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Abstract—Recently, deep learning techniques have shown great
success in automatic code generation. Inspired by the code
reuse, some researchers propose copy-based approaches that can
copy the content from similar code snippets to obtain better
performance. Practically, human developers recognize the content
in the similar code that is relevant to their needs, which can be
viewed as a code sketch. The sketch is further edited to the desired
code. However, existing copy-based approaches ignore the code
sketches and tend to repeat the similar code without necessary
modifications, which leads to generating wrong results.

In this paper, we propose a sketch-based code generation
approach named SKCODER to mimic developers’ code reuse
behavior. Given a natural language requirement, SKCODER
retrieves a similar code snippet, extracts relevant parts as a
code sketch, and edits the sketch into the desired code. Our
motivations are that the extracted sketch provides a well-formed
pattern for telling models “how to write”. The post-editing
further adds requirement-specific details into the sketch and
outputs the complete code. We conduct experiments on two public
datasets and a new dataset collected by this work. We compare
our approach to 20 baselines using 5 widely used metrics.
Experimental results show that (1) SKCODER can generate more
correct programs, and outperforms the state-of-the-art – CodeT5-
base by 30.30%, 35.39%, and 29.62% on three datasets. (2) Our
approach is effective to multiple code generation models and
improves them by up to 120.1% in Pass@1. (3) We investigate
three plausible code sketches and discuss the importance of
sketches. (4) We manually evaluate the generated code and prove
the superiority of our SKCODER in three aspects.

Index Terms—Code Generation, Deep Learning

I. INTRODUCTION

As the complexity and scale of the software continue to
grow, developers cost lots of effort to write the source code
by hand. Code generation aims to automate this coding process
and generate the source code that satisfies a given natural lan-
guage requirement. Nowadays, deep learning (DL) techniques
have been successfully applied to automatic code generation
[1], [2], [3]. DL-based models take a natural language (NL)
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Fig. 1. The process of reusing the similar code by developers.

description as the input and output the corresponding source
code. The models are trained with a corpus of real NL-code
pairs. During the inference, trained models can automatically
generate the desired code for a new NL description.

Recently, inspired by the code reuse [4], some researchers
[5], [6], [7] introduce the information retrieval techniques into
code generation. They retrieve the similar code and provide it
as a supplement to code generation models. The models are
trained to copy some content from the similar code and obtain
a better performance. In this paper, we refer to these studies
as copy-based code generation models.

Practically, human developers often make necessary mod-
ifications in the similar code instead of simply copying,
during the code reuse process [8]. As shown in Figure 1,
developers search for a similar code snippet in open-source
communities (e.g., Stack Overflow [9]) and further analyze
the relevance of similar code to their requirements. Then,
developers recognize the parts (i.e., all( _ for x in _
)) that are relevant to their needs and ignore the irrelevant parts
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def count_range(list1, min, max): 
result = 0
for x in list1: 

if min <= x <= max: 
result = result+1

return result

Top-1 similar code: Code sketch: Final code:

retrieve sketch editdef count_integer(list1):
result = 0
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result = result+1

return result

def _ (list1): 
result = 0
for x in list1: 

if _ : 
result = result+1

return result

Fig. 2. The illustration of how developers reuse the similar code. The relevant content in the similar code is highlighted.

(i.e., x==myList[0] and myList). The relevant content
can be viewed as a code sketch, which specifies a viable
code pattern (e.g., API usage patterns [10], [11]) to guide
developers on how to write their code. Next, developers
understand the current requirement (i.e., check integer) and
edit the sketch into the desired code by adding some details
(i.e., isinstance(x,int)). In the above pipeline, code
sketches play a key role in the code reuse. The sketches denote
the knowledge that developers extract from the similar code,
and are further reused in the newly-written code. However,
previous copy-based models [5], [7] ignore the importance of
sketches. Experimental results show that copy-based models
tend to repeat the similar code without necessary modifications
and even copy the irrelevant content.

To mimic the above developers’ code reuse behavior,
we propose a novel sketch-based code generation approach,
named SKCODER. Different from simply copying in previous
copy-based approaches, SKCODER can identify the content
in similar code that is relevant to current requirements and
further modify those relevant content. Our motivations are
that code sketches denote the guidance from the similar code
that tells models “how to write”, and NL descriptions express
requirements that tell models “what to write”. Specifically,
SKCODER generates the source code in three steps:

• Retrieve. Given an NL description, we use a retriever to
choose a similar code snippet from a retrieval corpus.

• Sketch. Based on the NL description, we use a sketcher
to extract a code sketch from the similar code.

• Edit. We employ an editor to edit the sketch based on
the NL description and obtain the target code.

We conduct extensive experiments to evaluate our
SKCODER. (1) We evaluate SKCODER on two public datasets
[12], including HearthStone and Magic. We employ three
widely used evaluation metrics (exact match (EM), BLEU
[13], and CodeBLEU [14]). Results demonstrate the impres-
sive performance of our SKCODER. In terms of the EM,
SKCODER outperforms state-of-the-art (SOTA) baselines by
up to 22.41% and SOTA copy-based baselines by up to
42.86%. (2) We collect a new code generation dataset named
AixBench-L that consists of 200k real NL-code pairs. Each
test sample is equipped with a set of unit tests. We use
Pass@1 and AvgPassRatio to verify the correctness of the
generated code. Results show that SKCODER outperforms
SOTA baselines 12.9% in Pass@1 and 8.49% in AvgPassRatio.
(3) We conduct an ablation study of our approach on multiple
code generation models by gradually adding the retriever
and sketcher to these models. Results prove the contributions

of different modules and our SKCODER can substantially
improve different models by up to 120.1% in Pass@1. (4) We
investigate three plausible design choices for code sketches.
Results demonstrate the importance of the sketch and our
used sketch has a better performance. We also discuss the
importance of code sketches through real examples. (5) We
conduct a human evaluation to evaluate the generated code in
three aspects, including correctness, code quality, and main-
tainability. Results show that SKCODER outperforms baselines
in all three aspects.

We summarize our contributions in this paper as follows.
• To mimic developers’ code reuse behavior, we pro-

pose a sketch-based code generation approach named
SKCODER. It extracts a code sketch from the retrieved
similar code and further edits the sketch into the target
code based on the input description.

• We collect a new code generation dataset named
AixBench-L that consists of 200k real NL-code pairs.
Each test sample is equipped with a set of unit tests to
evaluate the correctness of functions.

• We conduct extensive experiments on three datasets.
Qualitative and quantitative analysis shows the effective-
ness of our SKCODER. We further investigate different
design choices of code sketches and discuss the impor-
tance of code sketches.

