
Practitioners’ Expectations on Automated Code Comment
Generation

Xing Hu
School of Software Technology,

Zhejiang University
Ningbo, China

xinghu@zju.edu.cn

Xin Xia∗
Zhejiang University
Hangzhou, China
xin.xia@acm.org

David Lo
Singapore Management University

Singapore
davidlo@smu.edu.sg

Zhiyuan Wan
Zhejiang University
Hangzhou, China

wanzhiyuan@zju.edu.cn

Qiuyuan Chen
Zhejiang University
Hangzhou, China

chenqiuyuan@zju.edu.cn

Thomas Zimmermann
Microsoft Research

Seattle, USA
tzimmer@microsoft.com

ABSTRACT
Good comments are invaluable assets to software projects, as they
help developers understand and maintain projects. However, due
to some poor commenting practices, comments are often missing
or inconsistent with the source code. Software engineering practi-
tioners often spend a significant amount of time and effort reading
and understanding programs without or with poor comments. To
counter this, researchers have proposed various techniques to au-
tomatically generate code comments in recent years, which can
not only save developers time writing comments but also help
them better understand existing software projects. However, it is
unclear whether these techniques can alleviate comment issues
and whether practitioners appreciate this line of research. To fill
this gap, we performed an empirical study by interviewing and
surveying practitioners about their expectations of research in code
comment generation. We then compared what practitioners need
and the current state-of-the-art research by performing a literature
review of papers on code comment generation techniques pub-
lished in the premier publication venues from 2010 to 2020. From
this comparison, we highlighted the directions where researchers
need to put effort to develop comment generation techniques that
matter to practitioners.

KEYWORDS
Code Comment Generation, Empirical Study, Practitioners’ Expec-
tations
ACM Reference Format:
Xing Hu, Xin Xia, David Lo, ZhiyuanWan, Qiuyuan Chen, and Thomas Zim-
mermann. 2022. Practitioners’ Expectations on Automated Code Comment
Generation. In The 44th International Conference on Software Engineering,

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510152

May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3510003.3510152

1 INTRODUCTION
Code comments are essential parts of software projects and provide
descriptive information about the functionality, design rationale,
and usage of a code snippet [4]. They help practitioners use, un-
derstand, and maintain software projects [45]. Well-commented
source code improves project readability and developer productiv-
ity. Despite the intrinsic value of code comments during software
development and evolution activities, the creation and maintenance
of comments are often neglected. To address these issues, different
approaches and tools have been proposed to generate comments
from source code automatically [13, 17, 19, 21, 22, 49, 51, 52].

These techniques traditionally rely on manually crafted tem-
plates and information retrieval (IR) techniques to generate com-
ments. Template-based approaches mainly rely on elaborate heuris-
tics and templates for different types of programs to generate de-
scriptive comments [32, 42]. However, defining a template requires
substantial human effort and extensive domain knowledge. IR-based
approaches mainly extract terms from source code and then orga-
nize these terms for generating comments [13, 17]. Besides, some
studies generate comments by retrieving similar code snippets
and using their corresponding comments for comment genera-
tion [51, 52]. In recent years, many researchers have taken advan-
tage of deep learning techniques to generate comments by learning
from large, publicly available code repositories [19, 21, 22, 49]. These
techniques apply neural machine translation models to learn to
translate source code to comments [16].

Despite numerous studies on code comment generation, unfor-
tunately, few studies have investigated the expectations of practi-
tioners on research in comment generation. It is unclear whether
practitioners appreciate this line of research. Even if they do, it is
unclear whether they would adopt code comment generation tools,
what factors affect their decisions to adopt, and their minimum
thresholds for adoption. The practitioners’ perspective is important
to help guide software engineering researchers to create solutions
that satisfy developers. In addition, some gaps between practition-
ers’ expectations and research have not yet been investigated.

To gain insights into practitioners’ expectations on code com-
ment generation, we first conducted semi-structured interviews

https://doi.org/10.1145/3510003.3510152
https://doi.org/10.1145/3510003.3510152

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmermann

with 16 professionals from various companies. Through the inter-
views, we qualitatively investigated the commenting practices and
issues that our interviewees experienced in software development,
and their expectations on code comment generation. Then, we vali-
dated our findings through a survey answered by 720 professional
developers or other IT professionals from 26 countries across six
continents. After the survey, we performed a literature review of the
state-of-the-art papers. We then compared techniques proposed in
the papers against the criteria that practitioners have for adoption.

