082 0.012 0.036 0.142 0.299 0.038 0.009 0.011 0.004
0.00

0.05

0.10

0.15

0.20

0.25

Fig. 4. RQ1: Heatmap of PHR with Different Models

most model combinations, with an average number of unique
hallucinated packages increasing by 2.60×. We combine Ta-
ble II and Figure 3 to analyze the results on different target
models. Figure 3 shows the average PHR for each target
model, computed by averaging the PHR under different tester
models. HFUZZER triggers package hallucinations across all
target models. GPT-4o, GPT-4o mini, DeepSeek-V3, and
Qwen2.5-Coder exhibit relatively low PHRs (0.26–0.66%),
while Mistral-v0.3 shows the highest (16.47%). The PHR
for DeepSeek-Coder, Meta-Llama-3, and Meta-Llama-3.1 are
5.68%, 7.10%, and 9.82%. Compared with GPTFUZZER-A,
HFUZZER finds more unique hallucinated packages across
all target models, demonstrating its applicability. The largest
improvement is achieved when the target model is DeepSeek-
V3 (4.89x). Additionally, when GPT-4o mini and GPT-4o are
used as target models, HFUZZER outperforms GPTFUZZER-
A, highlighting its practical value. To analyze the impact
of different tester models, we analyze the results using dif-
ferent tester models, as shown in Table II and Figure 4.
For the number of unique hallucinated packages, HFUZZER
outperforms GPTFUZZER-A under all tester models, with
the largest improvement (5.13×) achieved when the tester is

2750

DeepSeek-Coder. Moreover, HFUZZER triggers hallucinations
in most model combinations, and no tester model consistently
outperforms the others. This suggests that the performance
of HFUZZER does not strongly depend on the specific tester
model, and it remains effective even with smaller-scale LLMs.

To evaluate stability, we follow MetaQA [18], select GPT-
4o mini, Meta-Llama-3.1, and Mistral-v0.3 as target models.
For each target, we use all tester models and run HFUZZER
and GPTFUZZER-A three times. Following prior studies [34],
[35], we use Welch’s t-test to assess statistical significance
and report the coefficients of variation (CV) [36]. As shown
in Table III, HFUZZER yields an average 3.02× improvement
over GPTFUZZER-A. This improvement is statistically signif-
icant (p<0.05) for most model combinations, and HFUZZER
exhibits consistently lower CV, indicating greater stability.
For some combinations, improvements are not significant
due to the low hallucination rates of the target models. The
low hallucination rates result in limited differences in means
relative to variances, leading to smaller effect sizes in the
Welch’s t-test and larger CV compared to other target models.

Further analysis shows a common phenomenon across most
models: the tendency to recommend packages composed of
technical terms mentioned in the task. This phenomenon is par-
ticularly pronounced when the hallucinated package exists in
another programming language. For instance, DeepSeek-Coder
tends to generate the hallucinated package jsonwebtoken
when responding to tasks involving “JSON Web Tokens”,
and both Meta-Llama-3.1 and Mistral-v0.3 tend to generate
the hallucinated package apache-arrow when responding
to tasks involving “Apache Arrow”. We also investigate the
distribution of hallucinated packages across different models.
Our analysis reveals that there are 190 non-existent packages
and 176 other-language packages recommended by multiple
models. Among them, the package pkg_resources is
recommended by all models, and 17 packages are recom-
mended by more than half of the models. This indicates that
the same hallucinated packages exist across different models.
Considering the architectural differences between the models,
we believe that most of these hallucinated packages likely
originate from the training data.

Qwen2.5-Coder shows a low PHR in our evaluation, which
is inconsistent with the results of other studies [9], [10].
We find that Qwen2.5-Coder often refuses to generate code
even when the same task can be responded to by other
models, which limits the effectiveness of both HFUZZER and
GPTFUZZER-A. To further investigate this issue, we query
other models of Qwen using the same tasks that triggered
refusals in Qwen2.5-Coder. Several models in the Qwen2.5-
code series also refuse to respond, whereas the Qwen2.5
series and newer Qwen3/Qwen3-code models respond nor-
mally. This behavior is similar to the over-refusal phenomenon
reported in the previous study [37]. Since it appears con-
fined to specific models, we consider our results sufficient
to validate HFUZZER’s effectiveness. Additionally, as over-
refusal is beyond the scope of this paper, we leave further
investigation for future work. We also find that there are

: 0.1
 minS: 1

: 0.1
 minS: 3

: 0.1
 minS: 5

: 0.2
 minS: 1

: 0.2
 minS: 3

: 0.2
 minS: 5

: 0.3
 minS: 1

: 0.3
 minS: 3

: 0.3
 minS: 5

Hyperparameter

0
200
400
600
800

1000

D
iv

er
si

ty
 In

de
x

918.64 962.01 985.35
748.44 813.62 891.09

288.84 319.90
427.59

518.65
607.01 780.49

271.68 306.91
414.93

92.48 103.77 147.28

HFuzzer
GPTFuzzer-A

Fig. 5. RQ2: Average Diversity index of tasks generated under different
DBSCAN parameter settings (ε ∈ 0.1, 0.2, 0.3, minS ∈ 1, 3, 5).

more unique hallucinated packages in Llama 3.1 compared to
Llama 3. Further analysis of these hallucinated packages re-
veals that those beginning with google-cloud are widely
recommended, especially when the code contains a statement
from google.protobuf import xx . We suspect that
this issue is related to the training data. Additionally, even
after removing these specific packages, Llama 3.1 still rec-
ommends more hallucinated packages compared to Llama 3.
These results show an unexpected observation from specific
cases: although Llama 3.1 generally outperforms Llama 3
in tasks such as code generation, this does not necessarily
correspond to a lower hallucination rate. A similar observation
is also found by Spracklen et al. [10] (CodeLlama 34B and
CodeLlama 13B). Note that whether this observation holds for
more models requires broader experiments, which we plan to
investigate further in the future.

