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Abstract—Trustworthy evaluation methods for code snippets
play a crucial role in neural code generation. Traditional meth-
ods, which either rely on reference solutions or require executable
test cases, have inherent limitation in flexibility and scalability.
The recent LLLM-as-Judge methodology offers a promising alter-
native by directly evaluating functional consistency between the
problem description and the generated code. To systematically
understand the landscape of these LLM-as-Judge methods, we
conduct a comprehensive empirical study across three diverse
datasets. Our investigation reveals the pros and cons of two
categories of LLM-as-Judge methods: the methods based on
general foundation models can achieve good performance but
require complex prompts and lack explainability, while the
methods based on reasoning foundation models provide better
explainability with simpler prompts but demand substantial
computational resources due to their large parameter sizes. To
address these limitations, we propose CODE-DITING, a novel
code evaluation method that balances accuracy, efficiency and
explainability. We develop a data distillation framework that
effectively transfers reasoning capabilities from DeepSeek-R1-
671B to our CODE-DITING 1.5B and 7B models, significantly
enhancing evaluation explainability and reducing the compu-
tational cost. With the majority vote strategy in the inference
process, CODE-DITING 1.5B outperforms all models with the
same magnitude of parameters and achieves performance which
would normally exhibit in a model with 5 times of parameter
scale. CODE-DITING 7B surpasses GPT-40 and DeepSeek-V3
671B, even though it only uses 1% of the parameter volume
of these large models. Further experiments show that CODE-
DITING is robust to preference leakage and can serve as a
promising alternative for code evaluation.

Index Terms—Code Generation, Evaluation, LLM-as-Judge

[. INTRODUCTION

Large Language Models (LLMs) have emerged as a funda-
mental tool in modern software development [1]-[3], demon-
strating exceptional language understanding and generation
capabilities. Their application has shown remarkable potential
across various software engineering tasks [4], [5], particularly
in code generation [6]-[8]. However, as LLMs are increasingly
deployed, evaluating the correctness of generated code remains
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a significant challenge [9], [10], primarily because multiple
correct or semantically equivalent solutions [11] may exist for
a given programming problem.

Traditional evaluation metrics, which are either reference-
based or test-based, have been widely adopted. However,
these metrics suffer from inherent limitations. Reference-based
metrics (e.g., BLEU [12], ROUGE [13] and ChrF [14]) depend
on high-quality reference code and frequently penalize imple-
mentations that are correct but diverge from them. Test-based
metrics (e.g., Pass@k [15]) require careful manual design of
comprehensive test cases that cover edge cases, along with
secure environments for code execution. Another evaluation
method is human evaluation [16], which is accurate yet expen-
sive, as it involves multiple domain experts who directly assess
the correctness of generated artifacts. More important, human
evaluation is prohibitively labor-intensive and time-consuming,
rendering it impractical for large-scale assessments. These
constraints significantly limit the flexibility and scalability of
human evaluation for code generation evaluation [17], [18].

Recent advancements in LLMs have motivated the devel-
opment of LLM-as-Judge methods [19]-[21], which directly
evaluate the functional consistency between problem descrip-
tions and generated code. These methods offer a promising
alternative to traditional evaluation methods [22]. However,
with the rapid proliferation of LLM-as-Judge methods, there
remains considerable uncertainty regarding their performance
in code generation evaluation and it is far from clear which
method delivers optimal results [23].

Empirical study. We first conduct a large-scale empirical
study to systematically compare different LLM-as-Judge meth-
ods in code generation evaluation. Specifically, we classify ex-
isting LLM-as-Judge methods into two categories, i.e., meth-
ods based on general models (e.g., GPT-3.5-turbo and GPT-
40) and methods based on reasoning-focused models (e.g.,
DeepSeek-R1 [24]). To ensure the comprehensive evaluation,
we curate three datasets (i.e., HumanEval-Judge, MBPP-Judge
and BigCodeBench-Judge) as new benchmarks for evaluating



the effectiveness of LLM-as-Judge methods in code generation
evaluation. Our findings indicate that, while these methods
generally perform well, they exhibit significant discrepancy
across various dimensions. In particular, the former requires
elaborate prompts and lacks explainability, whereas the latter
provides enhanced explainability with simpler prompts but
demands substantial computational resources due to their
parameter sizes.

Our methods. To address these limitations and advance
the state of code generation evaluation, we propose a novel
code evaluation method that effectively balances accuracy,
efficiency, and explainability. We name it CODE-DITING!.

To reduce the computational cost, we develop a data dis-
tillation framework that transfers reasoning capabilities from
the powerful DeepSeek-R1-671B model to our more compact
CODE-DITING model, available in 1.5B and 7B parame-
ter sizes. Through this process, we construct a high-quality
dataset CODEJUDGE-17K consisting of 17,000 carefully cu-
rated samples with reasoning paths. This method not only
enhances the explainability of the evaluation but also makes
the reasoning process more accessible and comprehensible.
To further enhance performance, the CODE-DITING models
employ PiSSA [25] technique for model training and the
majority vote strategy during inference.

Experimental results demonstrate that CODE-DITING 1.5B
outperforms all models of comparable parameter magnitude
and achieves performance equivalent to models with five times
the parameter count. Notably, CODE-DITING 7B surpasses
even large-scale models such as GPT-4o0 and DeepSeek-
V3 671B [26], despite utilizing only 1% of their parameter
volume. Our ablation studies reveal that all components of
CODE-DITING are essential for its superior performance.
In addition, we demonstrate that CODE-DITING is robust
to preference leakage [27], where evaluation models show
bias toward code produced by same series of architectures,
a common issue in LLM-as-Judge methods. These findings
establish CODE-DITING as a promising alternative for code
generation evaluation, representing a significant advancement
in the field.

Summary of contributions.

o We curate three datasets (i.e., HumanEval-Judge, MBPP-
Judge and BigCodeBench-Judge) as benchmark for the
empirical study. In addition, we introduce a new dataset
CODEJUDGE-17K designed for training purposes.

o We design and carry out a large-scale empirical study to
systematically compare different LLM-as-Judge methods
in code generation evaluation.

e« We propose CODE-DITING, a novel code evaluation
method that effectively balances accuracy, efficiency and
explainability.