Data Availability. We open source our replication package
[15], including the datasets and the source code of SKCODER,
to facilitate other researchers and practitioners to repeat our
work and verify their studies.

II. MOTIVATING EXAMPLES

In Figure 2, we show an example to analyze how developers
reuse the similar code and explain our motivations.

(1) For an input requirement, the retrieved similar code
contains the relevant content and irrelevant parts. Given an
NL description, developers first retrieve a similar code snippet.
Figure 2 shows the Top-1 similar code snippet that is retrieved
based on the similarity of NL descriptions. Then, developers
understand the implementation details of the similar code
and determine which parts are relevant to their requirements.
We can see that the similar code contains lots of relevant
content (i.e., highlight in Figure 2), e.g., parameters (list1),
control flow statements (for x in list1:), and data flow
statements (result=result+1). Meanwhile, the similar
code also contains irrelevant parts, such as the if condition
statement (if instance(x,int):).

Thus, simply copying from the similar code is inappropriate,
which probably causes the generated code contains some irrel-
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Fig. 3. The overview of our approach.

evant parts. We show a wrong output of the SOTA copy-based
approach named REDCODER [7] in Figure 6. REDCODER
directly copies an incorrect statement from the similar code
without necessary modifications.

(2) We should extract the relevant content from the
similar code as a code sketch. Practically, developers will
recognize the relevant content from the similar code, ignoring
irrelevant parts. The relevant content can be viewed as a
code sketch, which specifies a code pattern to guide devel-
opers on how to write the source code. Figure 2 shows a
sketch extracted from the similar code. The token “_” is
a placeholder. We can see that the sketch provides a high-
level code structure for developers, i.e., initializing a counting
variable → iterating the list and counting → returning the
counting variable. Some details are replaced by placeholders
and elaborated by developers.

Thus, we argue that code sketches are the core of a code
reuse process, which denote the valuable knowledge from the
similar code and are further reused in the new code.

(3) The sketch needs to be edited based on the input
description to obtain the target code. Code sketches provide
code patterns that tell developers “how to write”, and the
NL descriptions express requirements that tell developers
“what to write”. Thus, developers will edit sketches based
on their requirements and obtain the final code. Figure 2
shows the final code. Developers understand requirements (i.e.,
counting elements within a specific range) from the input
description and fill in sketches with implementation details,
e.g., function name (count_range), if condition statements
(if min<=x<=max:).

Based on the above observations, we propose a sketch-based
code generation approach to mimic the developers’ code reuse
behavior. Different from previous copy-based code generation
models, our approach contains a sketcher module that can
extract the relevant content from the similar code and output
a code sketch. Then, we utilize an editor module to edit the
sketch into the target code. Through the above pipeline, our
approach effectively mines the knowledge from existing high-

quality code corpus and transfers the knowledge into newly-
written programs.

III. APPROACH

In this section, we present a sketch-based code generation
approach, named SKCODER. We formally define the overview
of our SKCODER and describe the details in the following
sections, including three modules and the training details.

A. Overview

The goal of code generation is to train a model G(Y |X) that
predicts a code snippet Y based on an input natural language
(NL) description X . In this work, we decompose this model
into three modules, including a retriever, a sketcher, and an
editor. The three modules work in a pipeline as shown in
Figure 3:

• Retrieve. Given an NL description X , a retriever selects
a similar code snippet Y ′ from a retrieval corpus.

• Sketch. Based on the NL description X , a sketcher
extracts a code sketch S from the similar code Y ′.

• Edit. An editor edits the sketch S into the target code Y
based on the NL description X .

B. Retriever

As shown in Figure 3 (a), the retriever aims to select
similar code snippets from a retrieval corpus based on the
input NL description. Inspired by previous studies [5], [6],
we think that similar code snippets are likely to have similar
NL descriptions. Therefore, we take the input description as a
query to search for similar descriptions in a retrieval corpus.
Then, the corresponding code of similar descriptions is viewed
as the similar code.

Specifically, we employ the BM25 score [16] as our retrieval
metric, which is widely used in previous studies [17], [18],
[19]. BM25 is a bag-of-words retrieval function to estimate
the lexical-level similarity of two sentences. The more similar
two sentences are, the higher the value of BM25 scores. We
leverage the open-source search engine Lucene [20] to build
our retriever and use the training set as our retrieval corpus.



Our motivation is that BM25 and Lucene can bring a nice
retrieval accuracy and have low complexity. Considering that
the retrieval corpus is often large-scale, a fast retriever is closer
to practical applications. We also notice that there are some
more advanced code search approaches [21], [22], and they
can be applied to our approach in a plug-and-play fashion.
Because these approaches have higher complexity, we leave
them for further work.

C. Sketcher

The goal of our sketcher is to extract a code sketch from the
similar code based on the input description. In other words,
the sketcher should extract the content that is relevant to the
input description and ignore irrelevant parts. We consider this
procedure as a series of token-level classification actions. We
first split the similar code into a token sequence. Then, we
utilize a neural network to capture relations between the input
description and the similar code tokens. For more relevant
tokens, the neural network assigns higher weights. Based on
the outputs of the neural network, we further decide whether
each token in the similar code is extracted or ignored. The
ignored tokens are replaced by placeholders. Figure 3 (b)
shows the workflow of our sketcher.

Specifically, we concatenate the NL description X and the
similar code Y ′ into an input sequence and tokenize it. Then,
we use a neural encoder Encoder(·) to convert the input
sequence into vector representations [H;H ′].

X = (x1, x2, . . . , xn)

Y ′ = (y′1, y
′
2, . . . , y

′
m)

[H;H ′] = Encoder([X;Y ′])

(1)

where xi and y′i are the i-th token in the NL description and
the similar code; n and m are the maximum lengths of the
NL description and the similar code.

We further extract vector representations of the similar
code and feed them into a linear classification layer. The
classification layer will output a probability pi for each token
in the similar code. If the probability is greater than a threshold
t, the token is extracted; otherwise, it is replaced with a
placeholder (<pad>).

H ′ = (h′
1, h

′
2, . . . , h

′
m)

pi = softmax(Wsh
′
i + bs)

(2)

si =

{
y′
i if pi > t
<pad> otherwise (3)

S = (s1, s2, . . . , sm) (4)

where h′
i denotes the vector representation of i-th token in

the similar code. Ws and bs are trainable parameters in the
classification layer. S is the predicted sketch and si is the i-th
token in the sketch. We further merge consecutive placeholders
in the sketch into one placeholder.

Input NL description:
print script 's directory
Target code:
print(os.path.dirname(os.path.realpath(__file__)))
Retrieved similar code:
return os.path.dirname(os.path.realpath(sys.argv[0]))
Code Sketch (LCS):
<pad> os.path.dirname(os.path.realpath( <pad> ))

Fig. 4. An illustration of our sketch.