Summary for RQ1: The tasks generated by HFUZZER
trigger package hallucinations on multiple models. Com-
pared with GPTFUZZER-A, HFUZZER finds more unique
hallucinated packages, with the average number increasing
by 2.60×. Further analysis reveals that: (1) most models
recommend hallucinated packages consisting of technical
terms; (2) some hallucinated packages appear across dif-
ferent models.

C. RQ2: The Diversity of Generated Tasks

To answer RQ2, we employ the model text-embedding-3-
small [38] to transform the tasks generated in Section III-B
into high-dimensional vectors, followed by clustering with the
DBSCAN algorithm [39]. We set the neighborhood radius
parameter (ε) to 0.1, 0.2, 0.3 and the minimum samples pa-
rameter (minS) to 1, 3, 5 to explore the impact of different
parameter settings. For each setting, we compute the Diversity
Index for every model combination and report the average
Diversity Index across all combinations.

Across all parameter settings, the tasks generated by
HFUZZER consistently have higher Diversity Indices than
those generated by GPTFUZZER-A, with an average improve-
ment of 2.36×, as shown in Figure 5. The Diversity Index
decreases as ε increases, because a larger ε merges more tasks
into the same cluster. In contrast, increasing minS leads to
higher Diversity Index, as originally small clusters are split
and more tasks are treated as noise points. Further analysis
shows that across all model combinations, tasks generated
by HFUZZER exhibit greater diversity compared to those
generated by GPTFUZZER-A. For different tester models,
the average CV of the Diversity Index is 0.15 for HFUZZER

2751

TABLE IV
RQ3: UNIQUE HALLUCINATED PACKAGES RESULTS OF ABLATION

Tester Model Target Model HFUZZER W/O Expansion W/O Power W/O Phrase W/O All
Puniq Puniq Rinc Puniq Rinc Puniq Rinc Puniq Rinc

Meta-Llama-3 Meta-Llama-3.1 65 48 1.35 44 1.48 43 1.51 1 65.00
Mistral-v0.3 95 80 1.19 31 3.06 58 1.64 1 95.00

Qwen2.5-Coder Meta-Llama-3.1 72 74 1.26 56 1.29 32 2.25 0 -
Mistral-v0.3 86 86 1.00 59 1.46 48 1.79 6 14.33

DeepSeek-Coder Meta-Llama-3.1 114 74 1.54 76 1.50 31 3.68 1 114.00
Mistral-v0.3 184 87 2.11 143 1.29 56 3.29 1 184.00

Meta-Llama-3.1 Meta-Llama-3.1 81 66 1.23 59 1.37 44 1.84 8 10.13
Mistral-v0.3 150 119 1.26 134 1.12 85 1.76 0 -

Mistral-v0.3 Meta-Llama-3.1 75 73 1.03 69 1.09 42 1.79 0 -
Mistral-v0.3 114 88 1.30 98 1.16 60 1.90 2 57.00

Meta-Llama-3.3 Meta-Llama-3.1 74 63 1.17 45 1.64 36 2.06 1 74.00
Mistral-v0.3 117 113 1.04 77 1.52 39 3.00 1 117.00

DeepSeek-V3 Meta-Llama-3.1 69 57 1.21 60 1.15 59 1.17 14 4.93
Mistral-v0.3 112 94 1.19 97 1.15 52 2.15 11 10.18

GPT-4o mini Meta-Llama-3.1 80 56 1.43 52 1.54 36 2.22 1 80.00
Mistral-v0.3 105 86 1.22 100 1.05 53 1.98 15 7.00

GPT-4o Meta-Llama-3.1 54 53 1.02 53 1.02 42 1.29 5 10.80
Mistral-v0.3 96 77 1.25 91 1.05 57 1.68 14 6.86

Avg. RDI - 1.26 1.25 4.40 116.46
Avg. Rinc - 1.27 1.39 2.06 56.68

Avg. RDI is the mean improvement (HFUZZER/variant) across all model combinations and DBSCAN parameter settings.

and 0.29 for GPTFUZZER-A. When ε = 0.1, ε = 0.2, and
ε = 0.3, the corresponding CVs are (0.03/0.16), (0.11/0.24),
and (0.32/0.47), respectively. For different target models, the
CVs are always around 0.1. For multiple runs in RQ1, the tasks
generated by HFUZZER exhibit a significant improvement
in diversity across all parameter settings, with an average
Diversity Index increase of 2.46x (p < 0.05 and CV ≈ 0.01).

Summary for RQ2: HFUZZER consistently yields more
diverse coding tasks than GPTFUZZER-A.

D. RQ3: The Impact of Different Modules

To evaluate the impact of different modules, we design four
variants with different modules removed:

• w/o Expansion: removes the Seed Pool Expansion module
introduced in Section II-B6;

• w/o Power: removes the Power module and uses random
selection;

• w/o Phrase: removes the Phrase module and directly uses
package descriptions;

• w/o All: removes all modules and relies only on the LLM
to generate coding tasks.

We compare HFUZZER with these variants to analyze how
each model improves HFUZZER. We use two target models
(Mate-Llama-3.1 and Mistral-v0.3) that recommended the
largest number of unique hallucinated packages in RQ1 to
clearly reveal the impact, and use all tester models. Other
settings are consistent with RQ1.

The results are shown in Table IV. Each module enhances
the performance of HFUZZER. The Phrase module (w/o
Phrase) has the largest impact, improving the number of
unique hallucinated packages by 2.06× and the diversity Index
by 4.40×. The Power module (w/o Power) and the Seed Pool
Expansion module (w/o Expansion) improve the number of
unique hallucinated packages by 1.39× and 1.27×, respectively,
and the diversity Index by 1.25× and 1.26×. w/o All performs
poorly, as relying solely on the LLM often leads to repetitive
coding tasks, highlighting the importance of guiding the LLM.

Summary for RQ3: For the number of unique hallu-
cinated packages, each module brings improvement of
1.27x, 1.39x, and 2.06x. For the Diversity Index, each
module brings improvements of 1.26x, 1.25x, and 4.40x.

