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Abstract—With the rapid development of deep learning, the
implementation of intricate algorithms and substantial data pro-
cessing has become a standard element of deep learning projects.
As a result, the code has become progressively complex as the
software evolves, which is difficult to maintain and understand.
Existing studies have investigated the impact of refactoring on
software quality within non-deep learning software. However, the
insights of code refactoring in the context of deep learning are
still unclear. This study endeavors to fill this knowledge gap by
empirically examining the current state of code refactoring in the
deep learning realm and practitioners’ views on refactoring tools.
We first manually analyze the commit history of five popular
and well-maintained deep learning projects (e.g., PyTorch). We
mine 4,401 refactoring practices in 2,445 historical commits and
measure how different types and elements of refactoring oper-
ations are distributed. We then survey 159 practitioners about
their views of code refactoring in deep learning projects and their
expectations of current refactoring tools. The survey result shows
that refactoring research and the development of related tools
in the field of deep learning are crucial for improving project
maintainability and code quality, and that current refactoring
tools do not adequately meet the needs of practitioners. Lastly, we
provide our perspective on the future advancement of refactoring
tools and offer suggestions for developers’ development practices.

Index Terms—Refactoring, Deep Learning, Empirical Software
Engineering

I. INTRODUCTION

As deep learning continues to evolve rapidly, deep learning
projects continue to be rapidly updated to optimize model
construction, improve computing, and increase algorithm per-
formance [1], [2]. However, if maintenance activities are not
conducted properly, they can lead to a decrease in quality. The
complexity of deep learning models and their high dependence
on data, as well as constantly updated algorithms and tech-
niques, present unique challenges for their maintenance. These
unique challenges make the development and maintenance of
deep learning projects distinct from traditional software [3].

There have been significant studies [4]–[9] demonstrating
the benefits of refactoring for software maintenance, reuse, and
code enhancement, focused on traditional software. However,
little attention has been given to refactoring in DL projects
or practitioners’ perspectives on refactoring tools. Existing
approaches largely target traditional software, overlooking DL-
specific characteristics such as experiment-driven workflows
and configuration-heavy designs. As a result, current tools may
misinterpret common deep learning practices as code smells,
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leading to poor adoption and increased maintenance costs.
Investigating code refactoring in deep learning projects and
uncovering the reasons behind such practices can help opti-
mize the development process, improve team productivity, and
enhance code quality. Therefore, we analyze the state of code
refactoring in deep learning repositories and investigate the
perceptions of deep learning practitioners on code refactoring.

Our study aims to answer the following research questions:
RQ1: How does code refactoring behave within deep

learning projects?
This RQ studies code refactoring practices in deep learning

projects and uncovers the distribution of different refactoring
operation types and elements’ usage in their projects. This RQ
highlights the unique challenges and implications within the
deep learning domain. It also lay the groundwork for tailored
software engineering that is crucial to the rapidly evolving field
of deep learning. s Additionally, the manual examination of
commit messages unveils indications of developers employing
automation tools for refactoring tasks. Based on this finding,
we further conduct a survey to investigate the compatibility
of existing tools with the unique needs of deep learning
practitioners in RQ3.

RQ2: What are the perspectives of deep learning prac-
titioners regarding code refactoring?

Building upon insights gained from RQ1, this RQ investi-
gates practitioners’ perspectives on code refactoring, including
their opinions on specific refactoring operations and elements
within deep learning. Examining practitioners’ perspectives on
deep learning code refactoring can validate and quantify the
observations from RQ1, and provide a critical understanding of
their preferences, challenges, and potential unmet needs. These
insights help bridge the gap between the research and practice
in current AI development, thereby aiding the development of
targeted refactoring techniques for this domain.

RQ3: How well do current refactoring tools meet prac-
titioner needs?

This RQ investigates practitioners’ opinions on the ef-
fectiveness of existing refactoring tools. The findings from
RQ1 reveal evidence of refactoring tool utilization within
commit messages, which leads us to assess the suitability of
existing tools for deep learning requirements. This RQ aims to
inform the development of future tools tailored to the distinct
requirements of deep learning practitioners.

The intention behind our investigation is to facilitate consid-
eration by researchers regarding the requirements of practition-
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Fig. 1. Research Methodology Overview

ers, thereby continuing the advancement of code refactoring
for deep learning projects. Furthermore, we aim to provide
new insights that can promote the development of better
refactoring tools for deep learning projects. This paper makes
the following contributions:

1) We manually analyzed five deep learning projects’ commits
and identified 27 types of 4,401 refactoring practices. We
further analyzed the distribution of different refactoring
operation types and elements in deep learning projects.

2) We surveyed 159 deep learning practitioners from 38 coun-
tries to shed light on practitioners’ views on refactoring and
their expectations of refactoring tools. To the best of our
knowledge, we are the first to perform an empirical study
of refactoring practices in deep learning projects.

Paper Organization: Section II describes the methodology
of our research. Section III shows the results of our study.
We discuss the implications and threats of our results in
Section IV. Section V discusses related work. Section VI
draws conclusions and outlines avenues for future work.

II. RESEARCH METHODOLOGY

In this section, we present the design of our empirical study.
Our main goal in this study is to comprehensively understand
code refactoring practices within deep learning projects, inves-
tigate practitioners’ perceptions of code refactoring, and assess
the alignment of current refactoring tools with the specific
needs of deep learning practitioners. The overview of the
methodology in our study is shown in Figure 1 and consists of
two stages. Stage 1: Manual mining of refactoring operations
from repository history commit messages manually. Stage 2:
An online survey for confirming and extending the conclusions
about the current stage of refactoring in open source deep
learning libraries.

TABLE I
STATISTICS OF DEEP LEARNING PROJECTS USED IN OUR STUDY.