In particular, we investigated the following four research ques-
tions:
RQ1: What is the state of code commenting practices and
what are the issues?

This research question studies code commenting practices and
issues that practitioners experienced during software development.
82% and 81% of the survey respondents often write comments
and are often confused when reading code without comments,
respectively. Meanwhile, 69% and 62% respondents considered lack
of comments and generic comments as the main issues, respectively.
RQ2: Are automated code comment generation tools useful
for practitioners?

This research question investigates practitioners’ willingness
to adopt code comment generation techniques. 80% of the survey
respondents think code comment generation tools are worthwhile
and essential for them. 78% of them agree that these tools can help
them understand the source code, especially for existing projects
with fewer comments and improve code readability.
RQ3:What are practitioners’ expectations on code comment
generation tools?

This research question focuses on investigatingwhat to comment
and where to comment for different granularity level comments
that practitioners expect, and what factors can affect their adoption
of a comment generation technique. Most participants (about 85%)
expect tools to generate method-level comments. The comments
should include information about 1) what the method does (i.e.,
functionality); 2) how to use the method; and 3) why the method
exists (i.e., design rationale). The most important locations to be
commented on include complex, tricky, and non self-explanatory
methods. The optimal length of a generated comment is 2-3 lines.
Before adopting a code comment generation tool, the generated
comments should satisfy the amount of additional information
(i.e., amount of information beyond what can be easily gleaned
from scanning the source code), content adequacy (the amount of
content carried over from the input code to the generated comments,
ignoring fluency of the text), and conciseness.
RQ4: How close are the current state-of-the-art studies to
satisfy practitioner needs and demands before adoption?

This research question investigates the current state-of-the-art
research and compares the gap between it and practitioners’ expec-
tations. We identified 25 papers that proposed code comment gener-
ation techniques and 17 of them generated method-level comments.
Most papers generated comments to describe methods’ function-
ality. However, few papers generated comments with “how to use”
and “why a method exists” information. In addition, most papers
focus on measuring the overlapped N-grams between generated
comments and human-written comments, while it is not preferred
by a large majority of our respondents. Also, no papers evaluate

Stage 1: Interview Stage 2: Online Survey
Stage 3: Literature

Review

Interview
Guide

Semi-structured
Interviews

Transcriptions

Statements on
comments from
professionals

Open Coding

Questionnaire

Pilot Survey

Online Survey

Analysis

Paper
Collection

analyze the
capabilities of
the proposed

techniques

RQs RQ2. Tool
Importance

RQ3. Practitioners’
expectations

RQ4. discrepancies
between the research

and practitioners’ needs

RQ1. Practices
and Issues

Figure 1: Research Methodology Overview

the amount of additional information in the generated comments,
which most practitioners expect.

Our research is meant to help researchers to consider the needs of
practitioners to continue the development of better code comment
generation techniques that can eventually result in high adoption
and satisfaction rate.

This paper makes the following contributions:
• We interviewed 16 professionals and surveyed 720 practitioners
from more than 26 countries to shed light on practitioners’ ex-
pectations, including their views on the importance of comment
generation and their thresholds and reasons for adopting or not
adopting such techniques.

• We performed a literature review of papers published in the pre-
mier publication venues in software engineering and artificial
intelligence communities in the last ten years. Then, we com-
pared the current state-of-research with what practitioners want
and highlighted what can be done next to meet practitioners’
needs and demands.

Paper Structure: Section 2 describes the methodology of our study.
Section 3 shows the results of our study.We discuss the implications
of our results in Section 4. Section 5 discusses related work. Section
6 draws conclusions and outlines avenues for future work.

2 RESEARCH METHODOLOGY
The overview of the methodology in our study is shown in Figure 1
and consists of three stages. Stage 1: Interviews with professionals
on their practices on commenting, issues they face related to code
comments, and their expectations on code comment generation
techniques. Stage 2: An online survey for confirming and extending
the conclusions about code comments based on the interview. Stage
3: Perform a literature review to analyze whether and towhat extent
current state-of-the-art research has satisfied practitioners’ needs
and demands. The interviews and survey were approved by the
relevant institutional review board (IRB).

2.1 Stage 1: Interview
The interview aims to understand commenting practices and issues
that professionals experience during software development and
practitioners’ expectations on code comment generation tools. This
section presents the interview process.