« We conduct extensive experiments to evaluate the per-
formance of CODE-DITING on different scenarios, in-

IThe name is from Chinese classic Journey to the West, reflecting the
model’s goal to accurately discern the correctness of code implementations,
just as the mythical creature distinguishes truth from falsehood.
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TABLE I: Comparison of Code Generation Evaluation Met-
rics, where Func. means functional correctness, Auto. means
automatic evaluation, Expl. means explainability and Open.
means using open-source models. v’ denotes applicable, X
denotes not applicable and o denotes optional.

Metric Category Characteristics

Ref  Test

Func. Auto. Expl. Open.

BLEU [12]

Rouge [13]

ChrF [14]

EM [28]

ED [28]
CrystalBLEU [29]
CodeBLEU [30]
CodeBERTScore [31]
CodeScore [32]
CodeScore-R [33]

Human Study [16]
Pass@k [15]

ICE-Score [34]
CodeJudge [35]
SWE-Judge [36]

CODE-DITING
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cluding performance comparisons, ablation studies and
analyses of preference leakage.

To facilitate reproducibility, experimental data and model
weights are released at https://github.com/Code-DiTing.

II. BACKGROUND AND RELATED WORK
A. Problem Formulation

We formally define the code generation evaluation problem
as follows. Let X’ be the space of problem descriptions, ) be
the space of code implementations, R be the space of reference
implementations and 7 be the space of test case sets.

Given a problem description x € X, a code generation
model M : X — Y produces code y = M (z). The evaluation
function F : XX YXRxT — {0, 1} determines the functional
correctness of y with respect to x. Formally,

1, if y is functionally correct

0. M

otherwise

.F(x,y,r,T):{

where » € RU{L} is an (optional) reference implementation
(r = L means that r is not provided) and 7' € T U {L} is
an (optional) set of test cases (I' = L means that 7" is not
provided).

Based on the availability of r or 7', the existing code gen-
eration evaluation methods can be categorized into: reference-
based, test-based, and reference-and-Test-free evaluation. Ta-
ble I summarizes a comparison of code generation evaluation
metrics used in various methods.

B. Reference-Based Evaluation (r # 1)

Reference-based methods compute the similarity between
y and r, based on metrics ranging from token-based metrics
(e.g., BLEU [12] and ChrF [14]) to semantics-aware ones (e.g.,
CodeBLEU [30] and CodeBERTScore [31]).



Token-based metrics are limited to the n-gram lexical sim-
ilarity computation and ignore potential semantic information
in the code. These metrics originate from, e.g., machine
translation and text summarization, including BLEU [12],
ROUGE [13] and ChrF [14]. Additionally, exact match (EM)
metrics are widely used in code synthesis. Eghbali et al. [29]
proposed the CrystalBLEU metric to enhance evaluation accu-
racy by excluding common n-grams that inflate BLEU scores
due to verbose syntax and coding conventions. Furthermore,
Liguori et al. [28] argued that edit distance (ED) better mea-
sures code similarity compared to other token-based metrics.

Semantics-based metrics consider the syntactic structure,
data flow information and potential semantic information of
code. Ren et al. [30] proposed CodeBLEU, which injects
code syntax through AST and code semantics through data
flow. Dong et al. [32] proposed CodeScore, which conducts
supervised learning on datasets with test cases to perform func-
tional evaluation of code synthesis. Zhou et al. [31] proposed
CodeBERTScore, which uses CodeBERT to performs contex-
tual encoding of reference and predicted code to calculate
similarity scores between each token. Yang et al. [33] proposed
CodeScore-R based on UniXcoder and contrastive learning,
which employs sketch processing, syntax transformation and
mutation testing to improve the robustness of metric.

Nevertheless, these methods cannot directly assess func-
tional correctness, require high-quality reference code collec-
tion, and penalize correct but divergent implementations.

C. Test-Based Evaluation (T # 1)

Test-based methods [15] execute code against test cases 7'
to assess functional correctness. The widely-adopted pass@k
metric is defined as

(",f)]

(x)
where n (resp. c) is the total (resp. correct) number of
samples for the problem x. This metric has become standard
in evaluating code generation models.

Despite its popularity, pass@k requires human experts for
designing high-quality test cases, and demands secure execu-
tion environments to prevent malicious code execution.

pass@k =FE, (1 —

D. Reference-and-Test-Free Evaluation (r = 1L and T = 1)

When neither reference implementations nor test cases are
available, evaluation typically relies on either human evalu-
ation or LLM-as-judge methods [37], [38]. Human evalua-
tion [16], while accurate, is prohibitively expensive and time-
consuming for large-scale assessments.

Recent LLM-as-judge methods leverage large language
models to directly evaluate the functional consistency between
problem descriptions and generated code. Zhuo et al. [34] pro-
posed ICE-Score, which uses GPT-3.5 as a judge to evaluate
code generation model performance through carefully crafted
prompt engineering. Tong et al. [35] introduced CodeJudge,
which not only utilizes GPT-3.5 but also explores smaller
open-source models as judges, employing a two-stage prompt
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engineering method for evaluation. Zhou et al. [36] proposed
SWE-Judge, an LLM-as-Ensemble-Judge framework that em-
ploys multiple independent LLMs with different evaluation
strategies and dynamic team selection to achieve human-
aligned assessments. While effective, SWE-Judge incurs sig-
nificant computational overhead as the ensemble method is
adopted, which makes it prohibitively expensive for a com-
parative analysis.

Recall that current LLM-as-Judge methods incur significant
costs through API fees, computational demands or prompt
engineering expertise, whereas our method aims for a cost-
effective balance of accuracy, efficiency, and explainability.

III. EMPIRICAL STUDY

In this section, we conduct an empirical study to explore the
existing LLM-as-judge methods to code generation evaluation
and analyze the various factors on their effectiveness.