Project Domain #Commits #Star
Keras Data Science, JAX 8,342 60.2k
Scikit-learn Data Analysis 30,375 57k
PyTorch GPU, Neural-network 63,722 74.3k
Transformers NLP, Pretrain-model 13,900 118k
Tensorflow Tensor, Machine-learning 50,863 180k
Total 167,202

A. Stage 1: Refactoring Manual Detection

Since Python is the most popular programming language for
deep learning due to its readability, extensive libraries, and
frameworks [10]–[12], we only analyze refactoring commits
that involve Python. To answer RQ1, we mine the commits
of five open source deep learning frameworks that are widely
used and well-maintained: Keras [13], Scikit-Learn [14], Py-
Torch [15], TensorFlow [16], and Transformer [17]. These
projects are chosen based on their high stars in GitHub. Table
I shows statistics of the projects we use in RQ1. To the best
of our knowledge, no refactoring detection tool can detect
all common refactoring operations in Python. Additionally,
some commits might contain tangled changes, making it
more difficult to isolate the changes related to refactorings.
Therefore, we follow previous research to manually mine
refactoring operations from the commit [18]–[21]. Addition-
ally, we use PyRef [22] to assist in the detection of specific
operations, such as Rename Method, Rename Parameter, and
Add Parameter, with the final results still determined manually.

1) Filter: We first crawl all 167,202 commits of these
five deep learning projects using the GitHub API. However,
due to the enormous amount of manual detection, we use a
keyword-based filter to reduce the amount of work involved in
manual detection. In this part, following Self-Affirmed Refac-
toring [18], we pre-filter potential refactoring commits with
a keyword-based commit message filter, including ‘refactor’,
‘clean up’, and ‘reorganize’, etc. In particular, we only focus
on refactoring commits in Python since the majority of the
deep learning project is written in Python [10]. This process
reduced the candidate set to 28,803 commits.

2) Manual Detection: Next, we conducted a two-stage
manual identification process to determine whether each can-
didate commit indeed involved a structural refactoring:

➀The 28,803 filtered commits were evenly divided between
two authors, who independently examined each commit mes-
sage. Commits clearly unrelated to refactoring (e.g., messages
starting with [fix], [test]) were immediately labeled as non-
refactoring and excluded. ➁For the remaining commits, the
evaluators further analyze the code changes of the refactoring
commit and the parent commit to determine what refactoring
operation is performed by that commit, we follow Fowler’s
description [4]. The evaluators ignore the tangled changes
in the manual detection phase and only abstract refactoring
related changes. Since refactoring practices in real-world de-
velopment may differ from the description given in Fowler’s



book, after each evaluator has marked 100 commits, they have
a discussion to re-establish consistent refactoring classification
standards. The details of the standard are available in the
replication package [23]. The evaluators repeat this action in
all five studied projects and correct each of the previously
marked commits according to the final standards. For each
commit, we extract information modeling, including the fol-
lowing elements:
• Module: A module is defined as a Python file containing

classes and methods and directly affiliated definitions and
statements (i.e., those not defined within a method).

• Class: A class may contain attributes, methods, and state-
ments.

• Method: A method contains a list of parameters, and the
statements it carries.

• Statements: A statement is the smallest execution unit in
Python and is terminated by a line break or a semicolon.

• Variable: A variable is a container for storing data and is
the smallest nameable storage element in python program.
The eight groups of refactoring operation types include the

six most common refactoring operation types in deep learning
projects and two refactoring operation types (Pull Up and Push
Down) that are widely studied in previous work [22], [24].
• Clean Up Refactoring: Removing invalid or redundant

code fragments that are no longer being executed by the
program. This type of refactoring is sometimes accompanied
by words like “clean up duplicated” and “remove unused
code” in the commit message.

• Rename Refactoring: Changing the name of elements for
code clarity and readability. This type of refactoring con-
sists of Rename Module, Rename Class, Rename Method,
Rename Variable, and Rename Parameter.

• Move Refactoring: Moving code elements from one loca-
tion to another. This type of refactoring consists of Move
Module, Move Class, Move Method, Move Statement, and
Move Variable.

• Extract Refactoring: Extracting independent and reusable
elements from more complex code elements. This type
of refactoring consists of Extract Module, Extract Class,
Extract Method, and Extract Variable.

• Inline Refactoring: Moving a part of code directly into its
place of use to replace the call for these codes. This type
of refactoring consists of Inline Module, Inline Class, Inline
Method, and Inline Variable.

• API Refactoring: Refactoring the application programming
interfaces in code. This type of refactoring usually involves
parameter additions, deletions and changes, etc.

• Push Down Refactoring: Redistributing/changing code el-
ements from superclass to subclass. This type of refactoring
consists of Push Down Method and Push Down Class.

• Pull Up Refactoring: Redistributing/changing code ele-
ments from subclass to superclass. This type of refactoring
consists of Pull Up Method.
Only commits with both an explicit refactoring intent and

concrete structural code changes were retained. After the inde-
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Fig. 2. Refactoring Tool Usage in Commit Message

pendent evaluation, the two evaluators check each other’s data
that is labeled as refactoring-related. The evaluators disagree
on 181 instances out of a total of 4,401 refactoring instances.
These instances are carefully discussed to reach a consensus
until there is no disagreement on any code change after the
second stage of refactoring operation classification. The inter-
rater agreement is further quantified using Cohen’s Kappa
coefficient, yielding a value of 0.95, indicating substantial
agreement between the evaluators in the classification of
refactoring operations.

The labeled dataset is available in replication
package [23]. Additionally, we have observed instances
of developers mentioning refactoring tools (e.g., “Pylint”,
“Flake”, and “Generated by Copilot”) in commit
messages. As shown in figure 2, the string “has
not a vectorized variant inputs” in commit
82e3814bc57fb29236ca703329374455f65f672f is extracted
as a new variable ‘root_cause’ to ‘Make Pylint
Happy’. This observation highlights developers’ reliance on
automated refactoring tools, motivating us to further explore
practitioners’ perspectives on these tools in Stage 2.