Practitioners’ Expectations on Automated Code Comment Generation ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

2.1.1 Protocol. The first author conducted a series of face-to-face
semi-structured, in-depth interviews based on an interview guide
to enable a detailed exploration of the participants’ views and expe-
riences. We developed the interview guide through a brainstorming
process. We invited 16 software practitioners to participate in the
interviews from 10 IT companies worldwide. Each interview took
30-40 minutes. In the remainder of the paper, we denoted these 16
interviewees as I1 to I16.

Each interview had three parts. In the first part, we asked some
demographic questions about the interviewee’s background (e.g.,
job role, length of work experience, and team size). In the second
part, we asked open-ended questions about what they consider to be
good/bad code comments. This part aimed to allow the interviewees
to speak freely about their opinions and experience without the
interviewer biasing their responses. In the third part, we asked
the interviewees to discuss the commenting practices and issues
that they faced related to code comments. We also asked about
the importance of automated comment generation tools and their
expectations on these tools.

At the end of each interview, we thanked interviewees and briefly
informed them of our next plan.

2.1.2 Interviewees. We invited professionals from our networks in
the software industry who were working full time in different roles
(e.g., developers and architects) to participate in the interviews. We
sent 20 formal invitations to invite potential interviewees, and 16
interviewees agreed to participate in the interviews from ten IT
companies worldwide. These 16 interviewees had an average of 4.2
years of professional experience in software development (min: 1,
max: 11, median: 4.2, sd: 2.5).

2.1.3 Data Analysis. The first author analyzed the interviews by
transcribing them and then performed open coding to generate
codes of the interview contents using NVivo qualitative analysis
software [1]. Then, the second author verified the initial codes
created by the first author and provided suggestions for improve-
ment. After incorporating these suggestions, two authors separately
analyzed the codes and sorted the generated cards into potential
statements. The overall Cohen’s Kappa value between the two au-
thors was 0.78, which indicated substantial agreement between the
them. The two authors discussed their disagreements to reach a
common decision. To reduce bias from the two authors sorting the
cards to form initial statements, they both reviewed and agreed
on the final set of statements. Eventually, based on the results of
the interviews, we derived 6 commenting practices, 6 commenting
issues, 5 conclusions for tool importance, 12/17/14 conclusions for
expectations on class/method/statement comment generation, and
11 factors that affect the adoption of code comment generation
tools.

2.2 Stage 2: Online Survey
To confirm the statements made by the interviewees (i.e., Stage 1),
we conducted an anonymous online survey with more participants.
The survey aimed to validate and quantify the observations from
our interviews.
2.2.1 Design. The survey included different types of questions,
e.g., multiple-choice questions, short answer questions, and rating

questions (in 5-point Likert scale: Strongly Disagree to Strongly
Agree). We included the category “I don’t understand” to filter
respondents who do not understand our brief descriptions.

The survey consists of six sections:

• Demographics: The survey first asked for demographic infor-
mation about the participants, including country/area of resi-
dence, primary job role, experience in years, and team size.

• Commenting Practices: This section investigated practition-
ers’ commenting practices during software development, specif-
ically, their practices on writing and reading comments, the
commenting distributions in different projects, as well as the
commenting review practices in practitioners’ teams.

• Commenting Issues: This section focused on commenting is-
sues that practitioners faced during software development, in-
cluding outdated comments, too long comments, and redundant
comments in projects.

• Tool Importance: This section provided respondents with a
brief description of code comment generation tools and asked
them how they perceive the importance of such line of tools with
the following statements: (i) Essential: I will use this tool every
day to help software development or code comprehension; (ii)
Worthwhile: I will use this tool to help software development or
code comprehension; (iii) Unimportant: I will not use this tool;
(iv) Unwise: This tool will harm my or my team’s productivity.
Then, we asked practitioners about the importance aspects (e.g.,
improving development efficiency and code readability).

• Practitioners’ Expectations: This section investigated practi-
tioners’ expectations on these tools, including preferred granular-
ity levels (i.e., generating class-level, method-level, and statement-
level comments). Then, we asked what information should be
included in generated comments, the locations to be commented
and preferred lengths for different level comments.