D. Editor

As shown in Figure 3 (c), our editor treats the sketch
as a soft template and generates the target code with the
guidance of the input description. The editor is trained to
follow code structures provided by the sketch and add details
to some placeholders (e.g., count_range, min<=x<=max).
The editor also can generate some necessary components that
are not in the sketch, e.g., additional parameters (min, max).

In this paper, we employ an encoder-decoder neural network
to implement our editor, which has been widely used in code
generation [1], [2], [7], [3]. Specifically, we concatenate the
NL description and the sketch into an input sequence. The
input sequence is transformed into vector representations by
an encoder, and a decoder generates the target code based on
vector representations.

E. Training and Testing

Our SKCODER contains three modules: retriever, sketcher,
and editor. We employ a deterministic retriever that does not
contain trainable parameters. Besides, considering that the
sketcher performs non-differentiable hard classifications, the
overall approach cannot be trained in an end-to-end fashion.
Thus, we employ a two-stage training strategy (i.e., firstly
training the sketcher and then training the editor), which is
widely used in other fields like code completion [19] and code
summarization [18].

1) Training the sketcher: The sketcher takes an NL descrip-
tion X and a similar code snippet Y ′ as inputs and outputs
a code sketch S. But existing code generation datasets only
contain NL-code pairs (X,Y ) without explicit sketches. Thus,
we propose an approach to construct sketches for facilitating
the training. We first pick a dataset and use our retriever to
make lots of triples (X,Y, Y ′). Then, we treat the longest
common subsequence (LCS) [23] between the similar code Y ′

and the target code Y as a code sketch S. Figure 4 shows an
illustration of our sketch. We can see that the LCS effectively
keeps reusable parts in the similar code (e.g., API and code
structures). In Section V, we experimentally investigate other
design choices of sketches and prove the superiority of our
used sketch.

Based on the above setting, we can build lots of training
triples (X,Y ′, S). Then, we train our sketcher by minimizing
the following loss function:

Ls = −
m∑
i=1

[Ii · log(pi) + (1− Ii) · log(1− pi)] (5)



TABLE I
STATISTICS OF THE DATASETS IN OUR EXPERIMENTS.

Statistics Hearthstone Magic AixBench-L

# Train 533 11,969 190,000
# Dev 66 664 10,000
# Test 66 664 175

Avg. tokens in description 27.92 59.54 27.55
Max. tokens in description 44 174 3752
Avg. tokens in code 87.14 302.44 170.74
Max. tokens in code 407 2395 25237

where pi is a predicted probability that i-th token of similar
code y′i is kept in the sketch S. Ii is an indicator function that
outputs 1 when y′i is in S and outputs 0 when y′i is not in S.

2) Training the editor: The inputs of our editor contain an
NL description X and a code sketch S, and the output is the
target code Y . We utilize a retriever to make triples (X,Y, Y ′)
and further use a trained sketcher to predict the code sketches,
obtaining lots of training triples (X,S, Y ). We train our editor
by minimizing the following loss function:

Le = −
m∑
i=1

logP (yi|X,S, y<i) (6)

where yi denotes i-th token in the target code and y<i is the
part of the target code before yi.

3) Testing: After training the sketcher and editor, our
SKCODER can be applied to online inference. Given a new
NL description, we use a retriever to search for a similar code
snippet from a retrieval corpus. Then, our sketcher extracts a
code sketch from the similar code and our editor generates the
desired code snippet based on the sketch.

IV. STUDY DESIGN

To assess the effectiveness of our approach, we perform
a large-scale study to answer three research questions. In this
section, we describe the details of our study, including datasets,
metrics, and baselines.

A. Research Questions

Our study aims to answer three research questions (RQ). In
RQ1, we compare our SKCODER to SOTA code generation
models on three representative datasets. In RQ2, we conduct an
ablation study to prove the contributions of different modules.
In RQ3, we investigate different design choices of code
sketches and validate the effectiveness of our design.

RQ1: How does SKCODER perform compared to SOTA
baselines? We train our SKCODER with three representa-
tive datasets. Then, we use multiple metrics to evaluate the
SKCODER and compare it to existing SOTA code generation
baselines.

RQ2: What are the contributions of different modules in
our approach? Our SKCODER consists of three modules: a
retriever, a sketcher, and an editor. We assess the contributions
of different modules by gradually adding them to a base model.
We select multiple neural networks as the base models and aim

to verify that our approach is effective to different network
architectures.

RQ3: What is the better design choice of the sketcher?
In Section III-E, we treat the longest common subsequence
(LCS) as the code sketch. In this RQ, we provide other design
choices of the sketch and compare them to our design.
B. Datasets

We conduct experiments on two public datasets (i.e., Hearth-
Stone in Python and Magic in Java) collected by Ling et al.
[12] and a new Java dataset named AixBench-L collected by
this work.

HearthStone and Magic datasets are proposed for the
automatic code generation for cards in games. Each sample
is composed of a semi-structural description and a human-
written program. The description comes with several attributes
such as card name, and card type, as well as a natural language
description for the effect of the card. We follow previous work
[1], [2] to pre-process the two datasets, and the statistic is listed
in Table I.

AixBench-L is a function-level code generation benchmark
and is an augmented version of the public AixBench bench-
mark [24]. We treat the original AixBench as the test data
and collect lots of NL-code pairs from Github [25] as the
train and dev data. Specifically, we mined Java open-source
projects with at least 30 stars from GitHub, and avoid projects
containing test data. From mined projects, we remove auto-
generated functions and extract functions (i) having an English
docstring; (ii) having <1024 tokens and >1 lines. Finally, we
select 200k samples from mined projects and randomly split
them into train data and valid data. We consider all mined
projects as the retrieval corpus. The statistic is shown in Table
I. Each test sample contains a functionally independent and
well-described natural language description, a signature of the
target function, and a set of unit tests that verify the correctness
of the function. Following previous work [24], we take the
natural language description and the function signature as
models’ inputs.
C. Metrics

On HearthStone and Magic datasets, we view human-
written programs as the ground-truth, and employ three widely
used metrics to evaluate the similarity of the generated code
and the ground-truth [1], [2], [3].

• Exact match (EM) is the percentage of the generated
code that has the same token sequence as the ground-
truth.

• The BLEU score [13] is used to measure the token-level
similarity between the generated code and the ground-
truth. Specifically, it calculates the n-gram similarity and
can be computed as:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(7)

where pn is the n-gram matching precision scores, N is
set to 4 in our experiments. BP is a brevity penalty to
prevent very short generated code.



