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Vulnerability Detection by Learning From
Syntax-Based Execution Paths of Code

Junwei Zhang , Zhongxin Liu , Xing Hu , Xin Xia , and Shanping Li

Abstract—Vulnerability detection is essential to protect software
systems. Various approaches based on deep learning have been
proposed to learn the pattern of vulnerabilities and identify them.
Although these approaches have shown vast potential in this task,
they still suffer from the following issues: (1) It is difficult for
them to distinguish vulnerability-related information from a large
amount of irrelevant information, which hinders their effectiveness
in capturing vulnerability features. (2) They are less effective in
handling long code because many neural models would limit the
input length, which hinders their ability to represent the long
vulnerable code snippets. To mitigate these two issues, in this work,
we proposed to decompose the syntax-based Control Flow Graph
(CFG) of the code snippet into multiple execution paths to detect
the vulnerability. Specifically, given a code snippet, we first build its
CFG based on its Abstract Syntax Tree (AST), refer to such CFG
as syntax-based CFG, and decompose the CFG into multiple paths
from an entry node to its exit node. Next, we adopt a pre-trained
code model and a convolutional neural network to learn the path
representations with intra- and inter-path attention. The feature
vectors of the paths are combined as the representation of the
code snippet and fed into the classifier to detect the vulnerability.
Decomposing the code snippet into multiple paths can filter out
some redundant information unrelated to the vulnerability and
help the model focus on the vulnerability features. Besides, since
the decomposed paths are usually shorter than the code snippet,
the information located in the tail of the long code is more likely
to be processed and learned. To evaluate the effectiveness of our
model, we build a dataset with over 231 k code snippets, in which
there are 24 k vulnerabilities. Experimental results demonstrate
that the proposed approach outperforms state-of-the-art baselines
by at least 22.30%, 42.92%, and 32.58% in terms of Precision,
Recall, and F1-Score, respectively. Our further analysis investigates
the reason for the proposed approach’s superiority.

Index Terms—Vulnerability detection, deep learning, control
flow graph, pre-trained model.

I. INTRODUCTION

THE vulnerability detection system plays a vital role in
software security [1], [2], [3], which can prevent a series

of security incidents [4], [5], [6].
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Consequently, interest in more accurate and efficient au-
tomated software vulnerability detection methods has in-
creased [7], [8], [9], [10].

In general, existing detection models can be broadly divided
into two categories: (1) pattern-based vulnerability detection
models [11], [12], [13], [14], [15] and (2) code similarity-based
detection methods [9], [10], [16], [17], [18], [19]. Pattern-based
vulnerability detection methods [11], [12], [13] rely on experts
to manually define vulnerability rules or characteristics to de-
tect vulnerabilities. These approaches require tedious manual
efforts and are challenging to simultaneously achieve a low
false positive rate and a low false negative rate [18], [20]. Code
similarity-based methods adopt data mining and machine learn-
ing techniques to predict the presence of software vulnerabili-
ties [16], [17], [18], [21]. This kind of method does not require
experts to manually-crafted heuristics, can automatically capture
vulnerability features, and has become a promising alternative.

Recently, benefiting from the powerful performance of deep
learning (DL) techniques, a number of methods [16], [17], [18],
[20], [21] have been proposed to leverage DL models to automat-
ically learn vulnerability features from known vulnerabilities
and identify unseen vulnerabilities in projects. For instance,
Li et al. [18] proposed a program-slice-based approach named
VulDeePecker, which slices source code based on library/API
function calls and feds the sliced code into RNN [22] to detect
vulnerabilities. Zhou et al. [10] proposed to convert a code snip-
pet into a graph based on its Abstract Syntax Tree (AST), Control
Flow Graph (CFG), Data Flow Graph (DFG), and natural code
sequence and utilized Graph Neural Network (GNN) [23] to
learn the code representation from the graph for identifying
vulnerabilities.

Despite the promising performance, existing DL-based vul-
nerability detection methods are limited by two problems. (1) It
is hard for them to identify and focus on vulnerability-related
information from a large amount of irrelevant information.
For instance, a buffer overflow vulnerability will be triggered
when the amount of data in a memory buffer exceeds its stor-
age capacity. This type of vulnerability is only related to the
code that uses buffers. In other words, if many statements are
unrelated to the buffer in the code snippet, these statements are
not helpful for the detection of buffer overflow vulnerabilities.
(2) Existing DL-based methods are less effective in handling the
long code snippet. Due to limited GPU memory and computation
resources, existing neural models often limit their input lengths,
e.g., CodeBERT [24] only retains the first 400 tokens and di-
rectly truncates others in the input. Therefore, if the information
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related to vulnerabilities locates in the truncated part of a code
snippet, it would be very hard for existing methods to detect the
vulnerability.

To alleviate the two problems, in this work, we propose a novel
approach that can better capture vulnerability features from the
code snippet, especially the code with much information unre-
lated to vulnerabilities and the long code snippet. We observe
that a code snippet usually contains multiple execution paths to
handle different situations, but it is often the case that only a
few execution paths are vulnerable. Based on this observation,
we propose to decouple a code snippet into multiple execution
paths, use a neural model to learn the representation of each path,
and combine the representations of multiple paths to obtain the
final code representation.

For the first problem of existing methods mentioned above,
since each execution path is a cohesive unit with a simple
and linear structure, decoupling the code snippet into execu-
tion paths can help the model focus on coherent and highly
correlated contextual information and better capture vulnera-
bility features. For example, a use-after-free vulnerability is
usually related to a single execution path. Compared to di-
rectly encoding the whole code snippet, separately encoding
its execution paths can filter out some information unrelated to
vulnerabilities and ease the extraction of vulnerability features.
Meanwhile, because the execution order of each statement in
an execution path is linear, neural models do not need to under-
stand complex code structures. They can focus on capturing
more accurate semantic information in the code snippet. As
for the second problem, for the code with multiple execution
paths, each of its execution paths is shorter than the whole
code snippet and less likely to exceed the length limit of
neural models. Hence, the tail of the long code has a greater
chance of being processed by the neural network rather than
truncated.

Based on the idea mentioned above, we propose a novel
approach named EPVD, which decomposes a code snippet into
several execution paths for vulnerability detection. Specifically,
given a code snippet, EPVD first parses it into an Abstract Syntax
Tree (AST) and constructs its CFG based on the AST. We refer
to such CFG as syntax-based CFG. Each node in the CFG refers
to a statement, and each edge represents a control dependency
between two statements. Then, EPVD selects a fixed number
of paths that start from the entry node and end at one of the
exit nodes from the CFG using a greedy-based path selection
algorithm. We refer to such CFG paths as execution paths in this
paper. We only select a fixed number of execution paths because
loops in code may introduce infinite paths, and we find a few
paths that can cover the information related to vulnerabilities
in a code snippet. Each selected execution path is fed into a
pre-trained code model to capture the intra-attention of the path
and learn its feature vector. Further, we adopt a convolutional
neural network (CNN) to capture the inter-path attention and
fuse the representations of the selected paths to produce the
code representation. Finally, a multi-layer perceptron (MLP)
classifier is leveraged to detect the vulnerability based on the
code representation.

To evaluate the effectiveness of EPVD, we curate a large
C/C++ vulnerability dataset by merging three existing high-
quality vulnerability datasets, i.e., the REVEAL dataset [25],
the Big-Vul dataset [26], and the Devign dataset [10]. The
new dataset contains more than 231 k code snippets with 24 k
vulnerabilities. We evaluate our approach and compare it with
five state-of-the-art DL-based methods. Experiments show that
our model outperforms all the baselines by large margins.
Specifically, EPVD improves the best-performing baseline by
22.30%, 42.92%, and 32.58% in terms of Precision, Recall, and
F1-score, respectively. Further analysis demonstrates the effec-
tiveness of our model in capturing vulnerability features from
the vulnerability code snippets with much unrelated information
and handling the long code.

In summary, the main contributions of this paper are as
follows:

1) We implement a method for building the CFG of a code
snippet based on its AST and propose a greedy-based
algorithm to select representative execution paths from
the CFG.