B. Stage 2: Online Survey

To further investigate deep learning code refactoring, we
conduct an anonymous online survey with deep learning
participants. The survey aims to validate and quantify the
observations from Stage 1, and to shed light on practitioners’
views on refactoring and their expectations of refactoring tools.

1) Design: Combining the results of the first step and previ-
ous work [22], [24], we conclude eight refactoring operation
types, five refactoring operation elements, and two types of
refactoring tools to launch an online survey for deep learning
practitioners. The online survey aims to provide insights into
open source code refactoring in deep learning projects and
practitioners’ expectations of current refactoring tools. The
refactoring operation types we employed come from the eight
refactoring operation types from Stage 1 consist of Clean
Up, Rename, Move, Extract, Inline, API, Pull Up, and Push
Down refactoring. The elements consist of Variable, Statement,
Method, Class, and Module. The refactoring tools consist of
code smell detection tools and automatic refactoring tools [25].



TABLE II
DESCRIPTION OF CODE REFACTORING TOOLS

Refactoring Tool Description

Code Smell De-
tection Tools

Code smells are signs that your code is not as clean
and maintainable as it could be. They can derive from
the misuse of syntax and almost always suggest code
needs to be refactored or redesigned to improve the
overall quality of the program. Code smell detection
tools can help developers find where to refactor to
improve the quality of their code.

Automatic Refac-
toring Tools

Automatic refactoring tools identify problems in the
code and eliminate them through refactoring. These
tools reduce the effort of developers as they have
very little to do during the code refactoring process.

The survey include different types of questions, e.g.,
multiple-choice questions, short answer questions, and rating
questions (5-point Likert scale: Strongly Disagree to Strongly
Agree). We include the category “I don’t know” to filter
respondents who do not understand our brief descriptions. The
survey consists of three sections:
• Demographics: The survey first asks for demographic

information about the participants, including country/area
of residence, current occupation, experience in years, and
primary programming language.

• Thoughts on Refactoring: This section focuses on provid-
ing insights into the current state of open source code refac-
toring in deep learning projects. We start by showing clear
and concise example diagrams of some of the classic refac-
toring operations in method level. We then invite developers
to rate the eight refactoring operations and five refactoring
elements in terms of importance and frequency. This section
highlights practitioners’ opinions towards refactoring in the
deep learning software development process.

• Tool Utilization: The purpose of this section is to gather
information about developers’ usage of refactoring tools
and investigate practitioners’ expectations of these tools.
We first provide respondents with a brief description of
code refactoring tools shown in Table II, consisting of (1)
code smell detection tool [26] and (2) automatic refactoring
tools [27]. Then we ask practitioners Have you used or are
you familiar with such tools? and extend an invitation to
respondents to share their observations regarding such tools.
In addition, practitioners are invited to provide advice on
improving refactoring tools through an open-ended question.
At the end of the survey, we allow respondents to provide

free-text comments, suggestions, and opinions about code
refactoring and our survey. A respondent may or may not
provide any final comments.

During the initial phase of our research, we conduct a
preliminary survey with a small group of professionals who
differed from our survey respondents. The purpose is to
gather feedback on two key aspects: (1) the length of the
questionnaire and (2) the clarity of the terms used. Based on
the feedback received, we make minor modifications to the
survey and finalize the questionnaire. It should be noted that
the responses collected during the pilot survey are not included

in the results presented in our research paper.

TABLE III
PARTICIPANTS ROLES & PROGRAMMING EXPERIENCE

0-1 y 2-3 y 4-5 y 6-9 y >10 y total
Algorithm 4 25 26 14 7 76

Development 5 14 10 15 7 51
Architect 0 1 2 3 5 11

Project Manager 1 1 0 1 1 4
Testing 0 1 0 1 1 3
Others 2 7 2 2 1 14
total 12 49 40 36 22 159

2) Participant Recruitment: We select Github repositories
with the top 100 popular open-source deep learning projects
(based on their number of stars) and mine these repositories to
extract their contributors’ public email addresses. We finally
mine 3,125 contributors’ email addresses and sent a link
to our survey. We aim to recruit open-source deep learning
practitioners who have software development experience in
addition to professionals working in the industry. Out of these
emails, four practitioners replied with blank responses; six
practitioners replied that they would not answer any survey.
Finally, we received 159 valid responses. The 159 respondents
resided in 38 countries across six continents. The top two
countries where the respondents came from are India and the
United States.

An overview of the surveyed participants and their experi-
ence is depicted in Table III. Most participants are engaged
in Algorithm and have 2-3 years of professional experience.

3) Data Analysis: We analyze the survey results based on
the question types.

To understand trends in the Likert-scale questions, we report
the percentage of each option selected. We drop “I don’t know”
ratings and create bar charts (many of which are shown in the
remainder of this paper).

To obtain insights from responses to open-ended questions,
we use open coding to analyze the survey results qualitatively
by inspecting responses. The first author analyzes the survey
respondents by transcribing them and then performs open
coding to generate codes of the questionnaire contents using
NVivo [28] qualitative analysis software. Then, the second
author verifies the initial codes created by the first author and
provides suggestions for improvement.

III. RESULTS

This section presents the results of research into code
refactoring from commits and practitioners.

A. RQ1: Refactoring Practices in Deep Learning Projects

In RQ1, we explore code refactoring practices in deep learn-
ing projects, including practitioners’ practices on refactoring
during development, and the distribution of different refactor-
ing operation types and elements’ usage in their projects.