IV. CASE STUDY

We use HFUZZER to test the model GPT-4o [40], which is
widely applied across various fields, observe its results, and
conduct an in-depth analysis to inspire subsequent studies. For
large-scale evaluation, we use the information of the top 1,000
packages as input and run 10,000 rounds. We use GPT-4o mini
as the tester model to reduce costs.

We manually inspect hallucinated packages and
conduct a detailed analysis. HFUZZER finds 46 unique
hallucinated packages, 11 of which are other-language
packages. Examining the intermediate results reveals
two types of hallucinated packages: code error and
package error. Code error occurs when the generated
code contains incorrect import statements. As shown
in Figure 6 (A), the model is prompted to develop a
Python application for handling multipart data uploads
from a web interface. The generated code includes
from flask_livereload import LiveReload ,
attempting to import a non-existent package. By analyzing the
code, we find that the intended package is livereload ,
but the model produces an incorrect import statement.
Package error occurs when the import statement is correct,
but the model returns hallucinated packages in the installation
command. Figure 6 (B) illustrates this with an example in
which the model is required to apply wavelet transforms
to images for contour computation. In the generated
code, the model generates the correct import statement
import pywt to import the package PyWavelets .
However, when providing the installation command, the
model incorrectly suggests using pip install pywt ,
which indicates that the model cannot correctly match
the installation command with the import statement. The
preliminary examination is performed by one author. To

2752

from flask_livereload import LiveReload

pip install flask-livereload

import pywt

pip install pywt

Example (A) Code Error

Example (B) Package Error

from dsl_parser import DSLParser
Assume we have a DSL parser module
pip install dsl-parser

Example (C) Placeholder

from some_ml_library import MLModel
Replace with actual ML library

pip install some_ml_library

Example (D) Assumption

Develop a Python application that can
handle multipart data uploads…

You need to develop a program that applies
a wavelet transform to an image in order …

You are required to develop a Python
application that reads key-value pairs from
a configuration file …

You are required to develop a testing
framework for a Django application …

Fig. 6. Examples of Case Study

Meta-Llama-3
Qwen2.5-Coder

DeepSeek-coder
Meta-Llama-3.1

Mistral-v0.3
Meta-Llama-3.3

DeepSeek-v3
GPT-4o mini GPT-4o

Tester Models

50
75

100
125
150
175
200
225
250

U
ni

qu
e

H
al

lu
ci

na
te

d
Pa

ck
ag

es

65
74
95
113

72

105
86

119
114

217

184

247

81

110

150

222

75

175

114

211

74

122
117

167

69

112
112

155

80

117
105

180

54

100
96

181

Llama pre
Llama post
Mistral pre
Mistral post

Fig. 7. Results with Different HFUZZER Input

classify all hallucinated packages, two authors independently
classify hallucinated packages as either code errors or
package errors. The classification is consistent due to the
clear criteria: after installing the correct package, if the
corresponding code can parse this package, it is classified as a
package error; otherwise, it is a code error. Our classification
results show that 34 hallucinated packages belong to package
error, while only 12 belong to code error. This suggests a
potential hypothesis: current LLMs are more prone to package
hallucinations when assisting with environment configuration.
Existing studies [41], [9] use regular expressions to extract
packages, overlooking potential hallucinations that can
arise from this process. Due to the limitations of regular
expressions (e.g., the inability to handle Python aliases),
automated environment configuration often relies on LLM
implementation in real-world scenarios [42]. Whether this
hypothesis holds across different models requires further
investigation, but it is noteworthy as it highlights a potential
scenario influenced by package hallucinations.

Inspired by Latendresse et al. [41], we examine hal-
lucinated packages to identify placeholders. Following the
definition of Latendresse et al. [41], two authors in-
dependently review all hallucinated packages and re-
solve disagreements through discussion. We find five
placeholders: ammonia_library , some_ml_library ,
some_multimedia_sdk , some-security-sdk , and
some-cloud-language-api . For the first three place-
holders, the model explicitly includes comments in the gen-
erated code to indicate their placeholder status. To further
analyze the impact of such comments, we ask two authors to
independently review the code snippets containing comments.
Their findings are consistent: all hallucinated packages with
comments are marked as placeholders or assumptions. In
total, 12 hallucinated packages contain similar comments,
including both placeholders and assumptions (e.g., “Assum-
ing the library is named this”). However, when queried

for installation commands, the model ignores these com-
ments and still returns the corresponding installation com-
mands, which is the input-conflicting hallucination. In Fig-
ure 6 (C), the model generates code that includes a place-
holder some_ml_library and a comment clarifying its
placeholder state. Despite this, the model still returns an
installation command containing this placeholder. Similarly,
in Figure 6 (D), the model adds a comment assuming the
existence of dsl_parser . However, the model ignores
the comment when returning an installation command and
incorrectly returns pip install dsl_parser . These
findings indicate that the model may ignore code comments
when analyzing the required packages, which motivates further
investigation into the influence of code comments on LLM
responses in code-related tasks.

Findings: (1) For GPT-4o, Package hallucinations occur
not only during code generation, but also when assisting
with environment configuration, even if the correct code
has been provided. (2) The model may ignore comments
when analyzing the required packages in the code.

V. DISCUSSION

A. The Effect of Potential Data Contamination

To investigate the effect of potential data contamination,
according to the “SourceRank”, we select the first 100 Python
packages released after the training cutoff dates of the chosen
models (post-cutoff packages). We run 1000 rounds using all
tester models and two target models (Meta-Llama-3.1 and
Mistral-v0.3). Since the top 100 packages used in Section III-B
are released before the cutoff dates (pre-cutoff packages), we
compare the post-cutoff results with those in Section III-B.