• The CodeBLEU score [14] is a variant of the BLEU
score. It specializes in the source code and considers syn-
tactic and semantic matches based on the code structure
in addition to the n-gram match.

The test data in AixBench-L does not contain human-
written programs. We have to omit metrics (e.g., EM, BLEU)
requiring ground-truths. Following previous work [24], we use
unit tests to evaluate the correctness of generated programs.
Specifically, we employ the following metrics:

• Pass@1 is the percentage of the generated code that
passes all unit tests. It has been widely used in previous
studies [26], [27], [28].

• AvgPassRatio denotes the average test cases pass ratio
and can be calculated like this:

AvgPassRatio =
1

T

T∑
i

PassRatioi

PassRatioi =
Counti,pass

Counti,total

(8)

where Counti,pass and Counti,total are the number of
passed test cases and the total number of test cases in
i-th test sample, respectively. T is the size of test data.

D. Baselines

We select 20 recently proposed code generation models as
baselines. They can be divided into three categories: sequence-
based baselines, tree-based baselines, and pre-trained base-
lines.

The sequence-based baselines treat the source code as plain
text and directly generate a code token sequence:

• RNN [29] is a classic neural network in source code
processing. We utilize the RNN to implement a vanilla
encoder-decoder code generation model as the baseline.

• Transformer [30] is a popular encoder-decoder model
and has obtained promising results in code generation
and code completion tasks [19].

• LPN [12] and ReEdit [6] are RNN-based code generation
models. LPN proposes a structured attention mechanism
to handle the semi-structural inputs. ReEdit introduces a
retrieved similar program as an additional input.

The tree-based baselines directly generate a parsed tree (e.g.,
abstract syntax tree) of the source code. The generated tree is
further converted to the source code.

• Seq2Tree [31] is a pioneer tree-based work that proposes
a attention-enhanced code generation model.

• TRANX [1] is a representative tree-based code genera-
tion model that can map an NL description into a tree
using a series of tree construction actions.

• ASN [32] utilizes a dynamically-determined decoder to
efficiently generate a tree.

• TreeGen [2] incorporates grammar rules and tree struc-
tures into the Transformer. It significantly outperforms
previous RNN-based code generation models.

• ReCode [5] is a variant of the TRANX, which can copy
n-gram actions from the tree of a similar program.

The pre-trained baselines are first pre-trained with a large-
scale code corpus and then fine-tuned with code generation
datasets. Nowadays, pre-trained code generation models have
achieved SOTA results on many code generation datasets.

• CodeBERT [33] and GraphCodeBERT [34] are two
encoder-only pre-trained models. They mainly apply the
pre-training techniques for natural languages to the source
code. We add a six-layer transformer decoder along with
the two models, to support code generation. Both models
contain 175 million parameters.

• CodeGPT [35] and CodeParrot [27] are two decoder-
only pre-trained models. They are derived from the GPT-2
[36] and are continually pre-trained with the code. Both
models contain 124 million parameters.

• PyCodeGPT [26] and GPT-CC [28] are two decoder-
only pre-trained models. They are initialized with the
GPT-Neo [37] and are continually pre-trained with a
large-scale code corpus in Python. Both models contain
110 million parameters.

• CERT-PyCodeGPT [26] is a variant of the PyCodeGPT.
It first predicts a sketch based on the NL description and
further generates the complete code based on the sketch.
We follow instructions in the original paper and train a
CERT-PyCodeGPT (220M) in our experimental datasets.

• CodeGen [38] is a decoder-only pre-trained model. It
casts code generation as a multi-turn conversation be-
tween a user and a system. In this paper, we use the
CodeGen-Mono-350M version.

• REDCODER [7] is a encoder-decoder pre-trained model.
It provides multiple similar code snippets as a supple-
ment to a pre-trained code generation model. We use
GraphCodeBERT to initialize the retriever and employ
PLBART-base [39] to initialize the generator. The full
REDCODER contains 315 million parameters.

• CodeT5-small and CodeT5-base [3] are two encoder-
decoder pre-trained models. They propose an identifier-
aware pre-training task and have achieved SOTA results
on many code generation datasets. CodeT5-small contains
60 million parameters and CodeT5-base consists of 220
million parameters.

E. Implementation Details

The implementation details of our SKCODER are as follows:

• Retriever. We use the open-source search engine -
Lucene [20] to build the retriever. The retrieval metric is
the BM25 score. For HearthStone and Magic, the retrieval
corpus is its training data. Note that we exclude the
ground truths from the outputs of our retriever.

• Sketcher. We implement the sketcher with a 12-layer
Transformer encoder. Its network architecture follows
previous studies [33], [34]. We initialize the sketcher
using pre-trained weights of GraphCodeBERT [34].

• Editor. The editor is an encoder-decoder Transformer,
and the encoder and decoder both contain 12 Transformer
layers. The editor follows the network architecture in the



TABLE II
RESULTS ON THE HEARTHSTONE DATASET (PYTHON). “*” REPRESENTS

THE COPY-BASED BASELINES.

Type Approach EM BLEU CodeBLEU

Retriever module 0 57.56 56.58

Sequence-based

LPN 6.10 67.10 –
RNN 3.03 64.53 58.56
Transformer 3.03 62.46 51.63
ReEdit * 9.10 70.00 –

Tree-based

Seq2Tree 1.50 53.40 –
TRANX 16.20 75.80 –
ASN 18.20 77.60 –
ReCode * 19.60 78.40 –
TreeGen 25.80 79.30 –

Pre-trained

CodeBERT 3.03 66.50 59.39
GraphCodeBERT 3.03 66.32 58.87
CodeGPT 15.15 80.90 66.69
GPT-CC 15.15 74.58 63.95
CodeParrot 19.70 76.99 65.40
PyCodeGPT 24.24 81.03 68.70
CERT-PyCodeGPT 16.67 78.91 67.73
CodeGen 24.24 78.80 67.43
REDCODER * 21.21 80.08 67.31
CodeT5-small 21.20 77.91 64.60
CodeT5-base 25.84 81.28 68.42
SKCODER 30.30 ( ↑ 17.26%) 83.12 ( ↑ 2.26%) 70.97 ( ↑ 3.73%)

TABLE III
RESULTS ON THE MAGIC DATASET (JAVA). WE OMIT SOME BASELINES AS

THEY CANNOT BE APPLIED TO THE JAVA LANGUAGE.