• Tool Adoption: This section asked respondents factors that
affect their likelihood to adopt a code comment generation tech-
nique. Specifically, we asked the minimum Turing Test rate (the
percentage of generated comments that are indistinguishable
from human-written comments by a human evaluator), maxi-
mum revised rate (the percentage of the content in a generated
comment that is needed to be revised before adoption), and min-
imum efficiency (the time of a tool to give a recommendation).

At the end of the survey, we allowed respondents to provide free-
text comments, suggestions, and opinions about code commenting
and our survey. A respondent may or may not provide any final
comments.

We piloted the preliminary survey with a small set of practition-
ers who were different from our interviewees and survey takers.
We obtained feedback on (1) whether the length of the survey was
appropriate, and (2) the clarity and understandability of the terms.
We made minor modifications to the preliminary survey based on
the received feedback and produced a final version. Note that the
collected responses from the pilot survey were excluded from the
presented results in this paper.

To support respondents from China, we translated our survey
to Chinese before distributing it to them. We chose to make our
survey available both in English on Google Forms, and in Chinese
on a popular survey website in China [3]. We chose to make our

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmermann

Table 1: Participants roles & programming experience
Role Population <1 y 1-3 y 3-5 y 5-10 y >10 y

Development 534 32 110 162 173 57
Testing 59 7 13 18 16 5
Algorithm/ML Model Design 55 9 16 15 10 5
Project manager 14 0 0 1 3 10
Architect 23 0 0 3 9 11
Others 35 4 11 10 5 5

720 52 150 209 216 93

survey available in Chinese and English as the earlier is the most
spoken language and the latter is an international lingua franca.
2.2.2 Participant Recruitment. We followed two steps to invite
participants:
• We contacted professionals within our social network from IT

companies and asked their help to disseminate our survey. Specif-
ically, we sent invitations to our contacts in Tencent, Microsoft,
Alibaba, Google, Huawei, and other companies, encouraging
them to disseminate our survey to some of their colleagues. By
following this strategy, we received 598 responses.

• We mined GitHub repositories to extract their contributors’ pub-
lic email addresses. Specifically, we sought repositories with the
top popular open source projects (based on their number of stars).
We sent emails to 2000 potential developers with a link to our
survey. We aimed to recruit open-source practitioners who have
software development experience in addition to professionals
working in the industry. Out of these emails, we received eight
automatic replies notifying us of the absence of the receiver; two
receivers replied that they would not answer any survey. Finally,
we received 137 responses.
In total, we received 735 survey responses. We discarded two

incomplete surveys and 13 responses with less than two minutes
of survey completion time. The data reported herein were from the
remaining 720 valid responses. The 720 respondents resided in 26
countries across six continents. The top two countries where the
respondents came from were China and United States. An overview
of the surveyed participants and their experience was depicted in
Table 1. Most participants were engaged in software development
and had 3-5 years of professional experience.
2.2.3 Data Analysis. We analyzed the survey results based on the
question types. For multiple-choice questions, we reported the
percentage of each option is selected. In terms of open-ended ques-
tions, we analyzed the survey results qualitatively by inspecting
responses. To understand trends in the Likert-scale questions, we
created bar charts (many of which are shown in the remainder of
this paper). We dropped “I don’t know” ratings that form a small
minority (about 1%) of all ratings.
Replication Package.The interview guide and questionnaire used
to run our study are available in our replication package [2].

2.3 Stage 3: Literature Review
Research papers about code comment generation techniques are
usually published in software engineering and artificial intelligence
fields. Therefore, we went through full research papers published
in ICSE, ESEC/FSE, ASE, ICPC, SANER, MSR, ICSME, TSE, TOSEM,
EMSE, ACL, IJCAI, ICLR, NIPS, and AAAI from 2010 to 2020. We
selected papers from the above conferences and journals as they are
premier publication venues in software engineering and artificial
intelligence research communities, and state-of-the-art findings are
published in these conferences and journals.

0%25%50% 25% 50% 75% 100%
Percentage of Valid Responses

I often write comment during software development [P1]
I'm often confused when reading code without comments [P2]

There are many high-quality comments in my projects [P3]
Large projects usually contain high-quality comments [P4]

My team conducts comment reviews [P5]
Lack of comments [I1]

Outdated comments [I2]
Comments inconsistent with code [I3]

Too long comments [I4]
Redundant comments [I5]

Generic comments [I6]

Issues
Practices

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 2: Comment practices and comment issues

Table 2: The agreement rate of statement [P1] and [P2] in
terms of practitioners’ experiences.