A. Experiment Setup

Code Generation Datasets. To comprehensively evaluate
LLM-as-judge methods, establishing accurate and diverse
benchmarks is a crucial first step. We select three diverse
and widely adopted datasets that faithfully simulate real-world
code generation scenarios. Our dataset selection is guided by
two principles: (1) To ensure accurate assessment of semantic
correctness, we prioritize datasets with exceptional test case
quality and quantity, specifically targeting those with test
coverage approaching 100%; (2) Beyond algorithm-centric
problems, datasets need to encompass a wide range of libraries
and function call patterns typical in professional software
development, enabling thorough evaluation of LLM-as-judge
methods across varied programming contexts.
As a result, we select the following datasets:

« HumanEval-plus [39] is an enhanced variant of the Hu-
manEval benchmark that addresses fundamental ground-
truth issues in the original dataset (including unhandled
edge cases, logical errors and performance limitations). It
expands the test coverage from an average of 9.6 to 764.1
test cases per problem, incorporating more challenging
edge cases and complex functionalities to ensure rigorous
and comprehensive evaluation.

« MBPP-plus [39] applies similar enhancement techniques
to the MBPP benchmark, resulting in a test suite 35 times
larger than the original dataset.

« BigCodeBench [40] specifically targets real-world soft-
ware development scenarios by incorporating diverse
libraries and complex function call patterns. It comprises
1,140 function-level tasks that challenge LLMs to inter-
pret instructions and orchestrate multiple function calls
across 139 different libraries. Each programming task is
validated through an average of 5.6 carefully designed
test cases, achieving a mean branch coverage of 99%.

Data Sampling. With the chosen benchmark datasets, we
proceed to sample code generated by various LLMs. We
employ different models of varying sizes: Qwen2.5Coder
(1.5B/7B) [41] and DeepSeekCoder (1.3B/6.7B) [42] to ensure



TABLE II: Sample Statistics for HumanEval-Judge, MBPP-
Judge and BigCodeBench-Judge Datasets

Dataset Samples #Positive #Negative
HumanEval-Judge 640 480 (75.0%) 160 (25.0%)
MBPP-Judge 1,512 997 (65.9%) 515 (34.1%)
BigCodeBench-Judge 800 321 (40.1%) 479 (59.9%)

diversity in the generated solutions. Using multiple models not
only enhances the diversity of our dataset but also allows us
to evaluate the robustness of LLM-as-Judge methods across
different code generation patterns and qualities.

During the data processing phase, we extract natural lan-
guage problem descriptions and corresponding code imple-
mentations from the generated samples through rigorous data
cleaning and deduplication processes. Additionally, we remove
code comments to enhance conciseness and focus the evalua-
tion on functional implementation rather than documentation.
Data Labeling. (1) Automatic Labeling. We utilize test cases
from the existing datasets to automatically label code sam-
ples. Functional correctness is determined using the pass@1
metric, serving as the ground-truth for evaluation. (2) Manual
Verification. To address potential mislabeling from expanded
test cases in HumanEval-plus/MBPP-plus, three authors inde-
pendently review samples that passed original benchmarks but
failed enhanced test suites. Labels are assigned directly when
judgments align, or through discussion when opinions differ,
ensuring high-quality ground-truth labels.

We hence curate three datasets: HumanEval-Judge (640
samples), MBPP-Judge (1,512 samples) and BigCodeBench-
Judge (800 samples). Detailed statistics, including class dis-
tributions, are provided in Table II.

B. LLM-as-Judge Methods

Foundation Models. To comprehensively evaluate LLM-as-
judge methods across different model scales and architectures,
we select a diverse set of foundation models:

¢ Closed-source models: GPT-3.5-turbo and GPT-4o.

o Large-scale open-source models: DeepSeek-v3-671B and
DeepSeek-r1-671B.

¢ Medium-scale open-source models:Llama3-8B,
Qwen2.5-7B and DeepSeek-r1-distill-7B.

« Small-scale open-source models: Llama3-1.5B, Qwen2.5-
1.5B and DeepSeek-r1-distill-1.5B.

The DeepSeek series models are classified as reasoning
models because of their powerful reasoning capabilities, and
the rest of the models are classified as general models. We
limited our study to these models as they provide sufficient
representativeness across different architectures, capabilities,
and parameter scales.

This selection enables us to analyze how model size affects
the performance of LLM-as-judge methods and investigate
whether smaller, more computationally efficient models can
achieve comparable evaluation quality to their larger counter-
parts.
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Existing Prompting Methods. We evaluate four representa-
tive prompting methods that represent different perspectives to
eliciting code evaluation capabilities from LLMs:

o Vanilla, which is a straightforward prompting method
that directly asks the model to evaluate code correctness
based on the problem description and implementation,
without additional guidance.

o CoT [43], which encourages the model to perform step-
by-step reasoning by analyzing the code’s logic, identi-
fying potential issues, and then making a final judgment
on correctness.

o ICE_SCORE [34], which performs multi-dimensional
evaluation and instructs the LLM to predict an evaluation
score from O to 4 based on an evaluation criterion. In our
experiments, we adopt the evaluation score as 0 or 1 for
functional correctness.

o CodeJudge [35], which is a two-phase method, where
a summary of the given code is first generated and then
is evaluated to determine whether the code is correct,
based on the generated summary and the given problem
description.

C. Evaluation Metrics

To comprehensively assess the performance of LLM-as-
judge methods for code evaluation, we employ three metrics.
Accuracy (Acc). It measures the proportion of correctly
classified instances among all evaluated samples. For n code
samples with ground truth labels y; and predicted labels §;:

1 n
Accuracy = - Z I(9; = i)
i=1

where I(-) is the indicator function that returns 1 for correct
predictions and O otherwise.

F1 Score (F1). It is the macro-average of precision and recall,
particularly valuable for our datasets with class imbalance:

Precision = L, Recall = L
TP + FP TP + FN
Fl — 2 x Precision x Recall

Precision + Recall

F1 ranges from O to 1, with higher values indicating better

performance in identifying functionally correct code.

Matthews Correlation Coefficient (MCC). It provides a

balanced measure by considering all confusion matrix entries:
TP x TN — FP x FN

/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

MCC ranges from -1 to 1, where 1 indicates perfect predic-
tion, 0 random prediction, and -1 inverse prediction. It is less
sensitive to class imbalance than the accuracy and F1 score.