TABLE IV
MANUAL DETECTION RESULTS

Group Refactoring operation #Pure #Multi #Non-ref #Total
Clean Up Clean Up Refactoring 990 71 155 1,216

Rename Variable 214 44 86 344
Rename Module 119 20 22 161
Rename Method 320 129 136 585
Rename Class 93 49 38 180

Rename
(1,451)

Rename Parameter 88 43 50 181

API
(367)

Reorder Parameter 6 2 0 8
Remove Parameter 137 51 33 221
Change Parameter 8 4 4 16
Add Parameter 48 42 26 116
Merge Parameter 1 4 1 6
Move Variable 35 11 5 51
Move Statement 53 12 13 78
Move Module 155 21 11 187
Move Method 158 74 36 268

Move
(630)

Move Class 22 19 5 46
Push Down Method 1 0 0 1
Push Down Class 2 1 0 3Push&Pull

(10)
Pull Up Method 2 2 2 6
Inline Variable 24 3 6 33
Inline Module 15 2 2 19
Inline Method 30 6 4 40

Inline
(97)

Inline Class 4 1 0 5

Extract
(630)

Extract Variable 26 6 21 53
Extract Module 212 31 16 259
Extract Method 135 44 72 251
Extract Class 45 12 10 67

Total 2,943 704 754 4,401

*Pure: only one refactoring type practices without tangle change;
Multi: practices with more than one refactoring operation type
without fix or update; Non-ref : refactoring practices with other
changes including fix and update.

1) Refactoring Operations: We identify 27 refactoring op-
erations of 4,401 practices by manual detection, the complete
dataset can be found in the replication package [23]. To
enhance comprehension and organization of these refactorings,
we categorize common refactoring operations into eight group
operation types. Pull Up and Push Down refactoring are
combined and displayed because they both involve inheritance
relationships of code elements and the number is small. Table
IV shows the result of our manual detection, including the
refactoring practice number, and whether the practices are pure
or contain tangled changes.

According to the table, Clean Up Refactoring is one of
the most frequent refactoring operation types with 1,216
practices. This high frequency reflects the iterative nature of
deep learning projects, where rapid prototyping often leads to
the accumulation of outdated or redundant code, as developers
focus on testing and adjusting model parameters or algorithmic
choices. For example, many commit messages include phrases
like “remove the old code...” as out-time code will be discarded
once it is updated swiftly. Besides, deep learning projects
usually include experiments, such as testing new models, and
algorithms or tuning hyper-parameters [3] as “remove test of
model...”. This leads to a large number of code snippets in the
source, that ultimately become dead code when the outputs
of the experiment are determined and subsequently thrown
away. Nevertheless, as requirements can change over time

or the originally intended functionality not be implemented,
a significant amount of dead code is left behind. Clean Up
Refactoring is an important step in maintaining a clear code
structure and improving the maintainability of projects [29].

Rename operations (including renaming variables, modules,
methods, classes, and parameters) are also a common type
of refactoring, with a total of 1,451 practices. In particular,
Rename Method and Rename Variable had the highest number
of practices, with 585 and 344 respectively. This may be due
to the fact that deep learning projects usually contain a large
amount of iterative code, and developers are constantly opti-
mizing the code for readability and maintainability. Renaming
methods and variables, in particular, helps to make the code
more understandable and reduces the coupling between codes.

Move is also commonly used in the refactoring of deep
learning projects with 630 practices. Notably, more practices
are observed for Move Method and Move Module, with 268
and 187 commits. This indicates that developers frequently
relocate code units during refactoring in order to enhance
the code structure’s organization. API Refactoring and Extract
have 351 and 356 practices. Model structures and algorithms
in deep learning projects can often be complicated, requiring
more abstraction and optimization. Consequently, Extract is
frequently employed to abstract complex methods or modules,
thereby enhancing the modularity and reusability of code.
Deep learning projects always need to refine and enhance their
interfaces regularly to accommodate evolving needs, resulting
in frequent usage of API Refactoring [20].

Inline Method is employed in 40 practices, while Inline
Variable is used in 33 practices. Despite being used less
frequently in deep learning projects, these refactoring opera-
tions are of particular importance in specific scenarios. Inline
is typically used to optimize performance and reduce the
overheads associated with function calls. Pull Up and Push
Down operations are infrequent in deep learning projects. In
the context of deep learning projects, there is a tendency
to prioritize the design of model hierarchies and structures,
with less emphasis placed on inheritance and optimizing
hierarchies.

 Finding 1. Clean Up Refactoring and Rename are two of
the most frequent operation types in deep learning repos-
itories. The high frequency of API Refactoring reflects the
importance of interface design and modification in deep
learning projects.

2) Refactoring elements: We count the elements of all
refactoring practices including Variable, Statement, Method,
Class, and Module. This distribution of refactoring practice
elements can offer insights into code optimization and project
maintenance in deep learning projects.

Method (44.21%) is the most common element, include
techniques like Rename Method and Extract Method. These
types of refactoring operations are relatively simple and con-
tribute to both code readability and modularity. It is essential
to consider these factors when undertaking code maintenance



tasks. Variable refactoring (19.01%) has the second-highest
percentage of refactoring operations. The most frequent of
these is Rename Variable, which is typically linked to the
“same variable name” in the commit message to prevent “nam-
ing conflicts”. Module refactoring (14.22%) is moderate, with
the majority of instances occurring within the context of large-
scale refactoring, renaming, and moving module code files.
The proportions of Class refactoring (10.56%) and Statement
refactoring (11.99%) are similar. Code refactoring in deep
learning projects is not limited to one level but needs to be
considered at several levels. Class refactoring helps improve
the overall structure and maintainability of the code, while
Statement refactoring directly affects the execution efficiency
and performance of the code. The two complement each other
and together improve the code quality of the project.

The refactoring element chosen by developers reveals a
careful balance between risks and benefits. The frequent focus
on Method and Variable refactoring indicates that developers
prefer smaller, targeted code changes. This approach offers
several advantages: it minimizes risk, limits the scope of
impact, and allows for incremental improvements in code
quality. In contrast, Class and Module refactorings, while
offering significant potential to improve code organization,
involve larger modifications. As a result, developers may
approach these more cautiously due to the greater structural
changes and potential impact on the codebase.