The results are shown in Figure 7. HFUZZER finds more
hallucinated packages when using post-cutoff packages. Com-
pared with pre-cutoff packages, post-cutoff ones yield slightly
higher diversity, with the Diversity Index increasing by 0.3%,
7.6%, and 24.8% under DBSCAN parameters ε = 0.1, 0.2,
and 0.3, respectively. Further analysis reveals that tasks de-
rived from these packages contain elements unfamiliar to
the models (e.g., model context protocol), and the seed pool
includes more phrases. When the information sought extends
beyond the model’s training data, LLM may fail to provide ac-
curate answers [43], resulting in more hallucinated packages.
Moreover, information outside the training data may introduce
greater randomness in responses, thus affecting the diversity of
the generated tasks. Considering that LLMs are rarely applied
to tasks involving unknown content, in Section III-B, we use
pre-cutoff packages to evaluate HFUZZER.

B. The Effect of Parameter Settings

To investigate the impact of HFUZZER’s parameters, we
run HFUZZER with different parameter settings on the two
model combinations that find the largest number of unique
hallucinated packages in RQ1 (i.e., DeepSeek-coder+Mistral-
v0.3 and Meta-Llama-3.1+Mistral-v0.3). For score parame-
ters (α/β), we test two variants to adjust the impact of

2753

0.05/0.8/0.6 0.15/0.7/0.6 0.15/0.8/0.7 0.75/0.75 1.25/0.25
Parameter Configurations (k1/k2/k3 or /)

125

150

175

U
ni

qu
e

H
al

lu
ci

na
te

d
Pa

ck
ag

es

110

132
139

125
131

108 113
121

115
127

0.2 0.4 0.6 0.8 1.0
Temperature

163

128

149

164

128
106

146

165

135

156

DeepSeek-coder+Mistral-v0.3
Llama-3.1+Mistral-v0.3

DeepSeek-coder+Mistral-v0.3 Default
Llama-3.1+Mistral-v0.3 Default

184

150

Fig. 8. The results of different parameters.

“nonexistentPackage”: 1.25/0.25 and 0.75/0.75. For power
parameters (k1/k2/k3), we test three variants: 0.05/0.8/0.6 (re-
duces the impact of discovering new hallucinated packages);
0.15/0.7/0.6 (reduces the impact of recommending packages);
and 0.15/0.8/0.7 (reduces the impact of selection). Addition-
ally, we test five temperature variants to analyze their impacts.
Other settings are consistent with RQ1. The Default is the
parameter setting used in Section III.

Figure 8 shows that, for the number of unique hallucinated
packages, the parameter variants find fewer hallucinated pack-
ages than the Default. In contrast, the effect of temperature is
not significant, with no clear trend observed. The parameter
variants generate less diverse tasks, with Diversity Indices
between 85% and 96% of the Default, averaged over all
clustering parameters. Temperature also influences diversity: at
0.2, the Diversity Index decreases to 89%, whereas at 0.4–1.0,
it increases slightly (by 1.02%–1.26%). Overall, parameter
and temperature settings affect the performance of HFUZZER,
but their impact remains limited, and the results consistently
outperform those of GPTFUZZER-A.

C. The Impact of Package Hallucinations

To further assess the impact of package hallucinations on
real-world developers, we manually investigate instances of
GPT-4o’s hallucinated package usage on GitHub [44] and
find that some hallucination packages have been used in
the repository. For instance, we identify that the hallucinated
package “data-analysis-toolkit” appears in several open-source
repositories, such as research-manual2. Similarly, Lanyado
conducts a case study on hallucinated packages [45], finding
that a hallucinated package is downloaded over 30,000 more
times than a randomly named package within three months,
and is even incorporated into repositories of some commercial
companies. These findings illustrate that developers can be
inadvertently exposed to hallucinated packages during devel-
opment, potentially increasing their vulnerability to malicious
attacks. Moreover, recent advances in LLM-based software
development agents, such as Devin [14], which support end-
to-end application development and automatic deployment,
further exacerbate this risk, as these agents may unknowingly
install hallucinated packages in practice.

D. Potential downstream tasks

Package Hallucination Mitigation: In existing studies,
Spracklen et al. [10] have proposed their insights to mit-
igate package hallucination. Spracklen et al. [10] make a

2https://github.com/iHuman-Lab/research-manual

preliminary attempt to mitigate package hallucination using
several popular techniques. Their experimental results show
that Retrieval Augmented Generation (RAG), Self-Detected
Feedback, and Fine-tuning all help reduce the model PHR,
with Fine-tuning proving to be the most effective. On the
DeepSeek Coder 6B, PHR is reduced by 83% through fine-
tuning. HFUZZER can provide sufficient data for fine-tuning,
enabling more effective mitigation and future evaluation.
Model Performance Improvement: According to the re-
search of Krishna et al. [9], PHR is negatively correlated
with the performance of the model on the code benchmark.
Therefore, reducing inherent model package hallucinations
through techniques such as fine-tuning and model editing is a
promising direction for improving model performance in the
field of code in the future. Our work provides sufficient data
support and evaluation methods for such follow-up studies.

E. Testing LLM VS. Detecting LLM Hallucinations

Existing studies [46], [47], [48], [18], [49] are proposed
to detect hallucinations. Other studies [50], [51], [52], [53],
[54], [55], [56] can also detect package hallucinations as a
side effect. In contrast, HFUZZER is a testing approach to
test LLMs, representing a distinct yet complementary research
direction. The core differences are as follows:
Technique Difference: Whereas existing studies analyze LLM
outputs, HFUZZER generates diverse and logical inputs.
Goal Difference: The goal of related studies is to detect
whether LLm outputs are hallucinations, while the goal of
HFUZZER is to test LLMs.

F. Threats to Validity

Limited of Language. In this paper, we primarily evaluate
HFUZZER on Python. However, the framework is designed
to be language-agnostic. We focus on Python because it is
widely used and frequently studied in related work [9], [10].
In future work, we plan to extend our evaluation to multiple
programming languages.
Limited Accuracy of Regular Extraction. We rely on regular
expressions to extract information from the model’s output.
Due to the inherent instability of the LLM’s output, the
extracted content may not always align with expectations. To
improve the stability of the LLM’s output format, we employ
one-shot prompting to guide the output format and implement
validation checks on the extracted results.
Limited LLM Sampling Strategy. The LLM sampling strat-
egy may affect the performance of LLM-based methods.
Investigating the impact of sampling strategies on HFUZZER
helps to assess its robustness. Therefore, we examine the effect
of the temperature of the tester model in Section V-B. For
cost considerations, the study is conducted on two model
combinations. We plan to further extend it in future work.