2) We propose a neural vulnerability detection model based
on execution paths, named EPVD, which can better cap-
ture vulnerability features and handle long code.

3) We conduct comprehensive experiments to evaluate
EPVD and justify the technical decisions in EPVD. Eval-
uation results show that EPVD outperforms all baseline
models and the technical decisions in EPVD are reason-
able and beneficial.

4) We release our replication package [27], which includes
the source code, the dataset, and our evaluation results.

The remainder of this paper is organized as follows. We first
introduce the related work in Section II. Then, we describe
the motivation of our method and provide preliminaries of
the syntax-based CFG in Section III. Section IV presents our
method. The experimental results are presented in Section V.
Section VI shows the limitations of our approach and some
threats to validity. Finally, we conclude our work and discuss
future work in Section VII.

II. RELATED WORK

A. Software Vulnerability Detection With Neural Network

Various techniques have been developed to detect vulnera-
bilities. In the literature, early works mainly detected vulner-
ability by manually-designed vulnerability patterns [11], [12],
[13]. However, these works require tedious manual efforts to
analyze and craft vulnerability patterns. On the other hand, since
some rules often contain the same syntax elements appearing in
different code snippets, these syntax elements may lead to high
false-positive and false-negative rates [14], [15], [20].

To reduce human efforts, recently, some studies leveraged
neural network-based models to automatically learn the seman-
tic features of the code snippet [17], [19]. Existing vulnerability
detection models based on deep learning can be divided into two
main categories: token-based and graph-based models. Token-
based models regard the code as a flat sequence and utilize the
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neural network to capture the vulnerability features from known
vulnerabilities and detect unseen vulnerabilities [17], [18], [28].
For example, Russell et al. [17] leveraged the recurrent neural
network (RNN) and convolutional neural network (CNN) to
extract code features from code token sequences for vulner-
ability detection. Li et al. [18] used BiLSTM [29] to encode
the sliced version of the input code snippet, namely the code
gadget, to detect vulnerabilities. The authors slice each code
snippet based on the “key points”, such as library/API function
calls. However, these token-based approaches do not consider
the structure information of the source code, which leads to
inaccurate detection.

Graph-based detection models represent the code using vari-
ous graph representations and adopt the neural network to learn
the structure properties of the code snippets for vulnerability
detection [7], [8], [9], [10], [25], [30], [31]. For instance, Zhou et
al. [10] adopted the gated graph recurrent network [23] to capture
the structure information of the code snippets from three types
of graph representations of the source code (i.e., AST, CFG,
and DFG). Chakraborty et al. [25] proposed REVEAL, which
learns the structure properties of the code snippet using the gated
graph neural network [23], resampling techniques [32], and the
triplet loss [33]. Li et al. [9] proposed IVDetect, which represents
the code as the Program Dependency Graph (PDG) and treats
vulnerability detection as the graph-based classification task via
the graph convolution network. IVDetect first utilizes the GloVe
model [34] to learn the representations of nodes in the PDG
and then adopts the graph convolutional neural network [35]
to optimize the code representation for detection. Since the two
stages do not interact with each other during training, the optimal
solution in the first stage may not lead to the optimal code
representation in the second stage, resulting in the trained model
failing to detect vulnerabilities effectively. We have tried our best
to replicate and re-trained the IVDetect model (e.g., adopting
multiple smaller learning rates and using the adaptive learning
rate), but it cannot converge on our merged dataset. Hence, we
do not compare it with the proposed model. Recently, Wu et
al. [7] converted the PDG of the code snippets into an image
to preserve the structure details. Further, they adopted three
centrality indicators of the graph (i.e., degree centrality, katz
centrality, and closeness centrality) to highlight the attention of
vulnerable statements. Cao et al. [8] proposed a statement-level
memory-related vulnerability detection approach based on the
flow-sensitive graph neural network to jointly learn semantic
and structure information.

Chen et al. [36] conducted a comprehensive empirical study
to explore the gap in pinpointing bug-triggering paths between
the traditional static bug detection approaches and existing
neural network-based approaches. The authors first formalized
the general vulnerability detection process and divided eleven
approaches into three categories: method-level, slice-level, and
statement-level. Method and slice-level approaches report the
method or slice of the code snippet as vulnerable. Statement-
level approaches report the vulnerable statements. Then, they
proposed a new fine-grained metric called BTP to calculate the
degree of overlap between the statements detected by the existing
models and the statements on the bug-triggering paths. By
conducting experiments on eleven approaches on the D2A [37]

dataset, the authors found that existing vulnerability detection
approaches are insufficient in pinpointing bug-triggering paths.
Our proposed approach can be regarded as a method-level vul-
nerability detection method. Because it directly predicts whether
a method is vulnerable or not based on multiple syntax-based
execution paths instead of explicitly pinpointing vulnerable
statements or slices.

Our approach is technically different from existing methods:
First, our approach decomposes the input code snippet into
several execution paths in its syntax-based CFG, which can sim-
plify code structure and help neural models capture vulnerability
features. Second, we propose a new greedy-based path selection
method, which can cover as many code statements as possible. In
other words, the decomposed syntax-based execution paths can
indicate how the vulnerability originates and is triggered. Third,
different from the existing method-level detection approaches,
our approach applies the CNN to fuse multiple path represen-
tations to represent code snippets, which can help capture the
bug-triggering information and inter-path attention. Fourth, our
approach utilizes the pre-trained code model (i.e., CodeBERT)
to learn code representations based on execution paths, which is
not investigated by existing work.

B. Code Representation Models Based on Pre-Trained Models

Inspired by the excellent performance of pre-trained models
in natural language processing (NLP), some researchers applied
the pre-trained models to boost code-related tasks [24], [38],
[39], [40], [41], [42]. Most work is dedicated to pre-training
models on a massive corpus of source code and fine-tuning for
a series of downstream tasks [24], [38]. For example, Feng et
al. [24] presented CodeBERT that incorporates masked language
modeling and replaced token detection as the pre-training objec-
tive to support code search and summarization tasks. CuBERT
adopts masked language modeling and next sentence prediction
as the pre-training objective to learn the code representation [38].
Besides, some pre-trained models consider the structure in-
formation of the code snippet at the pre-training stage [39],
[40], [41], [43]. An example is that Guo et al. [43] proposed
GraphCodeBERT, which learns data-flow information of the
code snippet with edge prediction and node alignment tasks.

Due to the excellent performance of these pre-trained models
on multiple code-related tasks to code representation, some
studies have tried to adopt the pre-trained model to detect the
vulnerability code [1], [2], [44]. However, all these methods
directly utilize the pre-trained code model to perform prediction
and face challenges in capturing vulnerability features from
long code and code with complex structures. Instead, our model
extracts multiple execution paths, which are more likely to learn
vulnerability features from the tail statements in the long code.
Besides, the order of each statement in the execution path is
linear, which can ease the capture of the semantic information
in the code.

III. MOTIVATION AND PRELIMINARY

In this section, we first present the motivation of our approach
through two real-world vulnerability code snippets. Then we
introduce the definition of the syntax-based CFG.
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Fig. 1. Motivation example. (The green shaded statement is the vulnerability.).

A. Motivation

To better demonstrate the two limitations of existing vulner-
ability detection models, we study some real-world vulnerabil-
ities and obtain two important observations.

Observation 1: A vulnerable function may contain a vast of
statements unrelated to vulnerabilities. For example, Fig. 1(a)
presents a function from the Linux Kernel project [45], which
contains an information leakage vulnerability published by
CVE-2018-12633 [46]. Specifically, the line 9 and line 29 are
the statements where the vulnerability is located. The function
vbg_misc_device_ioctl() in this code snippet reads the same user
data twice with the copy_from_user() function. The header of
the user data is double-fetched, and a malicious user can tamper
with the critical variables in the header between the two fetches,
leading to severe kernel errors. As we can see, there are 67 lines
in the function, but only a few of them, i.e., line 9 and line 29,
are related to the vulnerability. If we directly input the whole
function into a neural model, it would be difficult for the model
to accurately capture the characteristics of the vulnerability. On
the other hand, we notice that although this function contains
a lot of execution paths, this vulnerability can only be taken
advantage of by some of them. Therefore, we propose to reduce

the information irrelevant to the vulnerability by extracting and
sampling execution paths from the syntax-based control flow
graph of the code, making it less difficult for neural models to
capture vulnerability features.