Type Approach EM BLEU CodeBLEU

Retriever module 0 53.64 64.23

Sequence-based
LPN 4.80 61.40 –
RNN 16.26 71.96 61.83
Transformer 12.20 73.10 66.61

Pre-trained

CodeBERT 19.42 78.69 71.73
GraphCodeBERT 27.41 82.33 74.76
CodeGPT 27.40 78.68 70.04
REDCODER * 9.79 58.81 50.38
CodeT5-small 26.95 78.38 71.11
CodeT5-base 28.91 80.46 73.11
SKCODER 35.39 (↑ 22.41%) 85.39 (↑ 6.13%) 82.42 (↑ 10.27%)

work [3] and is initialized with pre-trained weights of
CodeT5-base [3].

• Training & Testing. We train the SKCODER with two
NVIDIA A100 GPUs. The batch size is set to 32. During
training, we use Top-5 similar code snippets to build the
training data of our sketcher and editor. In the inference,
we only use the Top-1 similar code, employ the beam
search, and set the beam size to 10.

Note that initializing using pre-trained weights is common
in previous studies [34], [7], [26], [27], [28] and can effectively
improve the performance of models. To make a fair compari-
son, we also reuse the pre-trained weights in our experiments.

V. RESULTS AND ANALYSES

In our first research question, we evaluate the performance
of our SKCODER with respect to previous code generation
approaches.
RQ1: How does SKCODER perform compared to SOTA
baselines?

Setup. We evaluate baselines (Section IV-D) and our
SKCODER on three code generation datasets (Section IV-B).
The evaluation metrics are described in Section IV-C, i.e., the
EM, BLEU, CodeBLEU, Pass@1, and AvgPassRatio. For all
metrics, higher scores represent better performance.

Results. Table II, Table III and Table IV show the ex-
perimental results on three datasets, respectively. “–” denotes

TABLE IV
RESULTS ON THE AIXBENCH-L DATASET (JAVA). WE OMIT SOME

BASELINES AS THEY CANNOT BE APPLIED TO THE JAVA LANGUAGE.

Type Approach Pass@1 AvgPassRatio

Retriever module 2.86 7.93

Sequence-based RNN 4.00 13.33
Transformer 6.29 12.43

Pre-trained

CodeBERT 9.14 23.35
GraphCodeBERT 10.86 24.99
CodeGPT 17.71 35.67
REDCODER * 16.00 33.14
CodeT5-small 12.57 25.11
CodeT5-base 15.43 24.53
SKCODER 20.00 (↑ 12.9%) 38.70 (↑ 8.49%)

that the models have not been evaluated using this metric,
to the best of our knowledge. “*” represents the copy-
based baselines, which also use the retrieved similar code.
The percentages in parentheses are the relative improvements
compared to the strongest baselines. On Magic and AixBench-
L datasets, we omit some baselines because they are designed
for specific languages and cannot work in the Java dataset.

Analyses. (1) Our SKCODER achieves the best results
among all baselines. Our SKCODER can generate more correct
programs. Compared to the SOTA model - CodeT5-base,
SKCODER outperforms it by up to 22.41% in EM and 29.62%
in Pass@1. Note that the EM and Pass@1 are very strict
metrics and are hard to be improved. The significant improve-
ments prove the superiority of our SKCODER in automatic
code generation. (2) The retrieved code is beneficial to code
generation. Our retriever module performs well in the BLEU
and CodeBLEU, but it is poor in the EM and Pass@1.
It validates our motivation that the similar code contains
lots of reusable contents and irrelevant parts. By introducing
the retrieved code, code generation models can be further
improved. For example, on the HearthStone dataset, ReEdit
improves its base model (i.e., RNN) by up to 200%, and
ReCode improves its base model (i.e., TRANX) by up to
20.99%. (3) Our SKCODER outperforms the SOTA copy-based
baselines. The SOTA copy-based baseline is the REDCODER,
which uses multiple similar code snippets to augment code
generation models. While our SKCODER only uses the Top-
1 similar code. Compared to the REDCODER, SKCODER
improves it by 42.86% in EM, 25% in Pass@1, and 16.78% in
AvPassRatio. This is because REDCODER is likely to repeat
the similar code without necessary modifications. While our
SKCODER utilizes a sketcher to extract the relevant content
as a sketch, ignoring irrelevant parts. The sketch is further
edited based on the input description. Thus, our SKCODER
is closer to developers’ code reuse behavior and can generate
more correct programs.

On the HearthStone and Magic datasets, we notice that
the improvements on the EM are higher than those on other
metrics. We carefully compare the output of different models
and find that baselines and our SKCODER all can correctly
generate the body of programs. But baselines often err on
some details, such as parameters. Thus, our SKCODER can



TABLE V
THE RESULTS OF ABLATION STUDY.

Editor Retriever Sketcher HearthStone Magic AixBench-L
EM BLEU CodeBLEU EM BLEU CodeBLEU Pass@1 AvgPassRate

RNN
3.03 64.53 57.56 16.26 71.96 61.83 4.00 13.33

3.03 (↑ 0%) 68.39 59.12 16.51 (↑ 1.54%) 72.79 63.82 5.14 (↑ 28.5%) 10.61
4.54 (↑ 49.83%) 71.50 61.76 17.91 (↑ 10.15%) 73.72 65.04 8.57 (↑ 114.3%) 13.42 (↑ 2.7%)

CodeT5-small
21.20 77.91 64.60 26.95 78.38 71.11 12.57 25.11

27.86 (↑ 31.42%) 79.84 68.76 31.73 (↑ 17.74%) 80.85 77.10 14.29 (↑ 13.68%) 26.06 (↑ 3.78%)
30.30 (↑ 42.90%) 83.08 69.35 33.89 (↑ 25.75%) 85.15 80.08 18.29 (↑ 45.51%) 34.05 (↑ 35.6%)

CodeT5-base
25.24 81.28 68.42 28.91 80.46 73.11 15.43 24.52

27.81 (↑ 10.18%) 82.06 69.35 32.43 (↑ 12.18%) 83.11 78.97 17.71 (↑ 14.78%) 34.75 (↑ 41.72%)
30.30 (↑ 20.05%) 83.12 70.97 35.39 (↑ 22.41%) 85.39 80.62 20.00 (↑ 29.62%) 38.70 (↑ 57.83%)

generate more exactly correct programs, and achieve lower
improvements on n-gram similarity metrics (i.e., BLEU and
CodeBLEU). The results also verify that compared to gener-
ating the code from scratch, editing a well-formed sketch is
easier to generate the correct code.

Answer to RQ1: SKCODER achieves the best results
among all baselines. In particular, SKCODER generates
30.30%, 35.39%, and 20% correct programs on three
datasets, outperforming the SOTA code generation mod-
els by 17.26%, 22.41%, and 12.9%. The significant
improvements prove our sketch-based approach is more
promising in automatic code generation.