D. Implementation Details

Across all experiments, we fix the maximum context length
at 8k tokens. Temperature settings were tailored to model type:
0.6 for reasoning-focused models (to promote exploratory



reasoning) and 0.0 for general-purpose models (to ensure
deterministic outputs).

We interact with the following large-scale models (via their
official APIs): DeepSeek-v3-67B, DeepSeek-r1-67B, GPT-3.5-
turbo and GPT-40. Medium/small-scale open-source mod-
els were from Hugging Face, with inference optimized via
VLLM [44] on a single RTX 4090 GPU to maximize through-
put.

E. Empirical Findings

The results are shown in Table III. Based on the extensive
experiments with different models and prompting methods for
code evaluation tasks, we have identified differences between
general models (GPT/DeepSeek-V3/Llama3/Qwen2.5 series)
and reasoning models (DeepSeek-R1 series):

(1) General Models Depend on Prompt Engineering. Our
analysis reveals that general-purpose models show high sensi-
tivity to prompt engineering.

Large-scale models respond differently to prompts: GPT-
3.5-turbo and DeepSeek-v3 perform best with CodeJudge,
while GPT-40 excels with CoT. For medium and small-scale
models, structured approaches like ICE_SCORE significantly
improve performance. A notable example is Llama3 8B, which
achieved an accuracy of 0.658 and MCC of 0.265 using
ICE_SCORE, substantially outperforming its Vanilla baseline
(accuracy of 0.622 and MCC of 0.194).

For general models, optimal prompting strategies vary
by architecture and scale, requiring model-specific
customization.

(2) Reasoning Models Prefer Simple Prompts. In contrast
to their general counterparts, reasoning models exhibit consis-
tent superior performance with simpler prompts. The Vanilla
method emerges as the most effective approach across all
DeepSeek-r1-distill model sizes (7B and 1.5B).

Notably, increased prompt complexity often leads to perfor-
mance degradation, with the 7B model achieving a remarkable
0.737 accuracy using the basic Vanilla approach.

For reasoning models, they have already internalized
the reasoning capabilities, requiring no external provi-
sion of reasoning steps or structured frameworks.

(3) Performance Comparison. Our evaluation reveals the
superior stability of reasoning models across diverse datasets,
highlighting their robustness and generalizability.

For large-scale models, DeepSeek-r1-671B with the best
prompting method achieves an accuracy of 0.834, F1 score
of 0.815 and MCC of 0.632, significantly higher than others.
Similarly, for the 7B-scale, DeepSeek-r1-distill 7B with the
best prompting method achieves an accuracy of 0.737, F1
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score of 0.710, and MCC of 0.443. For the 1.5B-scale models,
DeepSeek-r1-distill 1.5B achieves the best accuracy of 0.652,
F1 score of 0.604 and MCC of 0.241.

At comparable parameter scales, reasoning models
demonstrate superior and more stable performance
across different datasets compared to general models.

IV. METHODS

In this section, we introduce our method CODE-DITING.
Based on the empirical findings in Section III, we build on two
key insights: (1) explicit reasoning paths significantly enhance
code evaluation accuracy while enabling better sample explain-
ability; and (2) smaller models with appropriate training can
potentially match or exceed the performance of much larger
models.

CODE-DITING distills reasoning capabilities into compact
models to balance accuracy with computational efficiency, as
shown in Figure 1.

A. Dataset Construction

To effectively transfer reasoning capabilities from large-
scale models to CODE-DITING, high-quality training data are
essential.

1) Source Benchmark Collection: We follow three key
principles for dataset selection:

« Diversity: The dataset needs to cover a wide range of
programming scenarios, including algorithmic problems,
system programming, and library usage.

Difficulty: In addition to basic syntax tasks, the dataset
must encompass complex logical challenges and multi-
step reasoning problems.

Quality: The dataset needs to contain high-coverage test
cases to ensure reliable functional correctness assessment.

Based on these principles, we select three large-scale code
generation benchmarks, i.e, KodCode [45], OpenCoder [46],
and CodeHarmony [47], as the seed data. These benchmarks
are widely used to train large-scale CodeLLMs.

2) Code Generation and Labeling: To ensure a balanced
and representative training set, we implement a systematic data
generation and labeling process. In addition, to control the dis-
tribution of correct and incorrect examples in our dataset, we
generate multiple candidate solutions using Qwen2.5-Coder
(1.5B/7B) for each programming task. For quality assurance,
we employ a multi-step validation process as HumanEval-
Judge:

o We evaluate each solution’s functional correctness
through test cases and compute the pass@1 as the label.

« We apply static analysis tools to identify and filter out
solutions containing syntax errors.

« We remove code comments to focus the evaluation on
core implementation logic.



TABLE III: Performance Comparison of Different Models and Prompting Methods across Datasets