Observation 2: Truncating the statements in the tail of a long
code snippet may negatively affect the effectiveness of vulnera-
bility detection. To reduce the GPU memory and computation
resources, most neural vulnerability detection models limit the
input size, which may cause the loss of critical information
related to vulnerability. The function presented in Fig. 1(b) con-
tains a buffer overflow vulnerability published in the MACTelnet
project [47] exposed by CVE-2016-7115 [48]. This vulnerability
locates in line 58 and allows remote servers to execute arbitrary
code via a long string in an MT_CPTYPE_PASSWORD control
packet. If we tokenize this function using a subtoken-based
tokenizer, such as the tokenizer used by CodeBERT [24], the
vulnerable line will be tokenized into the 698-708 tokens. Since
the input limits of most detection models are less than 512, the
vulnerable line will be truncated by such models, and it would
be difficult for them to capture the features of this vulnerability
from this function. Intuitively, we can alleviate this problem by
splitting this function into several parts and separately encoding
these parts using neural models. However, it is challenging to
keep vulnerability-related structural and semantic information
in a code snippet after splitting it. In this work, we tackle
this challenge by decomposing a code snippet into multiple
execution paths extracted and selected from its syntax-based
CFG. Such execution paths are usually shorter than the whole
code snippet, hence are less likely to be truncated. In addition,
a code snippet can be regarded as the combination of all its
execution paths, and the structure of each path is simple and
linear. Therefore, decomposing a code snippet into multiple
execution paths can also simplify the capture of the structural
information in a code snippet to some extent.

B. Syntax-Based Control Flow Graph

As described above, our approach aims to decompose a code
snippet into multiple execution paths and learn its represen-
tation from such paths. In practice, it would be expensive to
dynamically extract the execution paths for vulnerability de-
tection. It is also expensive to compile large projects, such
as the Linux Kernel. Besides, the vulnerability data provided
in existing datasets are usually uncompilable and sometimes
even incomplete code snippets. So the techniques that require
compilation, such as symbolic execution, are not applicable to
our scenarios. Therefore, we choose to extract execution paths
in a static way. Specifically, we choose to construct the CFG
of a code snippet based on its AST and extract its execution
paths from the CFG. We refer to such CFG as the syntax-based
CFG, where each node represents an individual statement in
the code snippet, and each directed edge represents a possible
execution order between statements. The syntax-based CFG is
similar to the CFG built by Joern [49]. Joern is a widely used
static analysis tool and can also construct CFGs based on ASTs.
However, Joern builds CFGs by analyzing finer-grained AST
nodes, such as operators, which is not very efficient if we only
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Fig. 2. The framework of the proposed approach.

Fig. 3. The construction of the syntax-based CFG.

need to construct CFGs. In our experimental environment, it
takes about 4,560 seconds to construct CFGs for 1,000 code
snippets using Joern, while the time cost is only 49 seconds for
our syntax-based CFG construction method. Therefore, we use
the syntax-based CFG construction method instead of Joern.

Formally, we adopt Gi = (Vi, Ei) to denote the syntax-based
CFG of the code snippet ci, where Vi = (v1i , v

2
i , . . . v

|Vi|
i ) is the

node set containing |Vi| statements. Ei is the edge set repre-
senting the control flows between statements. Each edge is a
relation between two statements in ci, such that one statement
could be executed after the other. A path inGi is a node sequence
p = (n1, n2, . . . , nk), where the node nk is the statement k of
ci. For any pair of adjacent nodes np and nq , there exists an edge
from np to nq . If the start node equals the end node, the path
will be a cycle.

IV. THE PROPOSED APPROACH

We elaborate on the proposed approach in this section. The
overall workflow of our approach is illustrated in Fig. 2. We
first parse each code snippet into an AST and construct the
syntax-based CFG according to the AST. Next, we propose a

greedy-based path selection algorithm to select multiple exe-
cution paths from the syntax-based CFG, i.e., decompose the
code snippet into several execution paths. Then, the selected
paths are encoded by CodeBERT [24] into vectors with the
intra-path attention, which are then fed into the CNN to capture
the inter-path attention. Finally, we leverage an MLP classifier
to perform the detection.

A. Construction of Control Flow Graph From AST

This phase takes a code snippet as input, parses it into an AST
using the tree-sitter [50], and constructs its syntax-based CFG
from the AST. In this section, we use the example presented in
Fig. 3 to illustrate how we construct the syntax-based CFG from
the AST of a code snippet.

Before constructing the CFG, we remove blank lines and
comments in the code snippet using regular expressions. We
also mark the line number of each statement in the code. Since
each node in the syntax-based CFG represents an individual
statement, we only consider statement nodes in the AST when
constructing the CFG. To ease the presentation, we make the
following definitions:
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� Simple Statement: the statements that do not contain other
statements in their AST.

� Next Statement: a Next Statement of a node refers to a
statement that is possible to be executed after executing
the node. One node may have multiple Next Statements.

� Non-Child Next Statement: a Non-Child Next Statement of
a node is a statement that is a Next Statement of this node
and is not included in the sub-tree with this node as the
root.

� Normal Statement: a statement that are not break_
statement, continue_statement, return_statement, and
throw_statement.

To construct the syntax-based CFG of a code snippet, we first
add all the statements of the code snippet into the CFG as its
nodes and regard the first statement as the entry node and all
return_statement, assert_statement and throw_statement as exit
nodes. If the last statement of the code snippet is not an exit
node, we add a dummy exit node at the end of the code. Then,
we traverse the AST in a breadth-first way and design rules for
each statement type to build the edges in the CFG.

1) For each statement that is both a Simple Statement and a
Normal Statement, if its next sibling statement exists in
AST, we connect it to this sibling. For example, in Fig. 3,
we connect node 2 to node 3 and node 3 to node 4.

2) For each loop statement, i.e., for_statement and while
_statement, we connect it with its first child statement and
its next sibling statement if such a statement exists. If its
last child statement is a Normal Statement, we connect this
statement to the loop statement. For example, in Fig. 3, we
connect node 4 to node 5, node 4 to node 10, and node 5
to node 4.

3) For each break_statement, we first find its first ancestor
that is a loop statement or a switch_statement along the
AST. Then, we connect it to the Non-Child Next Statement
of the ancestor.

4) For each continue_statement, we first find its first ancestor
that is a loop statement along the AST. Then, we connect
it to this ancestor.

5) For each if_statement, we first connect it to its next sibling
statement if such statement exists and connect the last child
statement of its then_block to its current Next Statements
if the last child statement is a Normal Statement. For
example, in Fig. 3, we connect node 6 to node 4, node
7 to node 4, node 10 to node 12, and node 11 to node 12.
Then, if its children contain an else_statement, we connect
the else_statement to each of its Next Statements, remove
the edges from the if_statement to its Next Statements, and
add the edge from the if_statement to the else_statement.
For Fig. 3, we connect node 8 to node 4, remove the edge
from node 6 to node 4 and connect node 6 to node 8. Next,
we traverse the else_statement. We connect its last child
statement to its current Next Statements. If its last child
statement is a Normal Statement, we remove the edges
from it to its Next Statement and connect it to its first
child statement. For Fig. 3, we connect node 9 to node
4, remove node 8 to node 4 and connect node 8 to node
9. Finally, we connect the if_statement to the first child

statement of its then_block. For Fig. 3, we connect node
5 to node 6, node 6 to node 7 and node 10 to node 11.

6) For each switch_statement, we connect it to its first
case_statement. For each case_statement, we first con-
nect it to the next case_statement or default_statement.
Then, if the last child statement of this case_statement is
a Normal Statement, we connect it to the current Next
Statements of this case_statement. Finally, we connect
the case_statement to its first child statement. For each
default_statement, we connect it to its first child statement
and connect its last child statement to the Non-Child
Next Statements of the switch_statement if its last child
statement is not a Normal Statement.