 Finding 2. High frequencies of Variable and Method refac-
toring suggest that developers focus on data processing and
implementation. The lower Class refactoring frequencies may
be due to the simple code structure of deep learning.

3) Pure refactoring analysis: In real-world software devel-
opment, developers may do multiple refactorings in a single
commit or mix refactorings with non-refactorings such as
‘debug’ and ‘update’. We count the purity of refactoring prac-
tices, including (1) Pure refactoring, (2) Multi-type refactoring,
which means different types of refactoring operations con-
tained in a single commit, and (3) Non-ref refactoring, which
is refactoring practice with other non-refactoring operations.

A significant majority of the practices (66.88%) are purely
refactoring operations. This high proportion of pure refactor-
ing indicates that developers are focused on improving code
quality without mixing other types of changes. This behavior
facilitates the maintenance of clear commit histories.

Additionally, there are also some refactoring practices
(15.98%) that occur in combination with other types of refac-
toring operations. The most frequent combination of refac-
toring operations is the Rename Class and Rename Method,
which occurs 52 times. Another frequent combination is Clean
Up Refactoring and Rename Method, which occurs 31 times.
The presence of multiple refactoring types within a single
commit indicates the implementation of a comprehensive
refactoring session, intending to simultaneously enhance vari-
ous aspects of the code. This approach may prove an efficient
means of addressing multiple code quality issues in a single

effort, although it may complicate the commit history.
Some practices (17.14%) are combined with other oper-

ations, such as debugging or updating, suggesting a more
integrated approach to code maintenance and development.
This is a practical approach, but it may also make it more
challenging to identify and comprehend each change’s impact.

 Finding 3. A lot of Pure Refactoring practices evince a
commitment to enhancing the quality of the code without
incorporating other types of modifications. This practice
facilitates more effective change tracking and comprehension
of the impact of modifications on the code base.

B. RQ2: Practitioners’ Opinion on Refactoring

In RQ2, deep learning practitioners are surveyed and asked
to evaluate the significance of operations or elements during
the refactoring process. Of the 159 practitioners surveyed,
145 (91.2%) “Strongly Agreed” or “Agreed” that “refactor-
ing is an important part of software development in deep
learning projects”, 11 chose “Neutral”, while the remaining
three practitioners “Strongly Disagree” with the importance of
refactoring.

1) Refactoring Operations: We further investigate practi-
tioners’ opinions on several common refactoring operation
types. Figure 3 and Figure 4 illustrate respondents’ rating of
refactoring operation types’ importance and frequency.

In general, Clean Up refactoring emerges as the most
vital operation recognized by practitioners. API Refactoring,
Extract, and Inline refactorings show similar levels of impor-
tance, while Rename does not offer significant advantages over
Move. Additionally, Pull Up and Push Down are comparable
in significance among practitioners. It is worth noting that the
practitioners’ scores for refactoring operations’ frequency are
not consistent with our observation in RQ1. There are various
possible explanations for this, the one that comes from our
dataset used in RQ1 will be discussed in IV-B.

The characterization of the rating results for each refac-
toring operation provides additional insights. As highlighted
in RQ1, Clean Up is the most frequently applied operation
in refactoring commits. However, its perceived importance
among practitioners does not reflect this frequency. This is
likely because Clean Up is often viewed as part of other code
changes rather than being a deliberate, stand-alone action.
As a result, practitioners may not consciously recognize or
prioritize it. On the other hand, API Refactoring is considered
important due to the significance of code interfaces and
organizational structure in deep learning projects that typically
entail extensive data processing and model creation. However,
in RQ1, we do not observe the expected higher frequency
of API refactoring, possibly due to the fact that we exclude
many API changes involving functionality changes during
the manual detection process. Extract and Inline refactoring
operations that are important in other languages are also of
high importance in the minds of deep learning practitioners,
reflecting their concern for code reusability and structural
clarity. while Move and Rename receive relatively low scores,
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perhaps because they are also relatively low in difficulty to
perform, and so receive practitioner slights. In contrast to
the above refactoring operations, practitioners tend not to
prioritize Pull Up and Push Down. Developers rank these two
actions lowest in terms of importance and frequency of usage,
consistent with our observations and discussions in RQ1. We
also find an interesting phenomenon when analyzing the data,
that more experienced practitioners (who have been working
for a longer period of time) are less likely to agree with
the importance of these two refactoring operations for code
refactoring in deep learning projects.

 Finding 4: According to practitioners’ perceptions, Clean Up
Refactoring is considered highly important and API is most
frequently employed refactoring operation, while operations
like Rename, Extract, Inline, and Move are less valued in
deep learning projects. Additionally, Pull Up and Push Down
receive particularly low recognition.

2) Refactoring elements: As for refactoring elements in the
context of refactoring in deep learning projects, we also invite
practitioners to answer whether these refactoring operation
elements are important and frequently used in deep learning
projects. Figure 5 and Figure 6 illustrate respondents’ rating
of refactoring elements’ importance and frequency.