Base Model Prompt HumanEval-Judge MBPP-Judge BigCodeBench-Judge Avg.
Acc Fl MCC Acc Fl1 MCC Acc Fl1 MCC Acc Fl MCC
Vanilla 0.730  0.658 0.319 0.663 0.642 0.293 0.584 0.584 0.219 0.659 0.628 0.277
GPT-3.5-turbo ~ CoT 0.781 0.601 0.303 0.687 0558 0.214 0493 0449 0210 0.654 0.536 0.242
Close-Source ICE_SCORE 0.752 0.571 0200 0.695 0.575 0.242 0516 0487 0.229 0.654 0.544 0.224
CodeJudge 0.773  0.666 0343 0.726 0.661 0349 0.525 0498 0.246 0.675 0.608 0.313
Vanilla 0.731 0.679 0375 0645 0633 0293 0.639 0.614 0361 0.672 0.642 0.343
GPT-40 CoT 0873 0816 0.643 0.807 0.763 0.554 0.706 0.706 0.294 0.795 0.762 0.497
Close-Source ICE_SCORE 0.880 0.821 0.660 0.785 0.732 0499 0.666 0.666 0.334 0.777 0.740  0.498
CodeJudge 0880 0.843 0.686 0.735 0.718 0446 0.714 0.705 0.286 0.776 0.755 0.473
Vanilla 0873 0822 0.649 0.792 0.742 0516 0.626 0.623 0367 0.764 0.729 0.511
DS-v3 CoT 0.867 0.788  0.623 0.786 0.722  0.507 0.638 0.632 0410 0.764 0.714 0513
671B ICE_SCORE 0.814 0.702 0445 0.737 0.640 0371 0564 0.553 0.271 0.705 0.632 0.362
CodeJudge 0884 0831 0.675 0.783 0.730 0494 0.675 0.674 0325 0.781 0.745 0.498
Vanilla 0925 0904 0.812 0828 0.806 0.613 0.748 0.735 0471 0.834 0.815 0.632
DS-rl CoT 0920 0.899 0.802 0.821 0798 0.597 0.728 0.710 0423 0.823 0.802 0.607
671B ICE_SCORE 0.925 0904 0.811 0.825 0.801 0.604 0.744 0.730 0461 0.831 0.812 0.625
CodeJudge 0897 0875 0.765 0.791 0773 0547 0.731 0.708 0.428 0.806 0.785  0.580
Vanilla 0.639 0581 0.184 0.645 0.622 0252 0.581 0.560 0.147 0.622 0.588 0.194
Llama3 CoT 0.667 0.608 0.235 0.682 0.657 0318 0569 0.569 0.178 0.639 0.611 0.244
8B ICE_SCORE 0.738 0.660 0.320 0.700 0.656 0315 0.536 0.533 0.161 0.658 0.616 0.265
CodeJudge 0.509 0496 0.121 0562 0559 0.184 0.585 0563 0.127 0.552 0.539 0.144
Vanilla 0.769 0.662 0.333 0.748 0.694 0408 0.575 0.563 0305 0.697 0.640 0.349
Qwen2.5 CoT 0789 0.673 0.372 0.743 0.684 0394 0563 0545 0306 0.698 0.634  0.357
7B ICE_SCORE 0.789 0.684 0384 0.745 0.684 0.398 0.591 0582 0.327 0.708 0.650 0.370
CodeJudge 0.783 0.694 0391 0.739 0.693 0395 0589 0.584 0287 0.704 0.657 0.358
Vanilla 0816 0.770 0.546 0.766 0.730 0.464 0.629 0.629 0319 0.737 0.710 0.443
DS-rl-distill CoT 0.773  0.705 0410 0.765 0.723 0456 0.524 0507 0.197 0.687 0.645 0.354
7B ICE_SCORE 0.817 0.753 0.506 0.747 0.698 0410 0571 0565 0.262 0.712 0.672 0.393
CodeJudge 0.788 0.720 0440 0.718 0.676 0355 0.604 0.604 0.265 0.703 0.667 0.353
Vanilla 0.267 0235 -0.030 0343 0277 -0.051 0.551 0405 -0.092 0.387 0.306 -0.058
Llama3 CoT 0.603 0475 -0.050 0553 0490 -0.019 0540 0.540 0.125 0.565 0.502 0.019
1B ICE_SCORE 0.625 0.523 0.049 0.610 0.496 0.025 0479 0479 0.000 0.571 0.499 0.025
CodeJudge 0.400 0399 0.000 0401 0400 -0.082 0.561 0487 0.013 0454 0429 -0.023
Vanilla 0.630 0.567 0.155 0.663 0.630 0262 0.586 0.573 0.147 0.626 0.590 0.188
Qwen2.5 CoT 0.684 0533 0.075 0.650 0546 0.133 0439 0376 0.076 0.591 0485  0.095
1.5B ICE_SCORE 0.686 0480 -0.014 0.651 0.522 0.111 0446 0.394 0078 0.594 0465 0.058
CodeJudge 0717 0512 0.069 0.658 0522 0.123 0.561 0487 0.095 0.645 0.507 0.096
Vanilla 0.728 0.639 0278 0.714 0.664 0336 0.514 0.510 0.109 0.652 0.604 0.241
DS-rl-distill CoT 0.728 0575 0.172 0.702 0.612 0275 0466 0435 0.087 0.632 0.541 0.178
1.5B ICE_SCORE 0.747 0.658 0317 0.702 0.643 0299 0480 0467 0072 0.643 0.589 0.229
CodeJudge 0.713 0570  0.152 0.648 0547 0.131 0.549 0.549 0.152 0.637 0.555 0.145

3) Reasoning Knowledge Distillation: To transfer the log-
ical reasoning capabilities of large-scale reasoning models to
our target dataset and enhance sample explainability, we im-
plement a distillation process. For each triple (nl, code, label),
we use DeepSeek-R1-671B (the SOTA reasoning model, as
shown in Table III) in Vanilla setting to produce independent
judgments on code functional correctness, including both
predicted labels and reasoning paths. This process yields raw
distillation data in the format (nl, code, label, reasoning).

4) Data Filtering and Sampling: We implement a multi-
stage filtering mechanism:

o Accuracy filtering. We remove samples where
DeepSeek-R1-671B’s predictions disagreed with test
case labels to ensure consistencys;

« Logical coherence filtering. We employ DeepSeek-V3 as
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a discriminator? to detect and eliminate reasoning paths
containing hallucinations or logical inconsistencies;

o Class balancing. We downsample the filtered data to
achieve a 1:1 ratio between positive and negative samples,
addressing the imbalance in the original dataset where
correct samples were overrepresented.

As a result, we construct CODEJUDGE- 17K, a high-quality
dataset containing 17,000 samples. CODEJUDGE-17K features
a balanced distribution of correct and incorrect code sam-
ples across diverse programming tasks, spanning from basic
algorithmic challenges to complex system implementations.
Each sample is accompanied by a detailed reasoning path that
explains the judgment process, making the dataset valuable for
training explainable code judgment models.

2The prompt can be found in the our GitHub repository.
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Fig. 1: The overall method of CODE-DITING.