7) For each try_statement, we treat its catch_clauses as
statements. We cannot construct a “sound” CFG for a
try_statement since we cannot know which exceptions
each function call may throw only from the caller’s AST. In
addition, building a “complete” CFG requires connecting
each statement in the try_block to each catch_clause,
which may introduce too many dead paths and negatively
affect the following phases. Therefore, we choose to only
connect the last Normal Statement in the try_block to
catch_clauses. Specifically, we connect the try_statement
to the first statement in its try_block, connect the last
Normal Statement in its try_block to its first catch_clause.
For each catch_clause, we connect it to its first statement
and the next catch_clause. In addition, for the last state-
ment which is a Normal Statement in the try_block and
each catch_clause, we connect it to the Non-Child Next
Statement of the try_statement.

B. Path Selection

A code snippet can be regarded as the combination of all
its execution paths. However, a code snippet may have infinite
execution paths if it contains loops. It may require many com-
putation resources to encode all the execution paths of a code
snippet. Therefore, we argue that it is impractical to encode all
the execution paths in a CFG for learning the representation of
the corresponding code snippet. We define an execution path in
a syntax-based CFG as a path from the entry node to an exit
node of the CFG and refer to it as an execution path from
hereon. In addition, it is non-trivial to accurately locate the
vulnerable statements in an unseen code snippet. If we only
extract one execution path to represent the code snippet, it is
very likely to miss vulnerable statements and negatively affect
the performance of vulnerability detection. Fortunately, based on
our observations of real-world vulnerabilities and the motivating
examples presented in Section III, we find that a few execution
paths can often cover the root cause of a vulnerability. Therefore,
instead of encoding all or only one of the execution paths in
a CFG, we select and encode several representative execution
paths to represent the corresponding code snippet. A similar
strategy is also used by Alon et al. [51] when representing a code
snippet as AST paths. This phase is responsible for selecting a
few representative execution paths from the CFG constructed by
the previous phases.
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There are two requirements for selecting execution paths:
First, to avoid losing important information in the code snippet,
the selected paths should cover as many lines of code as possible.
Second, to reduce the burden of model training, we expect the
selected paths to be as short as possible. Unfortunately, the two
requirements are conflicting to some extent. To make a trade-off
between them, we propose a greedy-based path selection algo-
rithm.

Algorithm 1 presents how we select execution paths. To ease
the presentation, we make the following definitions:
� Branch Node: a node of which the out degree is larger than

1 in the CFG.
� Branch Edge: an edge of which the source node is a branch

node in the CFG.
� Path Weight: the weight of a path is the sum of the weights

of all the edges in this path.
Suppose that we can select at most m paths from the CFG.

The key idea behind our algorithm is that for the first m− 1
paths, we try to select diverse and short paths, while for the last
path, we try to maximize the total node coverage of all paths.
Specifically, first, we set the initial weight of all edges in the
CFG to one and mark all nodes in the CFG as uncovered. Then,
we select the first m− 1 execution paths one by one. For each
of these paths: (1) For each exit node, we select a candidate
execution path that contains at least one uncovered node and
has the least path weight from the CFG. (2) We pick out the path
with the most uncovered nodes from the selected candidates.
For example, in Fig. 3, the first selected execution path is (1,
2, 3, 4, 10, 12). (3) We mark each node in this path as covered
and increase the weights of the Branch Edges in this path by
100 to reward the exploration of new edges. (4) We continue
to select the next shortest execution path with uncovered nodes
from the CFG with the updated weights. For example, in Fig. 3,
the second selected execution path is (1, 2, 3, 4, 10, 11, 12)
since the weight of the edge from node 10 to node 12 has been
increased. Finally, we select the last path to cover as many nodes
as possible. In detail, we iterate the execution paths in the CFG,
ignore the paths with cycles, find the paths that cover the most
uncovered nodes, and choose the shortest one. We ignore the
execution path with cycles because, for each such path, there
must exist an execution path that covers the same set of nodes
but does not contain any cycle and is shorter.

In Section V, we provide more detail to evaluate the influence
of different path selection algorithms and the number of paths
on model performance.

C. Code Representation Learning

This phase aims to learn the representation of the target code
snippet from the selected m execution paths. Intuitively, to
obtain a good representation, we need to capture both the features
of each path and the relationships among paths.

This phase first leverages the pre-trained CodeBERT
model [52] to learn the intra-path attentions and encode each
path into a feature vector. We use CodeBERT because it is a
transformer-based model, which can better capture long-term
dependencies within a long sequence compared to RNN-based

Algorithm 1: The Path Selection Algorithm.

models, and it is pre-trained on massive code data and has
shown to be effective in code understanding and code generation
tasks [24]. Specifically, given a selected path P , we first con-
catenate all of its nodes, i.e., its statements, in order into a code
snippet S. Then, CodeBERT tokenizes S into a token sequence
of length n using a subword tokenizer [53], maps the token
sequence into a sequence of embeddings X̃ = {x̃1, x̃2, . . . , x̃n}
based on an embedding layer and learn the contextual embed-
ding of each code token using multiple Transformer layers. A
Transformer layer takes as input a sequence of vectors, e.g.,

Authorized licensed use limited to: Zhejiang University. Downloaded on November 28,2023 at 06:04:25 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VULNERABILITY DETECTION BY LEARNING FROM SYNTAX-BASED EXECUTION PATHS OF CODE 4203

X̃, adopts a multi-head self-attention layer [54], a feed-forward
layer and the layer normalization operation [55] to capture the
intra-path attentions and refine the input vectors, as follows:

X̂ = MultiHead(X̃, X̃, X̃), (1)

Xi = LayerNorm(X̂+ FFN(X̂)), (2)

where MultiHead(·), FFN(·) and LayerNorm(·) denotes the
multi-head self-attention layer [54], the feed-forward layer and
the layer normalization operation [55], respectively. i in Xi

means Xi is the output of the ith Transformer layer. After
being processed by l Transformer layers, path P is encoded as a
sequence of contextual embeddingsXl = {xl

1,x
l
2, . . . ,x

l
n}. We

regard the embeddingxl
1 of the special token “[CLS]” inserted at

the beginning ofS as the representation ofP , which is a common
practice when using CodeBERT for classification tasks [24].
Since we decompose a code snippet into multiple paths, we
use CodeBERT to encode each path, respectively, and vertically
concatenated their representations into a matrix E ∈ Rm×d, as
follows:

E =

⎡
⎢⎣
e1

. . .

em

⎤
⎥⎦ , (3)

where ei refers to the representation of the ith path.
Then, this phase adopts a CNN to learn the inter-path at-

tentions and fuse the feature vectors of the selected paths,
i.e., E. Specifically, following the idea of using CNN in text
classification [56], we first use a CNN with k convolution filters
to capture inter-path features from E, as follows:

cj = φc

(
E� Fj

)
, (4)

where � denotes the inner product operator, φc(·) is the convo-
lution operation,Fj ∈ Rq×d is the jth filter, q is the window size
of the filter. d denotes the dimensions of the representation. To
capture the most significant features, we then use max pooling
to combine the convolution results of all filters, as follows:

C = MaxPooling(c1, c2, . . . , ck). (5)

Finally, we combine C and the representations of all the se-
lected paths to obtain the final code representation, and leverage
an MLP classifier to perform vulnerability detection, as follows:

Z = [C ‖ e1 ‖ · · · ‖ em] , (6)

ŷ = Softmax(MLP(tanh(Z))), (7)

where ‖ represents the horizontal concatenation operation.

D. Detection Model Training

We train the classifier by minimizing the following loss:

L(ŷ, y) = −y · log (ŷ) + (1− y) · log (1− ŷ) , (8)

where y is the true value. ŷ is the output value.

TABLE I
THE STATISTICS OF DATASETS

V. EXPERIMENTS

In this section, we conduct extensive experiments to justify
our model’s superiority and analyze the reasons for its effec-
tiveness. Specifically, we aim to answer the following research
questions:

RQ1: How effective is EPVD compared with the state-of-the-
art baselines on vulnerability detection?