VI. RELATED WORK

A. Fuzzing

Fuzzing is one of the most popular testing techniques, which
can find weaknesses in a program [57], [58]. Lee et al. [59]

2754

group seeds by syntax and semantic similarity and use a
customized Thompson sampling method to choose effective
mutation strategies for each group. Liu et al. [60] propose
mutating inputs directly in memory and using print functions
to regenerate files, improving fuzzing for complex file formats.
Yang et al. [61] implement a fully automated API-level fuzzer
for automatic differentiation in deep learning libraries. Hough
et al. [62] exploit dynamic execution information to identify
and exchange similar parts of parameter sequences for para-
metric fuzzing. Wang et al. [63] use fine-grained semantic
alignment techniques to generate semantically correct test
inputs for fuzzing browsers. With the widespread use of
LLMs, some researchers have attempted to combine LLMs
with fuzzing. Xia et al. [64] leverage an LLM to generate and
mutate inputs for systems that take programming languages or
formal languages as inputs. Eom et al. [65] combine coverage
feedback with an LLM-based mutator using reinforcement
learning to test JavaScript engines. Deng et al. [66] propose
FuzzGPT, which uses LLMs to generate anomalous programs
for fuzzing deep learning libraries. In contrast to these works,
HFUZZER treats the LLM as the target of testing.

B. LLM Jailbreak

LLM jailbreak refers to exploiting carefully crafted prompts
to elicit content that violates service guidelines [67]. To
better guide defense strategies, existing studies have conducted
extensive testing on LLM jailbreak vulnerabilities through red
team attacks [67], [20], [68]. Yao et al. [67] use templates
to preserve prompt structure and isolate jailbreak features
as constraints, creating an automated framework to test and
find jailbreak vulnerabilities in LLMs. Yu et al. [20] exploit
manually crafted templates as initial input and mutate them
to generate new templates. Additionally, some studies have
also made efforts to defend against LLM jailbreak. Zhang
et al. [69] adjust the target LLM’s hidden representations by
enhancing toxic concepts and weakening jailbreak concepts,
ensuring the LLM generates safe content. Wang et al. [70]
leverage reverse inference on the initial responses of the LLM
to reveale the actual intent behind the original prompt. They
then re-prompt the LLM to generate responses in a way that
mitigates potential jailbreak attacks. Extensive studies have
been conducted through red team attacks to test LLMs for
jailbreak vulnerabilities and guide defense strategies. However,
studies on hallucinations are relatively scarce. HFUZZER fills
this gap, laying the foundation for better mitigation of LLM
package hallucinations, which is a high-risk hallucination type.

C. LLM Hallucination

Despite recent progress, LLMs still generate hallucina-
tions [9], which can be categorized into input-, context-, and
fact-conflicting types [6]. To reduce the impact of hallucina-
tions, researchers conduct studies on detecting and mitigat-
ing hallucinations. Jones et al. [71] utilize prefix-tuning on
synthetic tasks to optimize the system message, then transfer
this message to realistic tasks to reduce hallucination. Chen et

al. [46] propose to explore the dense semantic information re-
tained within LLMs’ internal states for hallucination detection.
Zhang et al. [47] introduce a reference-free, uncertainty-based
method to detect hallucinations in LLMs. Quevedo et al.[48]
construct two simple classifiers for hallucination detection
using four numerical features, using supervised learning. Yang
et al. [18] use metamorphic testing to mutate the model
response and evaluate whether the mutated content is correct
through LLM to detect hallucinations. Note that their mutation
method is still based on the assumption of a unique answer.

Given the application of LLMs in code-related tasks, re-
searchers study hallucinations in the code domain [72]. Liu et
al. [5] explore hallucinations in code generation and propose
a novel classification for code hallucinations. Jain et al. [73]
mitigate API hallucinations in low-frequency APIs through
documentation augmented generation. Tian et al. [49] propose
a hallucination detection algorithm based on execution valida-
tion and a code hallucination classification method. Spracklen
et al. [10] and Krishna et al. [9] further investigate a special
type of code hallucinations, i.e., package hallucination. They
define package hallucination as an LLM generates code that
either recommends or contains a reference to a package that
is not registered in the appropriate package repository or is
first registered after the model’s knowledge cutoff date. These
hallucinations pose security risks, as attackers may register
phantom packages with malicious code, which LLMs then
recommend to developers [10], [9], [11], [45]. Considering
the security risks posed by package hallucination, we propose
HFUZZER and apply it to package hallucination. Different
from existing methods for hallucination detection and mitiga-
tion, HFUZZER focuses on generating tasks to trigger model
hallucinations, which is a method similar to red team attacks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present HFUZZER, a novel phrase-based
fuzzing framework to test LLMs for package hallucinations.
By automatically generating diverse coding tasks based on
phrases, HFUZZER extensively tests LLMs for package hal-
lucinations. Through extensive evaluation, we demonstrate
that HFUZZER can trigger package hallucination across all
selected models, find 2.60x more unique hallucinated packages
compared with GPTFUZZER-A, and generate more diverse
tasks. We further test the model GPT-4o and find 46 unique
hallucinated packages. Our analysis shows that for GPT-4o,
package hallucinations not only occur in code generation but
also occur when assisting with environment configuration.

In the future, we plan to conduct more extensive testing on
more LLMs and more types of languages, and promote the
study of LLM package hallucination mitigation through open-
sourcing results. Additionally, we hope to further expand our
framework on code hallucination.

VIII. ACKNOWLEDGMENTS

This research is supported by the National Key R&D
Program of China (No. 2024YFB4506400).