According to the results, Method and Class rank first
and second, respectively, with Variable and Statement closely
following in terms of practitioners’ rating for “Do you think
refactoring elements below are important to improve the qual-
ity of the code in your deep learning project?” and “Do you
think this refactoring element is frequently used in your deep
learning project?” In comparison, Module falls significantly
behind in importance score, but its rating for importance is
similar to that of Variable and Statement.
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Method is considered crucial and frequently refactoring
element in both traditional software and deep learning projects.
This is consistent with our observation in RQ1. Class comes
second in rating results, which could indicate that in the
area of deep learning, optimizations at the method and class
level are being given priority by practitioners. They not only
directly affect the logic and structure of the model but are also
easier to refactor with the right level of element. Statement
and Variable have comparable and relatively low ratings. This
could imply that, for practitioners, the impact of refactoring
at the statement and variable levels on code quality in deep
learning projects is regarded as less significant compared to the
refactoring at method and class levels. However, the frequency
of variable-level refactoring usage does not align with our
observations in RQ1, and a possible explanation for this could
be that the minuscule of its modifications causes practitioners
to neglect to carry out a Variable-level refactoring operation.
Module has a relatively low rating, this could be attributed to
the fact that restructuring modules demands a comprehensive
understanding of the entire project structure, which is a signif-
icant challenge for practitioners. Moreover, in deep learning
projects, modules often emphasize model components, data
processing flow, or training pipelines, requiring less frequent
refactoring. We also find that more experienced practitioners
are less likely to agree with the importance of Module-level
code refactoring in deep learning projects.

 Finding 5: Method is seen as the most important and
frequently refactored, followed by Class. In contrast, Module
is rated lower in both importance and frequency, possibly
due to its complexity and less frequent need in deep learning
projects. Experienced practitioners also value Module refac-
toring less.

C. RQ3: Practitioners’ Perspectives on Refactoring Tools

In RQ3, we survey practitioners about their use of refac-
toring tools consisting of code smell detection tools and auto-
matic refactoring tools. We further invite them to provide their



perceptions of refactoring tools to uncover the shortcomings
of existing tools.

1) Code Smell Detection Tools: Of the 159 questionnaires
responding to this section, 85 respondents (53.5%) indicate
that they have used or are familiar with code smell detection
tools. 73 people gave valid opinions about the tool.

There are 28 practitioners who find code smell detection
tools useful but also contain many drawbacks, the biggest
one is “Too many false positives”, which is the common
view of 17 practitioners. There are a number of concerns that
have deterred practitioners from using code smell detection
tools. One is “... can’t figure out how to set them up...”, and
“sometimes you need to suppress the feedback and if the ability
to filter out this feedback is too granular it leads to a lot of
filler in your code, if it’s too broad you may miss out on useful
feedback.” Some practitioners find “it difficult to distinguish
more semantically ”, and “... are often too pedantic and lack
contextual information about the project structure”.

There are also some participants who are concerned that the
current tools “...are built for only traditional software eng”,
a participant finds the code smell detection tools “...usually
aren’t designed with ML projects in mind, and sometimes
raise inappropriate warnings. For example, an ML algorithm
may have many hyper-parameters, but a code smell detection
tool will complain that a function shouldn’t have so many
arguments.” There is also a practitioner who states “...Python
is behind other languages I’ve used in terms of tooling for
smell/refactoring”.

In addition, many practitioners offer some insights into their
go-to code smell detection tools, including SonarQube, Ruff,
Flake8, IDE plugins, ChatGPT, and Copilot. SonarQube, the
automated code review platform, has received a moderately
positive response. Of the code analysis tools, practitioners
seem to favour Ruff, with some practitioners arguing that
“...ruff has been helpful, pylint is too hard to configure and
anything more complex is too annoying...”. One practitioner
also states “Ruff is the fastest tool I used. It’ll be very good if
all the tools are as fast as ruff”. Tools that combine with Large
Language Models, like Copilot and ChatGPT, have recently
gained popularity, that “These have been my go-to choices for
code-related tasks”.

 Finding 6: Developers acknowledge the usefulness of tra-
ditional code smell detection tools but have some concerns:
(1) they always appear as false positives, (2) do not apply
to deep learning projects, and (3) they are not user-friendly.
Combining code smell detection tools with Large Language
Models is considered the future trend.

2) Automatic Refactoring Tools: Of the 159 questionnaires
responding to this section, 71 respondents (44.7%) indicate
that they have used or are familiar with code smell detection
tools. 62 people gave valid opinions about the tool.

There are many practitioners (23) who find automatic refac-
toring tools useful which is “...absolutely necessary to keep
the code clean and professional” but only for sample cases
and also weak in accuracy. The automatic refactoring tool

“...makes things faster but it usually doesn’t handle heavy
complexity too well...”. Similar to the code smell detection
tools, practitioners find that current automatic refactoring tools
are not designed for deep learning. A practitioner says that “I
have found them useful for web server development mainly,
but not so much for deep learning development”. There is
also a practitioner who states these tools “...might be more
challenging for loosely typed languages”. The practitioners
also thought these tools are hard to use, a practitioner states
“The python Rope library ... docs to be somewhat lacking in
“how to” guidance, ...documentation that serves the purposes
of being detailed and then (and perhaps seperate material)
is able to concisely demonstrate how to achieve refactoring
operations - is needed ”.

As a practitioner states that code smell detection tools
“...Can introduce bugs or syntax issues”, the most important
concern that has deterred practitioners from working with
automatic refactoring tools is their tendency to introduce bugs.
Because “Sometimes wrong refactoring, takes longer to fix”.

The most common tools considered by practitioners are
IDE plugins and tools combined with the Large Language
Model, such as Copilot and ChatGPT, which are good at code
generation. In contrast to traditional tools that receive a rating
of “not good, not bad”, ChatGPT and Copilot have high
expectations. A practitioner states “... I have had moderately
good success refactoring code with a LLM and I expect to do it
more often”. There is also a voice that the traditional automatic
refactoring tools “Great but limited - integrations with Copilot
would be great”. However, a practitioner states “To really
trust an automatic refactoring tool, you need to have a lot
of trust in your test suite”, and there is also a practitioner
who states “...tried chatgpt and copilot. Their suggestion is
the right direction to go. However, one needs to test all the
edge cases thoroughly.”

 Finding 7: Developers recognize the usefulness of automatic
refactoring tools. But they also have many concerns about
traditional tools: (1) they only work for easy cases (2) and
weak in accuracy, (3) they lack context or project structure,
and (4) are hard to use. Besides, tools combined with Large
Language Models have been well received, but the code they
refactored is worthy of further testing.