B. Model Training

To transfer reasoning capabilities to smaller models while
maintaining efficiency, we train the model in three stages.
1. Knowledge Injection We hypothesize that explicit reason-
ing paths are crucial for code evaluation tasks. To inject this
capability while minimizing deployment costs, we use DS-
R1-distil (1.5B/7B) as base models which are fine-tuned on
CODEJUDGE-17K. This enables smaller models to learn from
larger experts while requiring only 1% of the parameters.
2. Parameter-Efficient Fine-tuning with LoRA To optimize
model training while maintaining performance, we adopt Low-
Rank Adaptation (LoRA), a parameter-efficient fine-tuning
technique. This freezes pre-trained weights W, € R?** and
introduces trainable low-rank matrices A € R™*% B e Rx"
(r < min(d, k)):

W =Wy, + BA

This reduces trainable parameters from dk to r(d + k),
preserving performance with minimal overhead.

3. PiSSA Initialization To enhance training efficiency and
model performance, we leverage Principal Singular Vector
Adaptation (PiSSA) [25] for initializing LoRA matrices. In-
stead of Kaiming-uniform [48] initialization used in LoRA,
PiSSA leverages the intrinsic low-rank structure of Wy through
truncated SVD, i.e., Wy = UTETVTT. The LoRA matrices are
then initialized as

B=UxY? A=xl2yT

This ensures AW = BA initially aligns with W;’s princi-
pal subspace, concentrating updates on directions critical for
functional preservation. Compared to the Kaiming-uniform
initialization, PiSSA provides structured starting points that
improve convergence speed and final performance, particularly
in low-rank regimes.

C. Model Inference

Considering that the reasoning model may have inconsistent
reasoning paths when the temperature is set to 0.6, we use
the Majority Vote strategy to determine the final reasoning
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result and further enhance model inference performance. This
belongs to parallel inference methods, where the model per-
forms multiple independent inferences on the same input, and
the most frequent result is selected as the final judgment.

From a probabilistic perspective, if the probability of a
correct judgment in a single inference is P(A), the probability
of the final result being correct can be modeled through a bino-
mial distribution when conducting 7" independent inferences.
Specifically, if at least (7' + 1)/2 inference results are correct
(i.e., the majority vote is correct), then the probability of the
final judgment being correct is

)

When P(A) > 0.5, according to the Law of Large Num-
bers, as T increases, the success probability of the majority
vote strategy P (X > %) will continuously improve. This
explains why majority voting can effectively enhance model
performance: as long as the accuracy of a single inference
exceeds random guessing (i.e., P(A) > 0.5), multiple voting
can significantly reduce the probability of misjudgment.

In our experiments, we perform 7' = 7 independent in-
ferences for each test sample and use majority voting to
determine the final judgment result. Note that 7" is set 7
based on RQ3 findings (Section V-C) as the optimal trade-
off between model performance and inference latency.

T

P>

k=133

T+1

P (X > (g) P(A¥(1 - P(A)T—*.

V. EXPERIMENTS AND ANALYSIS

To evaluate the effectiveness and benefits of CODE-DITING,
we mainly study the following three research questions (RQs):

A. RQI: How does CODE-DITING perform compared to the
state-of-the-art methods?

To evaluate the performance of CODE-DITING, we compare
it with various models mentioned in Section IIl. For a fair
comparison, we use the most effective prompt for each model
and employ the same evaluation metrics. The results are
presented in Table IV.



TABLE IV: Performance Comparison of Different Models and Prompting Methods across Datasets

Base Model Prompt HumanEval-Judge MBPP-Judge BigCodeBench-Judge Avg.

Acc Fl1 MCC  Acc Fl1 MCC Acc Fl MCC  Acc Fl MCC
GPT-3.5-turbo CodeJudge 0.773  0.666 0343 0.726 0.661 0349 0.525 0498 0.246 0.675 0.608 0.313
GPT-40 CoT 0873 0816 0.643 0807 0.763 0.554 0.706 0.706 0.294 0.795 0.762 0.497
DS-v3 671B CodeJudge 0.884 0.831 0.675 0.783 0.730 0494 0675 0674 0325 0.781 0.745 0.498
DS-r1 671B Vanilla 0925 0904 0.812 0.828 0806 0613 0748 0.735 0471 0834 0815 0.632
Llama3 8B ICE_SCORE 0.738 0.660 0.320 0.700 0.656 0315 0536 0533 0.161 0.658 0.616 0.265
Qwen2.5 7B ICE_SCORE 0.789 0.684 0.384 0.745 0.684 0398 0591 0582 0327 0708 0.650 0.370
DS-rl-distill 7B Vanilla 0816 0.770 0.546 0.766 0.730 0.464 0.629 0.629 0.319 0.737 0.710 0.443
CODE-DITING 7B Vanilla 0.883 0.847 0.695 0806 0.782 0.564 0.729 0.717 0435 0.806 0.782 0.565
Llama3 1B ICE_SCORE 0.625 0.523 0.049 0.610 0496 0.025 0479 0479 0000 0571 0499 0.025
Qwen2.5 1.5B Vanilla 0.630 0.567 0.155 0.663 0.630 0262 0586 0573 0.147 0.626 0.590 0.188
DS-rl-distill 1.5B Vanilla 0.728 0.639 0278 0.714 0.664 0336 0.514 0510 0.109 0.652 0.604 0.241
CODE-DITING 1.5B  Vanilla 0842 0.799 0.601 0.778 0.755 0510 0.681 0.653 0318 0.767 0.736 0.476

(1) Performance Comparison. Both CODE-DITING 1.5B
and 7B models significantly outperform other models in their
respective parameter scales, with substantial improvements
across accuracy, F1 score and MCC metrics. In particular,
CODE-DITING 1.5B surpasses Llama3 1B, Qwen2.5 1.5B
and even the base DS-rl-distill 1.5B model by large margins.
Similarly, CODE-DITING 7B shows clear advantages over
Llama3 8B, Qwen2.5 7B, and the base DS-r1-distill 7B model.
(2) Parameter Efficiency. The parameter efficiency of our
method is particularly noteworthy, as CODE-DITING 1.5B
achieves performance comparable to DS-rl-distill 7B despite
using only about 20% of its parameters, demonstrating the
effectiveness of our knowledge distillation method in transfer-
ring reasoning capabilities to smaller models.

Most impressively, CODE-DITING 7B outperforms both
(closed-source) GPT-40 and DeepSeek-V3 (671B) across all
three datasets, falling short only of DeepSeek-R1 671B. This
is remarkable considering that CODE-DITING 7B uses only
about 1% of the parameters of these larger models.