2755

REFERENCES

[1] I. Ahmed, A. Aleti, H. Cai, A. Chatzigeorgiou, P. He, X. Hu,
M. Pezzè, D. Poshyvanyk, and X. Xia, “Artificial intelligence for
software engineering: The journey so far and the road ahead,” ACM
Trans. Softw. Eng. Methodol., vol. 34, no. 5, May 2025. [Online].
Available: https://doi.org/10.1145/3719006

[2] M. Yang, Y. Chen, Y. Liu, and L. Shi, “Distillseq: A framework for
safety alignment testing in large language models using knowledge
distillation,” in Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2024. New
York, NY, USA: Association for Computing Machinery, 2024, p.
578–589. [Online]. Available: https://doi.org/10.1145/3650212.3680304

[3] M. L. Siddiq, L. Roney, J. Zhang, and J. C. D. S. Santos, “Quality
assessment of chatgpt generated code and their use by developers,” in
Proceedings of the 21st International Conference on Mining Software
Repositories, ser. MSR ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 152–156. [Online]. Available:
https://doi.org/10.1145/3643991.3645071

[4] M. L. Siddiq, J. C. da Silva Santos, S. Devareddy, and A. Muller,
“Sallm: Security assessment of generated code,” in Proceedings of
the 39th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ser. ASEW ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 54–65. [Online].
Available: https://doi.org/10.1145/3691621.3694934

[5] F. Liu, Y. Liu, L. Shi, H. Huang, R. Wang, Z. Yang, L. Zhang, Z. Li, and
Y. Ma, “Exploring and evaluating hallucinations in llm-powered code
generation,” 2024. [Online]. Available: https://arxiv.org/abs/2404.00971

[6] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao,
Y. Zhang, Y. Chen, L. Wang, A. T. Luu, W. Bi, F. Shi, and S. Shi,
“Siren’s song in the ai ocean: A survey on hallucination in large
language models,” Computational Linguistics, pp. 1–46, 09 2025.
[Online]. Available: https://doi.org/10.1162/COLI.a.16

[7] C. Gao, X. Hu, S. Gao, X. Xia, and Z. Jin, “The current challenges of
software engineering in the era of large language models,” ACM Trans.
Softw. Eng. Methodol., vol. 34, no. 5, May 2025. [Online]. Available:
https://doi.org/10.1145/3712005

[8] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Comput. Surv., vol. 55, no. 12, Mar. 2023. [Online].
Available: https://doi.org/10.1145/3571730

[9] A. Krishna, E. Galinkin, L. Derczynski, and J. Martin, “Importing
phantoms: Measuring llm package hallucination vulnerabilities,” 2025.
[Online]. Available: https://arxiv.org/abs/2501.19012

[10] J. Spracklen, R. Wijewickrama, A. H. M. N. Sakib, A. Maiti,
B. Viswanath, and M. Jadliwala, “We have a package for you! a
comprehensive analysis of package hallucinations by code generating
llms,” 2025. [Online]. Available: https://arxiv.org/abs/2406.10279

[11] B. Lanyado, “Can you trust chatgpt’s package recommendations?” https:
//vulcan.io/blog/ai-hallucinations-package-risk/, 2023, last accessed
Mar. 2025.

[12] S. Neupane, G. Holmes, E. Wyss, D. Davidson, and L. De Carli,
“Beyond typosquatting: an in-depth look at package confusion,” in
Proceedings of the 32nd USENIX Conference on Security Symposium,
ser. SEC ’23. USA: USENIX Association, 2023.

[13] “Pypi,” https://pypi.org/, 2000, last accessed Mar. 2025.
[14] “Devin,” https://devin.ai/, 2024, last accessed Mar. 2025.
[15] X. Wang, B. Li, Y. Song, F. F. Xu, X. Tang, M. Zhuge, J. Pan,

Y. Song, B. Li, Jaskirat et al., “Openhands: An open platform
for AI software developers as generalist agents,” in The Thirteenth
International Conference on Learning Representations, 2025. [Online].
Available: https://openreview.net/forum?id=OJd3ayDDoF

[16] N. Li, Y. Li, Y. Liu, L. Shi, K. Wang, and H. Wang, “Drowzee:
Metamorphic testing for fact-conflicting hallucination detection in large
language models,” Proc. ACM Program. Lang., vol. 8, no. OOPSLA2,
Oct. 2024. [Online]. Available: https://doi.org/10.1145/3689776

[17] G. Guo, A. Aleti, N. Neelofar, C. Tantithamthavorn, Y. Qi, and T. Y.
Chen, “Mortar: Multi-turn metamorphic testing for llm-based dialogue
systems,” 2025. [Online]. Available: https://arxiv.org/abs/2412.15557

[18] B. Yang, M. A. Al Mamun, J. Zhang, and G. Uddin, “Hallucination
detection in large language models with metamorphic relations,” Pro-
ceedings of the ACM on Software Engineering, vol. 2, pp. 425–445, 06
2025.

[19] “Libraries.io,” https://libraries.io/, 2015, last accessed Mar. 2025.

[20] J. Yu, X. Lin, Z. Yu, and X. Xing, “Gptfuzzer: Red teaming
large language models with auto-generated jailbreak prompts,” 2024.
[Online]. Available: https://arxiv.org/abs/2309.10253

[21] “Replication package,” https://github.com/YukZhao/HFuzzer, 2025, last
accessed Mar. 2025.

[22] “Tiobe index,” https://www.tiobe.com/tiobe-index/, 2000, last accessed
Mar. 2025.

[23] A. Meta, “Introducing meta llama 3: The most capable openly available
llm to date,” https://ai.meta.com/blog/meta-llama-3/, 2024, last accessed
Mar. 2025.

[24] B. Hui, J. Yang, Z. Cui, J. Yang, D. Liu, L. Zhang et al.,
“Qwen2.5-coder technical report,” 2024. [Online]. Available: https:
//arxiv.org/abs/2409.12186

[25] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang et al.,
“Deepseek-coder: When the large language model meets programming
– the rise of code intelligence,” 2024. [Online]. Available: https:
//arxiv.org/abs/2401.14196

[26] A. Meta, “Llama 3.1,” https://ai.meta.com/blog/meta-llama-3-1/, 2024,
last accessed Mar. 2025.