3) Practitioners’ Advice: There are 48 practitioners who
give valid advice for refactoring tools enhancement.

The most common view is that these tools should take
more information into account, including contextual and con-
structive information. A practitioner who offers a proposal
that “...let’s imagine a tool, that takes into account project
decisions, rules, conventions. Moreover, tool that scans git
history and ‘understands’ such git changes that were specif-
ically about refactorings. and let’s imagine that such tool
‘understands’ commands that are relevant to specific project
in natural language format”. Another part of the practitioners
advise that the current tools for deep learning should be
enhanced with customization features. A practitioner states
“More configurable so that they can also be applied to



libraries and frameworks”. A practitioner also suggested these
tools should “learn the user’s coding style and adapt to it
instead of forcing a predefined standard”.

The practitioners also make their own suggestions regarding
the current difficulties in using the tool. A practitioner says the
tools need “Documentation and tutorials. Additionally, having
a consistent definition of operations”. While another prac-
titioner wants these tools “Reduce configuration variability,
extend the documentation”. There is also a part of practitioners
who hope the automatic tools do not ‘force’ them and easy
to undo. A practitioner states “Sometimes I feel they ‘force’
me to refactor my code although some parts do not need a
refactoring job”, and another practitioner says “...it should
always be easy to undo/have an easily navigatable history
of recent changes...”. Furthermore, it has been suggested by
numerous practitioners that refactoring must be accompanied
by a testing component, as a practitioner states “The best way
to refactor is by maintaining the invariant that test coverage is
complete and the tests pass. test harness...”, which is a crucial
part of the refactoring process.

 Finding 8: Deep learning practitioners offer their advice on
how to improve current automatic refactoring tools, including
(1) taking context and project structure into consideration,
(2) building complete documents and configuration for ease
of use, (3) adding customized features to be used in deep
learning projects, (4) offering tracker of history change to
rollback and (5) combining a complete test component.

IV. DISCUSSION

A. Implications

Our results highlight a number of points to be further
discussed and several implications for the research community:

1) Strengthening research on code refactoring in deep
learning projects: Our research demonstrates that the unique
context of deep learning—such as model architectures, matrix
manipulations, and hyperparameter tuning—creates distinct
refactoring needs. In our dataset, Clean Up Refactoring, Re-
name, and API Refactoring are frequent and impactful in DL
projects, indicating that developers struggle most with main-
taining readability and API stability during rapid prototyping.

Tang et al. [30] offer an initial exploration into refactoring in
machine learning (ML) projects, identifying 14 “ML-specific”
refactoring types from commit message patterns (e.g., “Make
algorithms more visible” and “Monitor feature extraction
progress”). However, these ML-specific refactorings are often
inferred from commit messages rather than code changes
themselves, and some instances do not align strictly with
standard definitions of refactoring. The underlying refactoring
techniques, such as Rename, Extract, and Clean Up, remain
consistent with general software engineering practices but
are applied in ways that address ML-specific artifacts, such
as models, matrices, and feature engineering processes. By
focusing on widely recognized refactoring categories, our
study offers a robust foundation for understanding these shared
refactoring practices in a deep learning context. Future work

could further explore how these adaptations impact the effec-
tiveness and frequency of refactoring in machine learning as
the field continues to evolve.

2) Improving the refactoring tools for DL development:
Our findings indicate that tool developers should prioritize
support for the most impactful and frequent refactoring types
in DL projects, namely Clean Up, Rename, and API Refactor-
ing. These operations are essential for managing experimental
code and evolving APIs during rapid prototyping. In addition,
code smell detection requires special attention in the DL
context. Existing tools often enforce rigid thresholds (e.g.,
maximum number of parameters), which misclassify common
DL practices such as large hyperparameter sets as code smells.
To address this, tools should adopt project-adaptive, context-
aware detection strategies rather than relying on static rules.
Finally, accuracy remains a critical concern for developers.
Our survey shows that current tools frequently fail to capture
the broader code context and project structure, limiting their
applicability to large-scale DL systems. Enhancing detection
algorithms with semantic analysis and providing explainable
suggestions will improve both accuracy and developer trust,
and better adoption in real-world DL projects.

3) Combining refactoring with testing: Testing is a critical
aspect of refactoring, which ensures that code refactoring does
not break existing functionality and maintains the stability
and reliability of the system. However, to the best of our
knowledge, none of the prevalent refactoring tools are cur-
rently supported by a testing system that meets the developer’s
requirements. Future tools should integrate lightweight, auto-
mated regression testing or leverage existing DL validation
pipelines to increase developer confidence during refactoring.

4) Refactoring in the Era of Large Language Model:
According to the respondents of our survey, current refactoring
tools are “... not smart ...being inflexible” and also lack the
use of code context to support a customizable refactoring tool.
By incorporating Large Language Model and code analysis
techniques, automatic refactoring suggestions can be gener-
ated. This provides context-specific and personalized proposals
based on the syntax rules, code context, and project structure.
Tool builders should explore LLM-assisted workflows that
combine static analysis with contextual reasoning to provide
personalized refactoring suggestions.

Actionable Recommendations : Based on our findings, we
highlight the following implications for the community: ❶
Tool developers should enhance refactoring tools to support
DL-specific development contexts better and explore integra-
tion with LLM-based assistants. ❷ Researchers are encouraged
to investigate DL-specific refactoring features, particularly
under dynamic typing and loose architectural conventions.
❸ DL practitioners should strengthen their understanding of
refactoring principles to ensure maintainability and reusability
during rapid iteration and experimentation phases, common in
DL workflows.



B. Threats to Validity

Our research threats come from the two stages of our
empirical study.