Both CODE-DITING variants maintain strong performance
across all evaluation datasets, indicating robust generalization
capabilities. These results validate our hypothesis that explicit
reasoning paths are crucial for code evaluation tasks and
demonstrate that smaller models can effectively learn these
reasoning patterns through our proposed fine-tuning method.

Summary of RQ1

CODE-DITING demonstrates superior performance in
code evaluation compared to state-of-the-art methods.
The 1.5B variant outperforms all models in its pa-
rameter class, matching models of 5x larger. The 7B
variant surpasses GPT-40 and DeepSeek-V3(671B),
using only 1% of their parameters.

B. RQ2: What is the impact of different components of CODE-
DITING?

To evaluate the effectiveness of different components of
CODE-DITING, we conducted a series of ablation studies,
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Fig. 2: Ablation Study (F1 Score) of Data Filtering Component

focusing on three key aspects: data filtering, parameter ini-
tialization and inference strategy.

(1) Data Filtering Component. Figure 2 illustrates the impact
of the data filtering component on model performance. We
compare the F1 scores under k=1 (single inference) across
different datasets and observe that the data filtering strategy
consistently and significantly improves model performance.
This empirical evidence strongly supports the hypothesis that
high-quality reasoning paths are crucial for models to develop
accurate code evaluation capabilities.

Specifically, the relative improvement from filtering is no-
tably more pronounced in the smaller 1.5B model compared
to the 7B model. This distinct impact suggests that smaller
models, with their inherently limited representational capacity,
benefit disproportionately from high-quality training data, as
they lack the parameter space to effectively learn from noisy
or ambiguous examples.

(2) PiSSA Component. Figure 3 shows the impact of PiSSA
initialization on model performance. We also compare F1
scores at k=1 across different initialization methods to isolate
this component’s contribution. In standard LoRA implemen-
tations, the A matrix is typically initialized using Kaiming-



HPiSSA ®LoRA

HE-Judge MBPP-Judge BCB-Judge

= PiSSA

HE-Judge MBPP-Judge BCB-Judge

LoRA
0.76 0.85
0.74

0.72

0.68
0.66
0.64
0.62

0.58 0.6

(a) CODE-DITING 1.5B (b) CoDE-DITING 7B
Fig. 3: Ablation Study (F1 Score) of PiSSA Component

uniform initialization, while the B matrix is initialized to zero.
In contrast, PiSSA derives both A and B matrices through SVD
decomposition, which fundamentally aligns the initialization
with model’s intrinsic parameter structure.

The experimental results reveal that PiSSA yields substan-
tial performance improvements on the HumanEval-Judge and
MBPP-Judge datasets compared to standard LoRA initializa-
tion techniques. However, we observe that the performance
enhancement on the more challenging BigCodeBench-Judge
dataset is less pronounced, suggesting that initialization bene-
fits may vary with task complexity and dataset characteristics.

These findings indicate that PiSSA initialization helps mod-
els converge to more optimal solution spaces, particularly in
parameter-constrained low-rank adaptation scenarios.
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Fig. 4: Ablation study (F1 Score) of the inference component

(3) Inference Component. Figure 4 presents a detailed anal-
ysis of how our inference strategy affects model performance.
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We systematically compare F1 scores across different values
of k (the number of inference passes) to identify the optimal
configuration. The results demonstrate a clear pattern: as k
increases, model performance consistently improves, though
with diminishing returns at higher values.

To determine the most practical configuration for real-world
applications, we conduct an analysis of the performance-
efficiency trade-off. Our experiments are performed using vllm
as the inference server on a single NVIDIA RTX 4090 GPU.
The baseline latency (k=1) for a single inference pass is
0.15s and 0.30s for the 1.5B and 7B models, respectively.
As expected, the time cost scales linearly with k, reaching
approximately 1s (1.5B) and 2s (7B) when k=7.

By analyzing both the performance improvements and com-
putational overhead across different k values, we identify k=7
as the optimal one. This configuration delivers substantial
accuracy gains while maintaining reasonable inference latency,
making it well-suited for practical applications where both
prediction quality and response time are critical considerations.

Summary of RQ2

Our ablation studies demonstrate that each component
of CODE-DITING contributes significantly to its over-
all performance. With the combination of data filter-
ing, PiSSA initialization, and the optimal inference
strategy, CODE-DITING achieves state-of-the-art per-
formance while maintaining computational efficiency.

. J

C. RQ3: Does CODE-DITING suffer from preference leakage?

Preference leakage [27] refers to a contamination issue
in LLM-as-judge frameworks where correlations between the
synthetic data generator and the LLM-based evaluator lead to
biased assessments.

In our training process, we have used code generated by
models in the same families (DeepSeek and Qwen Coder)
that serve as our base models. This raises a legitimate con-
cern: does CODE-DITING exhibit preference bias toward code
generated by models similar to those used in its training data?

To systematically investigate this potential issue, we con-
sider Agreement Rate and Cohen’s Kappa [49] as the evalua-
tion metrics. Specifically, Agreement Rate measures the con-
sistency of judgments between different evaluation scenarios:

Number of consistent judgments

A t Rate =
grecment Rate Total number of samples

Cohen’s Kappa quantifies the agreement between evaluators
while accounting for chance agreement:

Po — Pe
1- De
where p, is the observed agreement rate and p. is the
expected agreement rate by chance. The chance agreement
pe 1s calculated based on the marginal distributions of each

evaluator’s judgments:

Pe = an X Pi2
i

Cohen’s Kappa =



TABLE V: Consistency analysis across different code gener-
ation models

Model Dataset Agreement Rate  Kappa
HumanEval-Judge 98.0% 0.96
GPT-40 MBPP-Judge 96.0% 0.92
BigCodeBench-Judge 94.0% 0.88
HumanEval-Judge 97.0% 0.94
Claude-3.5 MBPP-Judge 95.0% 0.90
BigCodeBench-Judge 93.0% 0.86

where p;; and p;o represent the proportion of samples clas-
sified as category ¢ by the first and second evaluator, respec-
tively. This adjustment for chance agreement makes Cohen’s
Kappa a more robust measure than simple agreement rate,
especially when the distribution of categories is imbalanced.