RQ2: What are the effects of different design choices for the
proposed model?

RQ3: Can EPVD outperform existing vulnerability detection
approaches across various types of vulnerabilities?

RQ4: How does the size of training data affect the perfor-
mance of EPVD?

RQ5: How effective is EPVD in real-world applications?
RQ6: How efficient is EPVD in detecting vulnerabilities?

A. Datasets

To evaluate the effectiveness of EPVD, we established two
datasets: (1) The dataset merged from multiple existing vulner-
ability datasets, (2) The datasets collected from additional real-
world open-source projects. The statistics of the two datasets are
shown in Table I. Column 2 and Column 3 are the numbers of
non-vulnerability and vulnerability functions, respectively. Col-
umn 4 denotes the ratio between the number of non-vulnerability
functions and the vulnerability functions in each dataset. Col-
umn 5 is the total number of the source code in different datasets.

For the merged dataset, we merge three existing high-quality
datasets, i.e., the REVEAL dataset [25], the Big-Vul dataset [26],
and the dataset constructed by the authors of Devign [10] (from
hereon, the Devign dataset), into one large-scale dataset. The
REVEAL dataset [25] contains more than 22 K functions from
two large-scale open-source projects, i.e., Linux Debian Kernel
and Chromium, and 9.15% of the functions are vulnerable.
The Big-Vul dataset [26] is built from the CVE entries from
2002 to 2019, covering 348 different projects and 91 different
vulnerability types. The Devign dataset is collected from two
large C projects, i.e., QEMU [57] and FFmpeg [58]. The three
datasets are all built from real-world C/C++ vulnerabilities in
open-source projects and have been widely used by prior work
on vulnerability detection [3], [9], [10], [25], [26]. We randomly
split the merged dataset into disjoint training, validation, and
test sets with 80%, 10%, and 10% of the dataset, respectively.
To avoid data duplication, we remove duplicated test samples,
each of which is the same as one or more training samples,
after converting each sample as tokens using a C/C++ lexer
and removing its comments. Finally, there are more than 231 k
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TABLE II
THE STATISTICS OF DIFFERENT TYPES OF CWE

functions left in the merged dataset, and 10.5% of them are
vulnerable.

As for the second dataset, we follow previous work [28] and
construct the dataset by collecting security-related commits from
Redis [59] and Lua [60]. Redis is a well-known database system
server. Lua is a widely-used script language. Following Chen
et al. [28], we first extract bug-fixing commits by selecting the
commits whose messages contain bug-related keywords, such
as “bug”, “crash”, “memory error”, “vulnerability”, and “fix”.
Then three experienced software engineers carefully examine
the modifications of each bug-related commit, understand how
the bug is fixed, and label safe functions from the fixed commit
as negative and vulnerable functions from the corresponding
vulnerable commit as positive. It took 120 hours to manually
examine all the bug-related commits. Due to the small number
of vulnerabilities in the Lua project, we also merge the datasets
of the Redis and Lua projects and named it as “mixed dataset”.

In addition, we seek to study EPVD’s performance for dif-
ferent types of vulnerabilities. Since the Big-Vul dataset [26] is
crawled from real-world CVE information and includes multiple
vulnerability types, we identify the top 10 vulnerability types
with the highest number of vulnerabilities from the Big-Vul
dataset. For each vulnerability type, we first pick out the vul-
nerable code snippets of this type from the Big-Vul dataset and
then randomly select a certain proportion of non-vulnerable code
snippets from all the non-vulnerable code snippets in the merged
dataset so that the ratio of the selected vulnerable code snippets
to the selected non-vulnerable snippets is the same as that in
the merged dataset. We put 80% of the code snippets into the
training set and split the remaining 20% of code snippets into
the validation and test set, respectively. Table II summarizes the
detailed information of different types of vulnerabilities.

CWE119. Improper Restriction of Operations within the
Bounds of a Memory Buffer: This type of vulnerabilities includes
the operation on a memory buffer, but it can read from or write to
a memory location that is outside of the boundary of the buffer.
This vulnerability category would cause the system to crash or
leak sensitive information.

CWE20. Improper Input Validation: This type of vulnerabil-
ities includes the functions that receive input or data but do
not validate or incorrectly validate. If the input or data is not
validated, the software would receive unintended input, which
leads to altered control flow or arbitrary code execution.

CWE399. Resource Management Errors: This type of vul-
nerabilities would result from improper management of system
resources, such as memory and files, during software execution.

CWE264. Permissions, Privileges, and Access Controls: Vul-
nerabilities of this type are related to improper access control,
such as the management of permissions, privileges, and other
security features.

CWE416. Use After Free: The vulnerabilities belonging to
this type would reference previously-freed memory, which can
cause the corruption of valid data or the execution of arbitrary
code.

CWE125. Out-of-bounds Read: This type of vulnerabilities
would cause excessive data to be read, leading to a segmentation
fault or a buffer overflow.

CWE189. Numeric Errors: Vulnerabilities of this type are
related to improper calculation or conversion of numbers, such as
incorrect conversion between numeric types and floating-point
comparison with an incorrect operator.

CWE362. Concurrent Execution using Shared Resources with
Improper Synchronization: This type of vulnerabilities contains
the code snippet that can run concurrently with other code,
and the code requires temporary, exclusive access to a shared
resource. The shared resource can be modified by another code
that is operating concurrently.

CWE476. NULL Pointer Dereference: This type of vulnera-
bilities would cause a crash or exit when the application deref-
erences a pointer that it expects to be valid but is NULL.

CWE190. Integer Overflow or Wraparound: This type of vul-
nerabilities would produce an integer overflow or wraparound
when an integer value is incremented to a value larger than the
original value. The source code becomes security-critical when
the value is used to make a security decision or control loop.

B. Experimental Methodology

Baselines: To evaluate the effectiveness of our approach, we
compare it with seven state-of-the-art techniques, i.e., VulDeeP-
ecker [18], SySeVR [20], DeepWukong [28], VGDetector [61],
Devign [10], REVEAL [25], and CodeBERT [24], belonging to
three types, i.e., token-based models, graph-based models, and
pre-trained models.
� VulDeePecker is a token-based model, which first slices the

input code snippet based on “key points” (e.g., library/API
function calls) in the code snippet and then uses Long
Short-Term Memory network (LSTM) [22] to encode the
sliced code snippet and perform prediction.

� SySeVR is a graph-based model which represents the code
snippet as the PDG and uses vulnerability syntax charac-
teristics, such as Library/API function call, array usage,
pointer usage, and the arithmetic expression, to slice the
PDG. It adopts LSTM [22] to learn the representation of
the sliced code and detect the vulnerability.

� DeepWukong is a graph-based model. It first constructs the
PDG of the code snippet based on both the control flow
and data flow information, and slices the code snippet with
the statements containing system API calls and arithmetic
operators as slicing criteria. Then, it adopts the graph neural
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network [62] and Doc2Vec [63] to encode the code snippet
and perform vulnerability prediction.

� VGDetector utilizes the control flow graph to represent the
code snippet. It uses the graph convolutional network [62]
and Doc2vec [63] to learn the representation of the control
flow graph for vulnerability detection.

� Devign is a graph-based model which utilizes the Gated
Graph Recurrent network (GGN) [23] to represent the
graph that combines the AST, CFG, DFG, and code se-
quence of the input code snippet for vulnerability detection.

� REVEAL is a graph-based model, which combines De-
vign [10] with resampling techniques [32] and the triplet
loss [33] to detect vulnerabilities.

� CodeBERT is a pre-trained-based model, which refers to
the approach that directly uses CodeBERT [24] to predict
whether the input code snippet is vulnerable or not. This
model has achieved good performance on multiple soft-
ware engineering tasks.