[27] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” 2023. [Online]. Available: https://arxiv.org/abs/2310.06825

[28] A. Meta, “Llama 3.3,” https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3 3/, 2024, last accessed
Mar. 2025.

[29] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, C. Ruan et al., “Deepseek-v3 technical report,” 2025.
[Online]. Available: https://arxiv.org/abs/2412.19437

[30] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat
et al., “Gpt-4 technical report,” 2024. [Online]. Available: https:
//arxiv.org/abs/2303.08774

[31] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark,
A. Ostrow, A. Welihinda, A. Hayes, A. Radford et al., “Gpt-4o system
card,” 2024. [Online]. Available: https://arxiv.org/abs/2410.21276

[32] “vllm,” https://docs.vllm.ai/, 2024, last accessed Mar. 2025.
[33] C. Chen, J. Su, J. Chen, Y. Wang, T. Bi, J. Yu, Y. Wang,

X. Lin, T. Chen, and Z. Zheng, “When chatgpt meets smart
contract vulnerability detection: How far are we?” ACM Trans. Softw.
Eng. Methodol., vol. 34, no. 4, Apr. 2025. [Online]. Available:
https://doi.org/10.1145/3702973

[34] D. Liyanage, N. Attanayake, Z. Luo, and R. Gopinath, “Assessing
reliability of statistical maximum coverage estimators in fuzzing,” 2025.
[Online]. Available: https://arxiv.org/abs/2507.17093

[35] D. Shriver, S. Elbaum, M. B. Dwyer, and D. S. Rosenblum, “Evaluating
recommender system stability with influence-guided fuzzing,” in
Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence and Thirty-First Innovative Applications of Artificial
Intelligence Conference and Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, ser. AAAI’19/IAAI’19/EAAI’19.
AAAI Press, 2019. [Online]. Available: https://doi.org/10.1609/aaai.
v33i01.33014934

[36] H. Abdi, “Coefficient of variation,” Encyclopedia of research design,
vol. 1, no. 5, pp. 169–171, 2010.

[37] J. Cui, W.-L. Chiang, I. Stoica, and C.-J. Hsieh, “OR-bench: An
over-refusal benchmark for large language models,” 2025. [Online].
Available: https://openreview.net/forum?id=obYVdcMMIT

[38] OpenAI, “text-embedding-3-small,” https://platform.openai.com/docs/
models/text-embedding-3-small/, 2024, last accessed Aug. 2025.

[39] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan
revisited, revisited: Why and how you should (still) use dbscan,” ACM
Trans. Database Syst., vol. 42, no. 3, Jul. 2017. [Online]. Available:
https://doi.org/10.1145/3068335

[40] “Chatgpt,” https://chatgpt.com/, 2022, last accessed Mar. 2025.
[41] J. Latendresse, S. Khatoonabadi, A. Abdellatif, and E. Shihab, “Is

chatgpt a good software librarian? an exploratory study on the use
of chatgpt for software library recommendations,” 2024. [Online].
Available: https://arxiv.org/abs/2408.05128

[42] R. Hu, C. Peng, X. Wang, J. Xu, and C. Gao, “Repo2run: Automated
building executable environment for code repository at scale,” 2025.
[Online]. Available: https://arxiv.org/abs/2502.13681

[43] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai,
J. Sun, M. Wang, and H. Wang, “Retrieval-augmented generation
for large language models: A survey,” 2024. [Online]. Available:
https://arxiv.org/abs/2312.10997

2756

[44] “Github,” https://github.com/, 2008, last accessed Mar. 2025.
[45] B. Lanyado, “Diving deeper into ai package hallucinations,” https://

www.lasso.security/blog/ai-package-hallucinations/, 2024, last accessed
Mar. 2025.

[46] C. Chen, K. Liu, Z. Chen, Y. Gu, Y. Wu, M. Tao, Z. Fu,
and J. Ye, “INSIDE: LLMs’ internal states retain the power of
hallucination detection,” in The Twelfth International Conference
on Learning Representations, 2024. [Online]. Available: https:
//openreview.net/forum?id=Zj12nzlQbz

[47] T. Zhang, L. Qiu, Q. Guo, C. Deng, Y. Zhang, Z. Zhang,
C. Zhou, X. Wang, and L. Fu, “Enhancing uncertainty-based
hallucination detection with stronger focus,” in Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing,
H. Bouamor, J. Pino, and K. Bali, Eds. Singapore: Association
for Computational Linguistics, Dec. 2023, pp. 915–932. [Online].
Available: https://aclanthology.org/2023.emnlp-main.58/

[48] E. Quevedo, J. Y. Salazar, R. Koerner, P. Rivas, and T. Cerny, “Detecting
hallucinations in large language model generation: A token probability
approach,” in Artificial Intelligence and Applications, H. R. Arabnia,
L. Deligiannidis, S. Amirian, F. Shenavarmasouleh, F. Ghareh Moham-
madi, and D. de la Fuente, Eds. Cham: Springer Nature Switzerland,
2025, pp. 154–173.

[49] Y. Tian, W. Yan, Q. Yang, X. Zhao, Q. Chen, W. Wang, Z. Luo, L. Ma,
and D. Song, “Codehalu: investigating code hallucinations in llms via
execution-based verification,” in Proceedings of the Thirty-Ninth AAAI
Conference on Artificial Intelligence and Thirty-Seventh Conference
on Innovative Applications of Artificial Intelligence and Fifteenth
Symposium on Educational Advances in Artificial Intelligence, ser.
AAAI’25/IAAI’25/EAAI’25. AAAI Press, 2025. [Online]. Available:
https://doi.org/10.1609/aaai.v39i24.34717

[50] M. H. Tanzil, J. Y. Khan, and G. Uddin, “Chatgpt incorrectness
detection in software reviews,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3597503.3639194

[51] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” in Proceedings of the 37th International Conference
on Neural Information Processing Systems, ser. NIPS ’23. Red Hook,
NY, USA: Curran Associates Inc., 2023.