In RQ2, we aim to figure out the contributions of different
modules in our SKCODER. Besides, we plan to investigate
the effectiveness of our approach on different code generation
models.
RQ2: What are the contributions of different modules in
our approach?

Setup. In this RQ, we select three code generation models as
the base editor, including RNN, CodeT5-small, and CodeT5-
base. They cover mainstream network architectures, i.e., RNN,
Transformer, and pre-trained models. For each editor, we
conduct an ablation study by gradually adding the retriever
and sketcher.

Results. The experimental results is shown in Table V.
and represent adding and removing corresponding modules,
respectively. An individual editor is just a vanilla code gener-
ation model that maps an NL description to the source code.
After adding a retriever, the model takes the retrieved code as
an additional input. After further introducing a sketcher, the
model is our sketch-based approach.

Analyses. (1) All three modules are necessary to perform
the best. After adding a retriever, the performance of all mod-
els is improved. For example, on HearthStone, the retriever
brings a 10.18% improvement in the EM for the CodeT5-
base. It validates that the retrieved code contains lots of valu-
able information that benefits code generation models. After
introducing a sketcher, all models obtain better results. For
example, on the HearthStone, the CodeT5-base is improved
by 20.05% in the EM. It proves that compared to copying
from the retrieved code, our sketch-based code generation
approach can better mine the knowledge in the retrieved code.

TABLE VI
THE PERFORMANCE OF DIFFERENT SKETCHERS.

Approach HearthStone Magic
EM BLEU CodeBLEU EM BLEU CodeBLEU

Without sketcher 27.81 82.06 69.35 32.43 82.01 78.87
Sketcher-1 27.93 (↑ 0.43%) 82.39 70.81 33.06 (↑ 1.94%) 83.04 80.15
Sketcher-2 29.03 (↑ 4.39%) 82.77 70.27 34.46 (↑ 5.95%) 83.91 80.19
Our Sketcher 30.30 (↑ 9.13%) 83.12 70.97 35.39 (↑ 9.13%) 85.39 80.62

Input NL description:
check if all elements in list var_0 are identical
Ground truth:
all(x == var_0[0] for x in var_0)
Retrieved similar code:
all(isinstance(x, int) for x in var_0)
Sketcher-1 (anonymizing user-defined terms):
all(isinstance(v_1, int) for v_1 in v_2)
Sketcher-2 (keeping overlapping tokens):
all((x) for x in var_0)
Our Sketcher (longest common subsequence):
all( <pad> for x in var_0)

Fig. 5. Examples of three sketches.

(2) Our approach is effective to multiple code generation
models. As shown in Table V, our approach supports different
code generation models and brings obvious improvements.
Specifically, in terms of the Pass@1, our approach improves
the RNN by up to 114.3%, the CodeT5-small by 45.31%, and
the CodeT5-base by 29.62%. In the future, our approach can
be used to enhance more powerful code generation models.

Answer to RQ2: All three modules are essential for the
performance of our approach. Besides, our approach is ef-
fective to different code generation models and improves
them by 114.3%, 45.31%, and 29.62% in Pass@1.

Code sketches are not explicitly defined in existing datasets
and how to build a sketch is an open question, Thus, we
design several plausible design choices for the sketcher and
investigate which one is better.
RQ3: What is the better design choice for the code sketch?

Setup. In this RQ, we provide three sketchers (i.e., sketcher-
1, sketcher-2, and our sketcher). The sketcher-1 utilizes a
parse to anonymize the user-defined terms in the similar code
(i.e., string, constant, variable) and obtains a code sketch.
The sketcher-2 trains a neural network to predict overlapping
tokens between the similar code and the ground truth. The
overlapping tokens are collected to build a sketch. Our sketcher



trains a neural network to predict the longest common subse-
quence (LCS) between the similar code and the ground-truth.
The predicted LCS is viewed as a sketch. We present some
examples of different sketchers in Figure 5.

Results. The experimental results are shown in Table VI. We
present the results of our SKCODER with different sketchers
and the result without a sketcher.

Analyses. (1) Introducing a sketcher can better utilize the
retrieved code. Compared to the model without a sketcher,
the models with sketchers perform better. It shows that the
sketcher can better mine the knowledge from the retrieved
code and our sketch-based approach is more promising than
copy-based approaches. (2) Our sketcher performs best among
all baselines. On both datasets, our sketcher brings 2x improve-
ments (e.g., 9.13% vs. 0.43%) over other sketchers. This is
because our sketcher can accurately extract the relevant content
and leave irrelevant details, while other sketchers cannot. As
shown in Figure 5, sketch-1 outputs a sketch by anonymizing
the user-defined terms. But the anonymized code still contains
irrelevant parts (e.g., isinstance) and even loses some
reusable tokens (e.g., var_0). Sketch-2 only keeps tokens
that may occur in the ground truth. It ignores the sequentiality
of tokens, and the generated sketch probably is disorder and
confusing (e.g., (x)). By contrast, the sketch produced by our
sketcher is well-formed and provides a clear code structure.

Answer to RQ3: Code sketches are beneficial to reuse
the knowledge in the retrieved code. Among multiple
plausible sketchers, our sketcher performs best and brings
a maximum of 9.13% improvement in the EM.

VI. HUMAN EVALUATION

The ultimate goal of code generation models is to assist
developers in writing the source code. Thus, in this section,
we conduct a human evaluation to assess our SKCODER.

Setup. Following previous work [24], we manually evaluate
the generated code by different models in three aspects,
including correctness (whether the code satisfies the given
requirement), code quality (whether the code does not contain
bad code smell) and maintainability (whether the implemen-
tation is standardized and has good readability). For each
aspect, the score is integers, ranging from 0 to 2 (from bad
to good). We randomly select 50 test samples and collect
programs generated by 10 models on these samples. Finally,
we obtain 500 programs (50*10) for evaluation. The evaluators
are computer science Ph.D. students and are not co-authors.
They all have programming experience ranging from 3+ years.
The 500 code snippets are divided into 5 groups, with each
questionnaire containing one group. We randomly list the code
and the corresponding input description on the questionnaire.
Each group is evaluated anonymously by two evaluators,
and the final score is the average of two evaluators’ scores.
Evaluators are allowed to search the Internet for unfamiliar
concepts.

Results and Analyses. The results of the human evaluation
are shown in Table VII. Our SKCODER is better than all

TABLE VII
THE RESULTS OF HUMAN EVALUATION. ALL THE P-VALUES ARE

SUBSTANTIALLY SMALLER THAN 0.005.