We carry out experiments the assess the consistency of

CODE-DITING from different perspectives.
(1) Consistency across different code generators. This
experiment evaluates whether CODE-DITING maintains con-
sistent judgments when evaluating code generated by different
models for the same programming task. We selected 50
problems from each dataset and used two models not involved
in our training data generation (i.e., GPT-40 and Claude-
3.5) to generate code solutions. We then assessed whether
CODE-DITING produced consistent evaluations regardless of
the code’s source.

As shown in Table V, CODE-DITING demonstrates high
consistency in its judgments across different code genera-
tors, with agreement rates exceeding 93% across all datasets.
The exceptionally high Cohen’s Kappa values (ranging from
0.86 to 0.96) indicate near-perfect agreement beyond what
would be expected by chance. This consistency is particularly
evident on the HumanEval-Judge dataset, where agreement
rates reach 98% with GPT-4o-generated code and 97% with
Claude-3.5-generated code. Even on the more challenging
BigCodeBench-Judge dataset, which involves complex library
interactions, CODE-DITING maintains agreement rates of 94%
and 93% respectively. These results strongly suggest that
CODE-DITING’s evaluation mechanism focuses on the in-
trinsic quality and correctness of code rather than superficial
patterns associated with specific code generators.

(2) Consistency across different problem descriptions.
This experiment examines whether CODE-DITING maintains
consistent judgments when the same code is evaluated against
semantically equivalent-but differently phrased—problem de-
scriptions. We also select 50 code samples from each dataset
and use GPT-40 and Claude-3.5 to generate paraphrased
versions of the original problem descriptions while preserving
their semantic meaning. We then evaluate whether CODE-
DITING’s judgments remained consistent across these differ-
ent problem formulations.

Table VI shows that CODE-DITING maintains even higher
consistency with agreement rates of 94-96% across datasets.
The Cohen’s Kappa values (0.87-0.92) indicate near-perfect
agreement, substantially exceeding what would be expected
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TABLE VI: Consistency analysis across different problem
descriptions

Model Dataset Agreement Rate  Kappa
HumanEval-Judge 96.0% 0.92
GPT-40 MBPP-Judge 95.0% 0.90
BigCodeBench-Judge 94.0% 0.88
HumanEval-Judge 95.0% 0.90
Claude-3.5 MBPP-Judge 94.5% 0.89
BigCodeBench-Judge 94.0% 0.87

by chance. Notably, the consistency remains stable across all
three datasets, with minimal variation between HumanEval-
Judge, MBPP-Judge and BigCodeBench-Judge. The stability
is particularly significant for BigCodeBench-Judge, where the
complexity of library interactions could potentially make the
model more sensitive to variations in problem descriptions.
The high agreement rates for both GPT-40 and Claude-3.5
paraphrases demonstrate that CODE-DITING robustly captures
the semantic relationship between code and requirements,
focusing on functional alignment rather than superficial textual
patterns in the problem description. This resilience to para-
phrasing suggests that CODE-DITING has developed a deep
understanding of programming tasks that transcends specific
wording choices.

Summary of RQ3

CODE-DITING does not suffer from significant pref-
erence leakage. It maintains high consistency when
evaluating code from different generators and when as-
sessing code against semantically equivalent problem
descriptions.

VI. CASE STUDY

To better understand CODE-DITING’s reasoning capabilities
and limitations, we conducted a comprehensive qualitative
analysis of both successful and failed cases. Our analysis
reveals that CODE-DITING demonstrates strong explainabil-
ity through step-by-step reasoning paths, as evidenced by
correct evaluations where the model systematically analyzes
code logic, identifies potential issues, and arrives at sound
conclusions.

However, our failure case analysis identifies two primary
error categories: Over-analysis, where the model correctly
identifies the solution initially but continues reasoning and
ultimately reaches an incorrect conclusion, and Ambiguous
Problem Descriptions, where unclear task specifications lead
to misjudgments. For instance, in over-analysis cases, CODE-
DITING may correctly determine that a simple function works
as intended but then introduce unwarranted assumptions about
additional requirements not mentioned in the problem state-
ment.

Due to space constraints, detailed case studies with specific
examples and comprehensive discussions are available on



our project homepage® and failure analysis*. These analyses
provide valuable insights into the model’s reasoning patterns
and inform future improvements in reasoning depth control
and ambiguity handling.

VII. THREATS TO VALIDITY

Internal Validity. The primary threat to internal validity con-
cerns implementation fidelity. We mitigated this by carefully
implementing baseline methods according to their original
descriptions, using public implementations where available,
and thoroughly validating our CODE-DITING implementation.
Regarding potential bias in the distilled CODEJUDGE-17K
training dataset, we employed multi-stage filtering to ensure
high-quality reasoning paths and accurate labels.

External Validity. External validity threats stem from our
dataset and model selections. We chose HumanEval-plus,
MBPP-plus, and BigCodeBench for their high-quality test
cases and diverse programming scenarios, though future work
could explore additional programming paradigms and domain-
specific languages. Our model selection spans various scales
and architectures (closed-source GPT models, large-scale
DeepSeek models, and smaller open-source models ranging
from 1.5B to 8B parameters), providing meaningful insights
within our hardware constraints (single RTX 4090 GPU).

Construct Validity. Construct threats concern the performance
metrics used to evaluate the performance of CODE-DITING
and the compared methods. To evaluate the performance of
models, we utilized Accuracy, Fl-score, and MCC as the
evaluation metrics. Furthermore, to evaluate the performance
leakage issue of CODE-DITING, we used Agreement Rate and
Cohen’s Kappa as the evaluation metrics.

VIII. CONCLUSION AND FUTURE WORK

Our work systematically analyzes LLM-as-Judge methods
for code generation evaluation, identifying key differences
between general and reasoning models. We then proposed a
novel code evaluation metric CODE-DITING and demonstrate
its superior performance and robustness compared to existing
methods.

Future work will focus on: (1) evaluating CODE-DITING
across additional programming languages and more complex
datasets to better understand its generalization capabilities, and
(2) applying CODE-DITING as an environment for reinforce-
ment learning to improve code generation models.
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