Evaluation Metrics: Referring to prior works [9], [10], [24],
we adopt three widely-used classification metrics, i.e., Precision,
Recall, and F1-Score, for evaluation.Precision = #TP

#TP+#FP ,

Recall = #TP
#TP+#FN , and F1 = Precision∗Recall

Precision+Recall . #TP rep-
resents the number of vulnerable code snippets correctly de-
tected as vulnerabilities. #FP denotes the number of non-
vulnerable code snippets incorrectly detected as vulnerabilities.
#FN is the number of vulnerable code snippets incorrectly
predicted as non-vulnerable.

Experiment Environment: We implemented EPVD in Python
using PyTorch [64]. The experiments are performed on a ma-
chine with 4 NVIDIA GeForce GTX 3090 GPUs and two Intel
Xeon Gold 6226R CPUs of 2.90 GHz.

Experiment settings: For the path selection phase, we set
the number of the selected paths, i.e., m, as three by default.
In this section, we investigate the impacts of different m on
the effectiveness of our approach. For the code representation
learning phase, we use three filters with a shape of 128 in the
CNN. We set the hidden size of the fully connected layer in (7)
as 768. During training, AdamW [65] is used as the optimizer,
and the best model is selected based on the optimal F1-Score on
the validation set.

C. Overall Performance Analysis (RQ1)

We train and evaluate our approach and all the baselines on
the merged dataset, and compare their performance in terms
of Precision, Recall, and F1-Score. The results are shown in
Table III, with the best results marked in bold.

We can see that EPVD outperforms all the baselines in terms
of all three metrics by large margins and achieves an F1-Score
of 66.69%, which indicates the effectiveness of EPVD. Specifi-
cally, it improves over the best-performing baseline, i.e., Code-
BERT, by 22.30%, 42.92%, and 32.58% in Precision, Recall,
and F1-Score, respectively. Besides, we also have the following
findings:

(1) SySeVR is the worst-performing baseline. One possible
reason for this is the limited ability of LSTM in modeling pro-
gram semantics. Another possible reason is that SySeVR adopts

TABLE III
PERFORMANCE COMPARISONS OF OUR APPROACH WITH OTHER BASELINES

specific pre-defined criteria (i.e., library/API function calls, ar-
ray usage, pointer usage, and arithmetic expressions) to slice the
source code, which may result in the loss of vulnerability-related
information during slicing. Besides, VulDeePecker also uses
similar slicing criteria (i.e., library/API function calls) and also
performs poorly. Compared to VulDeePecker and SySeVR, our
approach not only adopts a strong code representation model but
also guides neural models to focus on small and cohesive code
pieces, i.e., the execution paths, which can help neural models
better capture vulnerability patterns from code.

(2) We can see that CodeBERT performs better than all
other baselines, although it neither slices the input code like
VulDeePecker nor explicitly extracts and makes use of the struc-
tural information of code like other graph-based baselines. This
indicates that CodeBERT can effectively capture the syntactic
and semantic information related to vulnerabilities from code,
justifying our choice of using CodeBERT to encode execution
paths. Apart from CodeBERT and EPVD, VGDetector achieves
the best performance in terms of precision and F1-Score. One
possible reason is that by encoding the control flow graph,
VGDetector can effectively capture the execution logic of code,
boosting vulnerability detection. Our approach can be regarded
as combining the advantages of both CodeBERT and VGDe-
tector because it extracts the execution paths from the control
flow graph and encodes the execution paths using CodeBERT.
The simple and linear structure and the shorter lengths of the
execution paths make it easier for neural networks to capture
vulnerability-related information.

(3) For other baselines, although DeepWukong considers
both control flow and data flow, its performance is worse than
that of VGDetector and EPVD. After analyzing the results, we
think the reasons may be that: 1) The slicing criteria used by
DeepWukong, i.e., the statements containing system API calls
and arithmetic operators, sometimes are not related to specific
vulnerabilities. Thus, the slices generated by DeepWukong may
lose vulnerability-related information. 2) The neural model in
DeepWukong still needs to understand complex code structures,
which is not easy. In contrast, first, EPVD tries its best to keep
all information in code by using our path selection algorithm
to cover as many statements as possible in the decomposed
execution paths. In addition, the structure of execution paths
is simple and linear, making it easier for neural networks to
capture vulnerability-related information from them.
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TABLE IV
PERFORMANCE COMPARISON BETWEEN CODEBERT AND EPVD ON THE

SHORT CODE TEST SET

TABLE V
PERFORMANCE COMPARISON BETWEEN CODEBERT AND EPVD ON THE LONG

CODE TEST SET

To further understand EPVD’s better performance, we com-
pare the prediction results of EPVD and the best-performing
baseline, i.e., CodeBERT. First, we select the code snippets
with less than 400 tokens, which is the input length limit of
CodeBERT, from the test set and compare the performance
of EPVD and CodeBERT on these code snippets. Table IV
shows the results. We can see that EPVD performs better than
CodeBERT regarding all metrics. The Recall of EPVD even
increases by 103.10%. One possible reason is that EPVD can
simplify code structure and help existing neural networks cap-
ture vulnerability features. To support this claim, we use the
number of if_statement to measure the structural complexity of
a code snippet and find that EPVD detects 544 more vulner-
abilities than CodeBERT, with 302 of them containing three
or more if_statement. Besides, we also select code snippets
with more than 400 tokens in the test set and treat them as
long code snippets. We compare the detection performance with
CodeBERT. Table V presents the results, where EPVD achieves
a better F1-Score than CodeBERT from 53.18% to 61.78%. In
detail, we count the vulnerabilities with more than 400 tokens
and find that EPVD correctly identifies 265 of them, while
CodeBERT only identifies 87 of them. This confirms our claim.
In addition, Fig. 4(a) presents a sample in our test set, which
is a function from the php/php-src project [66] containing a
vulnerability exposed by CVE-2014-3515 [67]. The root cause
of this vulnerability is line 47. Since the function is quite long,
line 47 will be truncated before the function is processed by
CodeBERT to meet the input length limit of CodeBERT. The
lack of line 47 would make it difficult for neural models to
capture vulnerability features for this function, so CodeBERT
fails to detect this vulnerability. For EPVD, it extracts multiple
execution paths from the function and regards them as input.
One extracted path is presented in Fig. 4(b). We can see that the
extracted path is much shorter than the function, and the root
cause of the vulnerability locates in line 29 in this path and will
not be truncated before being input into neural models. This in-
creases the probability of neural models capturing vulnerability
features.

According to our manual inspection, we also find that EPVD
can better distinguish vulnerability-related information from

Fig. 4. A long function from the test set. (The green shaded statement contains
a vulnerability.).

information unrelated to vulnerabilities than the baselines. Fig. 5
presents such an example, where the three functions are collected
from the php-src project [66]. The function in Fig. 5(a) is a
test sample, which contains an integer overflows vulnerability
(line 41 and line 42) and is exposed by CVE-2016-3078 [68].
The functions in Fig. 5(b) and (c) are training samples. We
can see that: (1) there are many similar statements between the
functions in Fig. 5(a) and (b), highlighted by the gray rectangle.
Although our approach has been on the function in Fig. 5(b),
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Fig. 5. The test sample. (The green shaded statement contains a vulnerability.).

TABLE VI
PERFORMANCE COMPARISONS OF DIFFERENT PATH SELECTION ALGORITHMS

which is non-vulnerable, it still correctly predicts the function in
Fig. 5(a) as vulnerable. It means that our approach successfully
ignores the information unrelated to vulnerabilities. (2) Fig. 5(c)
is also an integer overflows vulnerability exposed by CVE-2016-
3078 [68], which is similar to the one in Fig. 5(a). Although the
two functions are different except for the vulnerability-related
statements, our model still regards them are similar in terms
of vulnerabilities without being disturbed by other irrelevant
information.

D. Detail Analysis (RQ2)

In this subsection, we would like to explore the impact of
different model choices on the effectiveness of our approach,
including different path selection methods, different numbers of
selected paths, and different path fusion methods.

1) The Effect of Different Path Selection Methods: The key
idea of EPVD is to decompose the long code into multiple exe-
cution paths and learn to capture vulnerability patterns based on
the representations of such paths. In order to make the trade-off
between code coverage and path lengths, we propose a path
selection method that first selects two diverse and short paths
and then chooses the path that can cover the most uncovered
statements as the last path.