Approach Correctness Code quality Maintainability

GraphCodeBERT 0.9277 0.9872 1.3049
CodeGPT 0.9798 1.0229 1.3306
REDCODER * 1.0177 1.2038 1.5796
CodeGen 1.1250 1.3610 1.5573
PyCodeGPT 1.1098 1.3661 1.5442
CodeParrot 0.9704 1.0814 1.3668
GPT-Code-Clippy 0.9646 1.0585 1.3672
CERT-PyCodeGPT 0.9629 1.0439 1.3882
CodeT5-base 1.1719 1.3908 1.5848
SKCODER 1.3705 (↑ 16.95%) 1.5639 (↑ 12.45%) 1.7764 (↑ 12.09%)

baselines in three aspects. Specifically, SKCODER outperforms
the SOTA model - CodeT5-base by 16.95% in correctness,
12.45% in code quality, and 12.09% in maintainability. All the
p-values are substantially smaller than 0.005, which shows the
improvements are statistically significant. The improvements
prove the superiority of our SKCODER in assisting developers
in coding. Besides, we notice that the copy-based model -
REDCODER performs well in maintainability but is poor in
correctness and code quality. This is because REDCODER can
generate natural programs by copying from the retrieved code.
But some copied content is irrelevant and leads to incorrect
code.

VII. DISCUSSION

A. Case Study

Figure 6 presents some code snippets generated by dif-
ferent models on the HearthStone dataset. From the exam-
ples, we obtain the following findings. (1) The retrieved
similar code provides a well-formed code structure and con-
tains some irrelevant details (e.g., ImpGangBoss). (2) As
a copy-based approach, REDCODER wrongly repeat the
inappropriate statement (i.e., effects=[Effect(...),
ActionTag(...)]) without modifications. It causes the
generated code is inconsistent with the input description. (3)
Our sketcher accurately keeps the relevant content and replaces
irrelevant details with placeholders. The extracted sketch pro-
vides a clear start-point for editing. (4) Based on the input
description, our SKCODER further edits the sketch into the
desired code. For example, the input description specifies the
card’s effect (i.e., whenever you hero takes damage
on your turn, gain +2/+2). SKCODER modifies the
Damaged() and ActionTag() calls in the sketch and
adds more details (e.g., And(IsHero(), OwersTurn()).
Besides, the editor adds some components that are not in the
sketch, such as Character.

B. Threats to Validity

There are three main threats to the validity of our work.
The generalizability of our experimental results. To

mitigate this threat, we carefully design the experimental
datasets, metrics, and baselines. For the datasets, we follow
previous studies [1], [5], [2] and pick three representative
code generation datasets. The three datasets are collected
from real software projects and communities and cover two



Input description: NAME: Floating Watcher ATK: 4 DEF: 4 COST: 5 DUR: -1 TYPE: Minion PLAYER: Warlock RACE: Demon RARITY: Common DESCRIPTION:
Whenever your hero takes damage on your turn, gain +2/+2.

Retriever (similar code):
class ImpGangBoss(MinionCard):

def __init__(self):
super().__init__("Imp Gang Boss", 3, 

CHARACTER_CLASS.WARLOCK, CARD_RARITY.COMMON, minion_type=MINION_TYPE.DEMON)
def create_minion(self, player):

return Minion(2, 4, 
effects=[Effect(Damaged(), ActionTag(Summon(Imp()), PlayerSelector()))])

REDCODER:
class FloatingWatcher(MinionCard):

def __init__(self):
super().__init__("Floating Watcher", 5, 

CHARACTER_CLASS.WARLOCK, CARD_RARITY.COMMON, minion_type=MINION_TYPE.DEMON)
def create_minion(self, player):

return Minion(4, 4, 
effects=[Effect(Damaged(), ActionTag(Summon(Imp()), PlayerSelector()))])

Sketcher (code sketch from similar code):
class <pad> (MinionCard):

def __init__(self):
super().__init__( <pad> , <pad> , 

CHARACTER_CLASS.WARLOCK, CARD_RARITY.COMMON, minion_type=MINION_TYPE.DEMON)
def create_minion(self, player):

return Minion(2, 4, 
effects=[Effect(Damaged(), ActionTag( <pad> , <pad> ))])

SkCoder (editing the sketch) & Ground-truth:
class FloatingWatcher(MinionCard):

def __init__(self):
super().__init__("Floating Watcher", 5, 

CHARACTER_CLASS.WARLOCK, CARD_RARITY.COMMON, minion_type=MINION_TYPE.DEMON)
def create_minion(self, player):

return Minion(4, 4, 
effects=[Effect(CharacterDamaged(And(IsHero(), OwnersTurn())), 

ActionTag(Give([Buff(ChangeAttack(2)), 
Buff(ChangeHealth(2))]), SelfSelector()))])

Fig. 6. Examples of code snippets generated by different models. We highlight the parts that SKCODER modifies on the sketch.

popular programming languages (i.e., Java and Python). For
the metrics, we select five widely used metrics, including the
EM, BLEU, CodeBLEU, Pass@1, and AvgPassRatio. Existing
work [40] has proven the reliability of these metrics. To verify
the superiority of our approach, we select 20 code generation
models as our baselines for the comparison. They cover the
most of representative work in the past six years. Besides, we
run each approach three times and report the average results.

The implementation of models. It is widely known that
deep learning models are sensitive to the implementation de-
tails, including hyper-parameters and network architectures. In
this work, we need to implement baselines and our approach.
For the baselines, we use the source code provided by their
original papers and ensure that the model’s performance is
comparable with their reported results. For our approach, we
implement a version that employs mainstream neural networks
(details in Section IV-E). Due to the high training cost, we do
a small-range grid search on several hyper-parameters (i.e.,
learning rate and batch size), leaving other hyper-parameters
the same as those in previous studies [18], [34], [3]. Thus,
there may be room to tune more hyper-parameters and network
architectures of our approach for more improvements.

The impact of retrieved code. The retrieved code is an
important element in our approach. Intuitively, when the re-
trieved code is less similar to the target code, the performance
of our model may suffer. To address this threat, we have two
thoughts. (1) A large-scale study on 13.2 million real code
files found the proportion of reused code is up to 80% [8].
Therefore, we believe that it is quite possible to retrieve the
similar code in real development scenarios. (2) Even if the
retrieved code is dissimilar to the target code, our SKCODER
can selectively focus on the retrieved code based on current
requirements. To prove this point, we randomly select code
snippets from the retrieval corpus as the retrieved code and
train a variant named SKCODER-random. The results are
shown in Table VIII. SKCODER-random has a drop compared
to SKCODER but still substantially outperforms CodeT5-base.
It proves that our SKCODER can adaptively extract valuable
content from the retrieved code and has strong robustness.