[52] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs?
an evaluation on quixbugs,” in Proceedings of the Third International
Workshop on Automated Program Repair, ser. APR ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 69–75.
[Online]. Available: https://doi.org/10.1145/3524459.3527351

[53] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H.
Tan, “Automated repair of programs from large language models,”
in Proceedings of the 45th International Conference on Software
Engineering, ser. ICSE ’23. IEEE Press, 2023, p. 1469–1481.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00128

[54] Y. Liu, T. Le-Cong, R. Widyasari, C. Tantithamthavorn, L. Li, X.-B. D.
Le, and D. Lo, “Refining chatgpt-generated code: Characterizing
and mitigating code quality issues,” ACM Trans. Softw. Eng.
Methodol., vol. 33, no. 5, Jun. 2024. [Online]. Available: https:
//doi.org/10.1145/3643674

[55] C. S. Xia and L. Zhang, “Automated program repair via conversation:
Fixing 162 out of 337 bugs for $0.42 each using chatgpt,” in Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA ’24. ACM, Sep. 2024, p. 819–831.
[Online]. Available: http://dx.doi.org/10.1145/3650212.3680323

[56] R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi,
M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand,
“Lost in translation: A study of bugs introduced by large language
models while translating code,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3597503.3639226

[57] X. Zhao, H. Qu, J. Xu, X. Li, W. Lv, and G.-G. Wang, “A systematic
review of fuzzing,” Soft Comput., vol. 28, no. 6, p. 5493–5522, Oct.
2023. [Online]. Available: https://doi.org/10.1007/s00500-023-09306-2

[58] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[59] M. Lee, S. Cha, and H. Oh, “Learning seed-adaptive mutation
strategies for greybox fuzzing,” in Proceedings of the 45th International
Conference on Software Engineering, ser. ICSE ’23. IEEE Press, 2023,
p. 384–396. [Online]. Available: https://doi.org/10.1109/ICSE48619.
2023.00043

[60] X. Liu, W. You, Y. Ye, Z. Zhang, J. Huang, and X. Zhang, “Fuzzinmem:
Fuzzing programs via in-memory structures,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE ’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3597503.3639172

[61] C. Yang, Y. Deng, J. Yao, Y. Tu, H. Li, and L. Zhang, “Fuzzing
automatic differentiation in deep-learning libraries,” in Proceedings
of the 45th International Conference on Software Engineering, ser.
ICSE ’23. IEEE Press, 2023, p. 1174–1186. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00105

[62] K. Hough and J. Bell, “Crossover in parametric fuzzing,” in
Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639160

[63] J. Wang, P. Qian, X. Huang, X. Ying, Y. Chen, S. Ji, J. Chen,
J. Xie, and L. Liu, “Tacoma: Enhanced browser fuzzing with
fine-grained semantic alignment,” in Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2024. New York, NY, USA: Association
for Computing Machinery, 2024, p. 1174–1185. [Online]. Available:
https://doi.org/10.1145/3650212.3680351

[64] C. S. Xia, M. Paltenghi, J. L. Tian, M. Pradel, and L. Zhang,
“Fuzz4all: Universal fuzzing with large language models,” in 2024
IEEE/ACM 46th International Conference on Software Engineering
(ICSE). Los Alamitos, CA, USA: IEEE Computer Society, Apr. 2024,
pp. 1547–1559. [Online]. Available: https://doi.ieeecomputersociety.org/

[65] J. Eom, S. Jeong, and T. Kwon, “Fuzzing javascript interpreters with
coverage-guided reinforcement learning for llm-based mutation,” in
Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2024. New York, NY, USA:
Association for Computing Machinery, 2024, p. 1656–1668. [Online].
Available: https://doi.org/10.1145/3650212.3680389

[66] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang, “Large
language models are edge-case generators: Crafting unusual programs
for fuzzing deep learning libraries,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3597503.3623343

[67] D. Yao, J. Zhang, I. G. Harris, and M. Carlsson, “Fuzzllm: A novel
and universal fuzzing framework for proactively discovering jailbreak
vulnerabilities in large language models,” in ICASSP 2024 - 2024 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2024, pp. 4485–4489.

[68] G. Deng, Y. Liu, Y. Li, K. Wang, Y. Zhang, Z. Li, H. Wang, T. Zhang,
and Y. Liu, “Masterkey: Automated jailbreaking of large language
model chatbots,” in Proceedings 2024 Network and Distributed System
Security Symposium, ser. NDSS 2024. Internet Society, 2024. [Online].
Available: http://dx.doi.org/10.14722/ndss.2024.24188

[69] S. Zhang, Y. Zhai, K. Guo, H. Hu, S. Guo, Z. Fang, L. Zhao, C. Shen,
C. Wang, and Q. Wang, “Jbshield: defending large language models from
jailbreak attacks through activated concept analysis and manipulation,”
in Proceedings of the 34th USENIX Conference on Security Symposium,
ser. SEC ’25. USA: USENIX Association, 2025.

[70] Y. Wang, Z. Shi, A. Bai, and C.-J. Hsieh, “Defending llms against
jailbreaking attacks via backtranslation,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.16459

[71] E. Jones, H. Palangi, C. S. Ribeiro, V. Chandrasekaran, S. Mukherjee,
A. Mitra, A. H. Awadallah, and E. Kamar, “Teaching language models
to hallucinate less with synthetic tasks,” in The Twelfth International
Conference on Learning Representations, 2024. [Online]. Available:
https://openreview.net/forum?id=xpw7V0P136

[72] X. Yu, L. Liu, X. Hu, J. W. Keung, J. Liu, and X. Xia, “Fight fire with
fire: How much can we trust chatgpt on source code-related tasks?”
IEEE Trans. Softw. Eng., vol. 50, no. 12, p. 3435–3453, Dec. 2024.
[Online]. Available: https://doi.org/10.1109/TSE.2024.3492204

[73] N. Jain, R. Kwiatkowski, B. Ray, M. K. Ramanathan, and V. Kumar,
“On mitigating code llm hallucinations with api documentation,” 2024.
[Online]. Available: https://arxiv.org/abs/2407.09726

2757