To explore the impact of different path selection methods on
EPVD’s performance, we compare EPVD with its two variants:
(1) EPVD-2, which first selects one shortest execution path
from the CFG and then selects two paths that can cover the
most uncovered statements in turn. (2) EPVD-3, which chooses
three paths that can cover the most uncovered statements in turn.
EPVD and the two variants are identical except for the used path
selection methods. Comparing EPVD with the two variants can
help us understand the importance of the path selection method
and the feasibility of path decomposition.

TABLE VII
PERFORMANCE COMPARISONS OF DIFFERENT NUMBER OF PATHS

The results of our comparisons are presented in Table VI.
The average coverage rate column is the ratio of code lines
in the source code that can be covered in the three paths. We
can see that the more long paths a model uses, the higher the
average coverage rate it can achieve, which is intuitive. Never-
theless, the differences among the three path selection methods
in terms of average coverage rate are small (<= 1.53%). EPVD
outperforms EPVD-2 and EPVD-3 in terms of F1-Score by
0.55 and 1.14 points, respectively, although its coverage rate
is slightly lower than EPVD-2 and EPVD-3. Moreover, it takes
2.11% and 2.26% more time to train EPVD-2 and EPVD-3 than
EPVD, respectively. Therefore, we believe that choosing two
short and diverse paths and one long path that maximizes the
code coverage is a beneficial decision.

2) The Effect of Different Numbers of Selected Paths: In
EPVD, we decompose a code snippet into three execution
paths. Although it is impractical to select all execution paths,
as discussed in Section IV-B, there are still many options for
the number of selected paths. Therefore, we would like to
evaluate the effect of different numbers of selected paths on
EPVD’s performance. We build three variants of our approach,
i.e., EPVD-p2, EPVD-p4, and EPVD-p5, which are the same as
EPVD except for selecting 2, 4, and 5 executions from the CFG,
respectively. For each variant with m paths, we select m− 1
short and diverse paths with one long and high-coverage path
using our path selection method. We compare their performance
with EPVD.

Table VII presents the results. We can see that EPVD achieves
the second-best performance in terms of F1-Score, and the
performance difference between EPVD and EPVD-p5 is very
small (only 0.0.3%). However, compared to EPVD, the training
time of EPVD-p5 increases by 37.57%. Also, EPVD is the
one with the best Precision. Considering the trade-off between
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TABLE VIII
PERFORMANCE COMPARISONS OF DIFFERENT PATH FUSION METHODS

effectiveness and efficiency, we believe it is reasonable to set the
number of selected paths as three.

3) The Effect of Different Path Fusion Methods: In EPVD,
we adopt a CNN to learn inter-path attentions and fuse three
execution paths. To explore the impact of different path fusion
methods on the performance of our approach, we compare
EPVD with two of its variants, i.e., EPVD-mlp and EPVD-blstm.
EPVD-mlp first concatenates the representations of the selected
paths horizontally and then inputs the concatenated vector into
an MLP to obtain the final code representation. EPVD-blstm
adopts a BiLSTM [22] to fuse the path representations. Follow-
ing previous work [18], we use a three-layer BiLSTM. Other
hyper-parameters of the two variants are the same as EPVD. To
check whether the performance differences between EPVD and
the two variants are statistically significant, we refer to previous
work [69] and use the out-of-sample bootstrap validation [70],
[71] to generate a bootstrap sample. We repeat this process 50
times and apply the Wilcoxon signed-rank tests [72] at the 95%
confidence level for the statistical analysis.

The results are presented in Table VIII. We can see that our
model performs better than the two variants by more than 0.42
points in terms of the F1-Score. The improvements achieved
by EPVD over the two variants, i.e., EPVD-mlp and EPVD-
blstm, are statistically significant. The p-values are both less
than 0.001. The results confirm that CNN can better capture
inter-path attention among multiple execution paths.

4) The Effect of Greedy-Based Path Selection Strategy: In
EPVD, we adopt the greedy-based strategy to decompose the
syntax-based CFG of the code snippet. To understand the
effect of the greedy-based path selection strategy, we con-
struct two variants of EPVD, namely EPVD-multi-encoder and
CodeBERT-slicing. EPVD-multi-encoder adopts three distinct
CodeBERT models to encode the three extracted execution
paths, respectively. Then, we utilize three MLP classifiers to
calculate three probabilities of these extracted execution paths.
Since a code snippet is vulnerable if any of its execution paths
is vulnerable, we choose the highest of the three probabilities as
the final output probability and calculate the evaluation metrics
only based on this probability. Specifically, if the final prob-
ability is greater than 0.5, the input code snippet is predicted
as vulnerable. Otherwise, it is considered as non-vulnerable.
CodeBERT-slicing uses the slicing method of DeepWukong but
adopts CodeBERT to encode the code slices.

The results of our comparisons are presented in Table IX. We
can see that EPVD performs better than EPVD-multi-encoder
in terms of Recall and F1-Score, which indicates that fusing
the selected paths for vulnerability detection is more effective
than detecting vulnerability from each of them, respectively. One
possible reason is that combing multiple paths could provide

TABLE IX
EFFECTS OF THE GREEDY-BASED PATH SELECTION STRATEGY

additional vulnerability-related information. EPVD outperforms
CodeBERT-slicing in terms of all metrics by large margins,
which means slicing with specific criteria is less effective than
our greedy-based path selection strategy. This may be because
it is hard, if not impossible, to cover all vulnerability-related
slicing criteria, and slicing with pre-defined criteria may cause
the loss of important information for some vulnerabilities.

E. Detection Results Across Different Types of Vulnerabilities
(RQ3)

As shown in Table X, the performance of EPVD varies when
detecting different types of vulnerabilities because different
kinds of vulnerabilities exhibit different behaviors. We can also
see that: (1) EPVD performs best on 8 out of 10 types, and
nearly all of them are both related to the control flow and data
flow information, such as CWE20 and CWE264. This is because
EPVD not only explicitly decomposes control flow information
but also implicitly includes data flow information in each path.
As every decomposed execution path has simpler logic, linear
structures, and shorter length, CodeBERT can better capture the
data flow information of the source code, which help EPVD
detect vulnerabilities related to the data flow. (2) EPVD does
not achieve the best performance in detecting CWE119 and
CWE476 vulnerabilities. By contrast, VGDetector and Deep-
Wukong achieve the best F1-scores, 60.69% and 59.45%, re-
spectively. We manually examine the results and find that the
lengths of CWE119 vulnerabilities are usually within the input
limit of neural models, which may limit the advantages of the
proposed model. Besides, CWE476 vulnerabilities are highly
related to data flow information because they usually occur when
pointers point to invalid memory addresses and refer to them,
leading to unforeseeable errors and software system crashes.
EPVD does not explicitly consider data flow information, which
may make it harder for EPVD than DeepWukong to capture
features related to CWE476. (3) SySeVR cannot detect the
vulnerabilities belonging to CWE264. The corresponding entry
in Table X is marked as “N/A”. The reason may be that SySeVR
adopts BiLSTM to encode the sliced source code, leading to
the limited ability to capture semantic information of code. Be-
sides, VGDetector and CodeBERT do not detect any CWE190
vulnerabilities. The main reason for the result is that the num-
ber of datasets in CWE190 is small, which may only contain
limited vulnerability patterns. Moreover, VGDetector does not
detect any vulnerabilities of CWE476. One possible reason is
that VGDetector only considers control flow information, while
CWE476 is tightly related to data flow information.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 28,2023 at 06:04:25 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VULNERABILITY DETECTION BY LEARNING FROM SYNTAX-BASED EXECUTION PATHS OF CODE 4209

TABLE X
PERFORMANCE COMPARISONS OF DIFFERENT EPVD WITH OTHER BASELINES ACROSS DIFFERENT TYPES OF VULNERABILITIES

TABLE XI
PERFORMANCE COMPARISONS OF DATA SENSITIVITY ANALYSIS

F. Sensitivity Analysis on Training Data (RQ4)

In this part, we aim to understand the effects of different
amounts of training data on the effectiveness of our proposed
model. In other research questions, we use 80%, 10%, and
10% of the merged dataset for training, validation, and testing,
respectively. In this RQ, we use the same validation and test sets
but train our approach with 70% and 60% of the merged dataset
as the training sets, respectively. Please note that the two smaller
training sets are randomly sampled from the original training set.