1) Internal Threats: One internal threat is the potential for
missed refactoring instances due to our use of keyword-based
filtering on commits. This filtering approach, while necessary
to manage the data scale, might exclude relevant refactoring
events, leading to an incomplete analysis. Although following
prior research methods (e.g., Alomar et al. [18]), the possibility
remains that this strategy limits our refactoring detection
coverage. To reduce this threat, we conduct a survey of deep
learning practitioners to offer another view of real refac-
toring practices. Another internal threat involves the online
survey stage, where participants’ understanding of refactoring
concepts might vary. Despite providing definitions upfront,
we cannot ensure full comprehension, potentially introducing
inconsistencies in participant responses. While such variability
is common in studies involving practitioner insights, it may
still impact the reliability of our findings.

2) External Threats: Our study focuses on five popular
deep learning frameworks with extensive maintenance and
active community involvement, which might limit the general-
izability of our findings to other deep learning projects. Less
mature or smaller projects may exhibit different refactoring
patterns or practices. Furthermore, as our survey participants
are primarily open-source contributors, there is an external
validity threat regarding applicability to developers working
in commercial settings. Extending this work to include com-
mercial deep learning developers is our ongoing work, which
would provide a broader perspective and enhance generaliz-
ability.

In summary, while we have taken measures to mitigate these
threats where possible, the findings should be interpreted with
an understanding of these limitations. Future work will aim to
address these limitations by incorporating commercial project
data and refining detection techniques.

V. RELATED WORK

Refactoring is recognized as a fundamental practice for
keeping software sustainable and healthy [31], [32]. Extensive
empirical research has recently been conducted to extend our
knowledge of this practice. The two major lines of research
related to our work are (1) studies based on refactoring
practices and (2) studies based on surveys and interviews.

A. Studies based on refactoring practices

There has been much work that analyzed code changes or
development documentation in repositories to gain insights
related to refactoring. Murphy-Hill et al. [33] investigated
how developers refactor by analysing past commits. They
found that programmers perform numerous refactorings within
a brief time frame, and 90% of refactorings are carried out
manually. Negara et al. [34] presented the first study to con-
sider both manual and automated refactoring. It used a large
set of refactorings found through an algorithm that detects
them in code. Their central findings reveal that over half

of the refactorings are performed manually, and 30% of the
applied refactorings do not reach the version control system.
AlOmar et al. [35] analyzed 800 open-source projects and
identified their contributors. They found there is no correlation
between experience and motivation behind refactoring, top
contributed developers are found to perform a wider variety of
refactoring operations. Chaves et al. [36] analyzed the version
history of 23 open-source projects with 29,303 refactoring
operations. They found that developers apply more than 94%
of the refactoring operations to code elements with at least one
critical internal quality attribute. Vassallo et al. [37] analyzed
the change history of 200 open source systems’ commits, and
found that developers mainly schedule code refactoring after
the system’s structure is stable. Studies on ML refactoring
practices are highly related to this work [30]. Tang et al. [30]
conducted a study aimed at understanding the refactoring
operations specific to machine learning projects by manually
mining 327 instances from 26 Java machine learning projects.
They focused on unique aspects of ML code technical debt,
including the transformation of primitives and parameters,
algorithm visibility, and matrix operations.

There are also some studies investigating the performance
of refactoring on issues consist of reuse, security, and main-
tenance [6], [8], [20], [38]–[40]. Nevertheless, most of the
studies above have focused on Non-deep learning projects,
leaving a gap in the insights of refactoring on deep learning
projects.

B. Studies based on surveys and interviews

Wang et al. [41] conducted a study involving 10 expert
software developers. They identified both intrinsic and exter-
nal factors that drive refactoring activity. The research also
highlighted tool availability as a prominent factor that enables
developers to translate their motivations into actions. Vakilian
et al. [42] collected and analyzed interaction data from Java
programming and found that programmers prefer lightweight
refactorings and usually perform small changes using the
refactoring tool. They also found that programmers use pre-
dictable automated refactorings even if they have rare bugs or
change the program’s behaviour. Kim et al. [19] surveyed 328
engineers from Microsoft and found that developers place less
importance on preserving behavior in refactoring definitions.
Jain et al. [43] surveyed 221 IT professionals to understand
the trends followed by developers and refactoring research
opportunities. They found that refactoring tools are under-used
as they have availability, usability, and trust issues. Oliveira
et al. [44] analyzed 1,162 refactorings from 13 software
projects and conducted a survey with 40 developers about
customization patterns. Developers confirmed the relevance of
customization patterns and agreed that improvements in IDEs’
refactoring support were needed. Oliveria et al. [45] surveyed
53 Java developers on GitHub and found that the tools did not
detect many refactorings as expected, and developers did not
follow the tools’ refactoring mechanisms.

The above work conducted interviews or surveys to discover
developers’ perspectives about refactoring and refactoring



tools. However, they are still mostly limited to developers
of Java projects. The findings related to refactoring in deep
learning projects, which is currently a fast-growing area and
is very different from non-deep learning projects in terms of
development and maintenance, still need to be investigated.

VI. CONCLUSION AND FUTURE WORK

Code refactoring is an important part of deep learning
project development. In this work, we manually analyze five
deep learning projects’ history commits to mine refactoring
operations and further survey 159 deep learning practitioners
from 38 countries for practitioners’ views on refactoring and
their expectations of refactoring tools. Practitioners in deep
learning recognize the importance of refactoring in the devel-
opment of deep learning projects. They also offer comments
and advice on current refactoring tools.

We highlight the limitations of current research and suggest
future directions for the improvement of code refactoring in
deep learning projects. Moreover, we present practitioners’ ex-
pectations regarding refactoring tools and provide suggestions
for their enhancements. The complete dataset of our work can
be found in the replication package [23].

To further improve code refactoring practices in the field
of deep learning, researchers should collaborate with deep
learning practitioners continuously. Future studies could put
more effort into refactoring in deep learning, and develop
automation tools for deep learning projects to improve the
overall efficiency of code maintenance.
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