TABLE VIII
THE PERFORMANCE OF SKCODER-RANDOM.

Approach EM BLEU CodeBLEU

CodeT5-base 28.91 80.46 73.11
SKCODER-random 33.48 (↑ 15.81%) 82.07 79.08
SKCODER 35.39 (↑ 22.41%) 85.39 80.62

VIII. RELATED WORK

Code generation aims to generate the source code that
satisfies a given natural language description or requirement.
Existing work can be divided into three categories: sequence-
based models, tree-based models, and pre-trained models.

Sequence-based Models. Sequence-based models treat the
source code as a sequence of tokens and use neural networks
to generate the source code token-by-token based on the input
description. Ling et al. [12] generate the source code with a
structured attention mechanism to process the semi-structural
input. Hashimoto et al. [6] train a task-dependent retriever to
retrieve the similar code, and then use the similar code as
an additional input to the generator. Wei et al. [41] propose a
code generation model based on dual learning, which performs
better with the help of code summarization.

Tree-based Models Program is strictly structured, and can
be parsed into a tree, e.g., Abstract Syntax Tree (AST). Tree-
based models generate a parse tree of the program based
on the NL description and then convert the parse tree into
the corresponding code. Dong et al. [31] generate the AST
by expanding every non-terminal with an LSTM model. Ra-
binovich et al. [32] generate the AST with a decoder that
has a dynamically-determined modular structure paralleling
the structure of the output AST. Yin et al. [1] generate the
tree-construction action sequence with an LSTM model, and
construct the AST from the action sequence. Sun et al. [2]
encode the natural language and grammar rules that have been
generated with specially designed Transformer blocks, and
predict the next grammar rule accordingly.

Pre-trained Models Recent years have witnessed the emer-
gence of pre-trained models [42], [43], [44]. These models are
pre-trained on massive data of source code and then fine-tuned
on code generation task. Pre-trained models can be divided
into three categories.



(1) Encoder-only pre-trained models only contains an en-
coder and is mainly used in code representation. They are
usually pre-trained with language comprehension tasks, e.g.,
masked language modeling or replaced token detection. The
recently proposed encoder-only pre-trained models include the
CodeBERT [33], GraphCodeBERT [34], etc. (2) Decoder-only
pre-trained models are pre-trained to predict the next token
based on the input context. GPT series [45] are excellent
decoder-only models for natural language processing, and
there are many efforts to adapt similar ideas to code. Lu et al.
[35] adapt GPT-2 [36] model on the source code, resulting in
CodeGPT. Chen et al. [46] fine-tune GPT-3 [47] models on
the code to produce CodeX and GitHub Copilot [48]. Neither
CodeX nor GitHub Copilot is open-sourced, which leads to
several attempts to replicate CodeX in industry and academia,
resulting in CodeParrot [27], GPT-CC [28], PyCodeGPT [26],
and CodeGen [38]. CodeParrot and CodeGen are trained from
scratch. PyCodeGPT and GPT-CC are fine-tuned from GPT-
Neo[37]. Zan et al. [26] propose a variant of PyCodeGPT.
They first generate a sketch that anonymizes user-defined
constants, and then generate the complete program from the
NL and the sketch. (3) Encoder-decoder pre-trained models
are composed of an encoder and a decoder. They can support
both code representation and code generation tasks. Various
successful encoder-decoder architecture in natural language
processing has been transferred into the source code, resulting
in powerful models, e.g., CodeT5 [3] and PLBART [39].

Inspired the code reuse, some studies introduce the similar
code to augment code generation models. Hayati et al. [5]
retrieve the similar code with the input, and copy n-gram
actions from the similar code during decoding. Hashimoto et
al. [6] and Parvez et al. [7] retrieve similar code snippets and
feed them along with the input description to a generator. They
train the generator to learn to copy some reusable content
from the similar code. We refer to these studies as copy-
oriented approaches. Different from copy-oriented approaches,
our sketch-oriented SKCODER mimics the developers’ code
reuse behavior, extracts content that is relevant to input re-
quirement and ignores irrelevant parts in the similar code. The
extracted content is viewed as a code sketch and further edited
to the target code with guidance of input requirement.

IX. CONCLUSION AND FUTURE WORK

During software development, human developers often
reuse similar code snippets. In this paper, we propose a novel
sketch-based code generation approach named SKCODER
to mimic developers’ code reuse behavior. Different from
previous copy-based approaches, SKCODER can extract the
relevant content from the retrieved similar code and builds
a code sketch. The sketch is further edited by adding more
requirement-specific details. We conduct experiments on two
public code generation datasets and a new Java dataset col-
lected by this work. The new dataset contains 200k NL-code
pairs and each test sample is equipped with a set of unit tests.
Experimental results show that SKCODER substantially out-
performs state-of-the-art baselines. The ablation study proves

the effectiveness of code sketches and our approach is effective
to different neural networks. In the future, we will explore
more effective sketchers and apply our sketch-based idea to
large-scale pre-trained models.

ACKNOWLEDGMENTS

This research is supported by the National Key R&D Pro-
gram under Grant No. 2021ZD0110303, the National Natural
Science Foundation of China under Grant Nos. 62192731,
61751210, 62072007, 62192733, 61832009, and 62192730.

REFERENCES

[1] P. Yin and G. Neubig, “Tranx: A transition-based neural abstract syntax
parser for semantic parsing and code generation,” in Proceedings of
the Conference on Empirical Methods in Natural Language Processing
(Demo Track), 2018.

[2] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen: A
tree-based transformer architecture for code generation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 8984–8991.

[3] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696–8708.

[4] S. Haefliger, G. Von Krogh, and S. Spaeth, “Code reuse in open source
software,” Management science, vol. 54, no. 1, pp. 180–193, 2008.

[5] S. A. Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, and G. Neubig,
“Retrieval-based neural code generation,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
2018.

[6] T. B. Hashimoto, K. Guu, Y. Oren, and P. S. Liang, “A retrieve-and-
edit framework for predicting structured outputs,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[7] M. R. Parvez, W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang,
“Retrieval augmented code generation and summarization,” in Findings
of the Association for Computational Linguistics: EMNLP 2021, 2021,
pp. 2719–2734.

[8] A. Mockus, “Large-scale code reuse in open source software,” in First
International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007). IEEE, 2007, pp.
7–7.

[9] [Online]. Available: https://stackoverflow.com/
[10] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining

succinct and high-coverage api usage patterns from source code,” in
2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 319–328.

[11] H. Niu, I. Keivanloo, and Y. Zou, “Api usage pattern recommendation
for software development,” Journal of Systems and Software, vol. 129,
pp. 127–139, 2017.

[12] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kočiskỳ,
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