As shown in Table XI, the performance of our approach in
terms of F1-Score declines when the training set size decreases,
which is intuitive. Specifically, the F1-Score drops from 66.69%
to 65.68% and 64.43% when using 70% and 60% of the merged
dataset for training, respectively. However, even using less train-
ing data, our approach still outperforms all the baselines by
at least 28.08% (64.43% v.s. 50.30%). This indicates that our
approach can consistently perform well with different amounts
of training data.

G. Effectiveness of EPVD in Real-World Applications (RQ5)

To investigate the effectiveness of EPVD in real-world appli-
cations, we follow previous work [28] and conduct experiments
using the datasets collected from two open-source projects, i.e.,
the Redis dataset, the Lua dataset, and the mixed dataset. For
each dataset, we sort the samples in it according to the ascending
order of the commit submission time and use the top 80%
of the samples for training, 10% for evaluation, and 10% for
detection. We compare EPVD with the baselines introduced in
Section V-C.

Table XII shows the performance of EPVD on real-world
projects compared with the baselines. EPVD outperforms all
the baseline models by at least 19.58%, 20.21%, and 20.78% in
terms of F1-Score on the three datasets, respectively. According
to our experiments, we find some models cannot detect any
vulnerability in the Lua and/or Redis datasets. We mark the
corresponding entries in Table XII as “N/A”. On the Lua dataset,
the F1-Scores of most baselines are “N/A”. The possible reason

TABLE XII
PERFORMANCE COMPARISONS OF EPVD WITH OTHER BASELINES ON

REAL-WORLD APPLICATIONS IN TERMS OF F1-SCORE

TABLE XIII
TIME COSTS COMPARING EPVD AND CODEBERT ON THE MERGED DATASET

is that the small number of vulnerabilities and the data imbalance
in the Lua dataset hinder the baseline models from learning
vulnerability patterns. These results suggest that EPVD is also
more effective than the baselines on real-world applications.

H. Efficiency of EPVD (RQ6)

Table XIII lists the time costs of the EPVD and CodeBERT in
two phases, i.e., model training and vulnerability detection. The
results show that EPVD requires more time than CodeBERT in
the two phases. This is expected because EPVD uses CodeBERT
to encode three sequences for a code snippet and contains an
additional CNN for path fusion. Specifically, it takes about 1.25
hours to train EPVD for one epoch on the merged dataset. Con-
sidering that we only need to train EPVD once, and the training
is conducted offline in practice, we argue that the training cost is
affordable. It takes 0.02 seconds on average for EPVD to predict
whether a code snippet is vulnerable, which means the efficiency
of EPVD is sufficient for practical use. Considering that EPVD
improves CodeBERT by large margins in terms of the detection
performance, as shown in Table III, we argue that the additional
time cost of EPVD is worthwhile. We will further investigate
how to improve the efficiency of EPVD in future work.

VI. DISCUSSIONS

In this section, we discuss the situations where EPVD may
fail, the quality and code coverage of the selected paths, and the
threats to the validity of this work.
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A. Where Does Our Approach Fail

By randomly selecting and manually analyzing a number of
samples where EPVD fails to detect vulnerabilities, we summa-
rize several situations where it is difficult for EPVD to handle.
First, it is often difficult for EPVD to detect new vulnerabilities
which are not similar to any vulnerable sample in the training
set. Almost all learning-based vulnerability detection methods
suffer from this situation.

Second, EPVD cannot detect cross-function vulnerabilities.
For example, if the detected function contains a function call to
a vulnerable function, it is difficult for our model to detect such
a vulnerability. It may be challenging for EPVD to detect this
kind of vulnerability. We would try to address this limitation in
our future work.

Third, since EPVD does not explicitly extract data flow infor-
mation, it may not achieve superior performance in detecting
the vulnerabilities tightly related to data flows. However, as
shown in Section V-E, EPVD also outperforms all the baselines
on some vulnerability types that require considering data flow
information. We think this is because the decomposed execution
paths implicitly contain data flow information, which can be
captured and encoded by CodeBERT. Therefore, we argue that
for the vulnerabilities related to data flows, EPVD can also be
helpful. We leave improving EPVD to explicitly consider the
data flow information as future work.

B. The Quality and Code Coverage of the Selected Paths

Since we build the syntax-based CFG only based on AST
and select execution paths from the syntax-based CFG, some
execution paths selected by our approach may be dead paths,
i.e., paths that can never be executed during runtime. To obtain
accurate execution paths of a code snippet, we need to compile
the code and obtain enough runtime information, which is ex-
pensive and not very practical. Chen et al. [3] proposed a novel
vulnerability detection model, named ContraFlow, which adopts
the static analyzer SVF [73] to extract a set of value-flow paths
of the source code and utilizes the self-supervised contrastive
learning [74] to encode value flow paths. Then, ContraFlow used
active learning [75] to select the most representative paths and
adopted soft attention [76] to perform path-sensitive analysis and
select the most representative paths. Different from ContraFlow,
EPVD leverages a greedy-based path selection method to select
representative execution paths from the syntax-based CFG and
utilizes CNN to fuse the selected paths.

Another thing worth mentioning is that the selected execution
paths of a code snippet may not cover all of its statements.
This is expected since we can only select finite and limited
execution paths to make the trade-off between performance and
efficiency. Although we can iteratively select execution paths
from the syntax-based CFG until we cover all the statements
in the code snippet, we argue that this may not significantly
improve the performance but would greatly increase the training
and inference time of our approach. For example, as shown in
Section V-D, by increasing the number of the select paths, we
only slightly improve the F1-Score of our approach by 0.02%
but increase the training time by 37.47%.

C. Threats to Validity

One threat to the validity of this work is that our dataset
is built only from C/C++ projects, which may not represent
all programming languages. However, a majority of CVEs are
found in C/C++ projects, and our approach is generic and can
be extended to other programming languages.

Another threat to validity is that we are unable to perform
extensive hyper-parameter optimizations on our model due to
hardware limitations. It could be the case that some of the
proposed model or baselines are outlined in Table III, VI, VII,
and IX could be heavily impacted by certain hyper-parameters,
e.g., learning rate and batch size. This is a common issue of the
work using deep learning models and affects nearly all similar
types of experiments. We mitigate the impact of this issue by
being consistent with the hyper-parameter values in CodeBERT.
We also take great care when reproducing our baselines to ensure
the experimental setups are reasonable and match as closely to
their descriptions in the corresponding papers and replication
packages as possible.

VII. CONCLUSION AND FUTURE WORK

In this work, we present a novel approach that learns to
detect vulnerabilities by selecting, encoding, and fusing mul-
tiple syntax-based execution paths of the input code snippet.
Compared to existing learning-based vulnerability detection
approaches, by decomposing code into multiple execution paths,
our approach can better distinguish vulnerability-related infor-
mation from the information unrelated to vulnerabilities in the
code snippet, better handle the long vulnerable code of which the
vulnerability-related information locates at the tail, and effective
capture vulnerability features from code. We compare our ap-
proach with the state-of-the-art approaches on over 231 K func-
tions collected from three high-quality datasets. Experimental
results show that our approach significantly outperforms all the
baselines by large margins. To facilitate future research, we also
make our code and artifacts publicly available at Zenodo [27].

In future work, we plan to adopt other pre-trained code
models, such as SPT-Code [39] and GraphCodeBERT [43],
in our approach. We also plan to apply our approach to other
downstream tasks requiring encoding source code, such as code
clone detection and code summarization. Besides, we plan to
improve EPVD’s effectiveness by explicitly considering other
structural information in code, such as data flow and value flow
information.
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