Statements
Experiences <1 y 1-3 y 3-5 y 5-10 y >10 y

[P1]1 0.82 0.80 0.83 0.82 0.80
[P2]2 0.9 0.88 0.83 0.77 0.71

1 [P1] I often write comments during software development
2 [P2] I’m often confused when reading code without comments

We read the titles and abstracts of all papers and judged whether
each of the papers proposes a new code comment generation tech-
nique that can help practitioners generate comments during soft-
ware development. We included papers on IR-based code com-
ment generation (e.g., [17]), template-based code comment genera-
tion (e.g., [42]), and deep-learning-based code comment generation
(e.g., [22]). We excluded papers on other types of software docu-
mentation generation (e.g., commit message generation [23][28]),
and empirical study on comment generation (e.g., [4]).

For each code comment generation paper, two authors read its
content and analyzed the capabilities of the proposed technique in
terms of the following factors: granularity level, what-to-comment,
where-to-comment, and evaluation criteria, respectively. For ex-
ample, Wei et al. [50] declared that they took the first sentence
or line in JavaDoc as the output of their proposed approach, thus
we classified its length as one line. If a paper did not declare the
capabilities explicitly, the two authors checked the contents and
discussed its capabilities. For example, Moreno et al. [32] proposed
the Factory stereotype to generate comments for factory class; thus,
we inferred that it satisfied the statement [C9], i.e., commenting at
Classes with design patterns. Two authors discussed the differences
in the capability analysis and confirmed the final result through
further paper reading. Among the selected venues, we found no
comment generation paper in MSR and ICSME. We will discuss the
literature review results in Section 3.4.

3 RESULTS
We explain the results of research questions that investigate com-
ment generation techniques from the perspective of practitioners.

3.1 RQ1: Commenting Practices and Issues
In RQ1, we explored commenting practices, including practition-
ers’ practices on writing/reading comments during development,
quantity and quality of comments in their projects, and the com-
menting review practices in their team. Besides, we also reported
the main commenting issues that participants frequently face. Fig-
ure 2 illustrates respondents’ rating of some statements related to
commenting practices and issues.

3.1.1 Commenting Practices. For developers, we find that more
than 82% participants often write code comments during software

Practitioners’ Expectations on Automated Code Comment Generation ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

development. Interestingly, almost the same proportion of partic-
ipants (81%) are often confused when reading code without com-
ments. Although most participants often write comments, the quan-
tity of comments is still not enough for developers to read source
code. Participants’ opinions on writing and reading code comments
are contradictory. As one participant in our survey stated: “Every-
one wants others to write as many comments as possible, but they
don’t want to write comments”. Table 2 illustrates the agreement
rate (percentage of Agree or Strongly Agree) of statements [P1] and
[P2] in terms of practitioners’ experiences. We can find that there
are no clear differences in writing comments for practitioners with
different years of experience. However, junior practitioners are sta-
tistically significantly more confused when reading code without
comments (with Mann-Whitney Wilcoxon Test p-value<0.001).

Considering software projects, only 37% participants indicate
that there are many high-quality code comments in their projects.
On one hand, the quantity of code comments was limited; on the
other hand, lots of code comments had various issues making it
difficult for participants to infer useful information from comments.
In addition, 52% of participants agreed that larger projects usually
contained much higher quality comments. These projects usually
needed team cooperation and high-quality comments could help
to improve collaborative development. In terms of projects, high-
quality code comments were essential as participants stated in our
survey: (1) “Comments in projects are very useful to understand the
code logic, especially indispensable for facilitating project handover.”
(2) “Comments can facilitate project maintenance and fault location”.
Few teams (30%) conducted comment reviews during the code
review, even though comment quality was important for developers
and software projects. Without comment review, issues in code
comments cannot be captured in time. In addition, one participant
pointed out the importance of comments on code review, as “During
the development process, it is important but not urgent, but it is
necessary for code review.”

For commenting practices, participants mainly have two atti-
tudes:

• Comments are necessary. Most developers thought that com-
ments were essential and should be provided along with the
source code. A respondent shared her/his experience on working
with a legacy system to support the effectiveness of the code
comments. “The system has a lot of comments in each program
in which hundreds of lines of comments accompany several code
lines. This system was introduced to Hong Kong in the 1980s and
then moved to Guangzhou and Beijing. Thanks to the abundant
(even redundant) comments, the legacy system is still maintainable
being running for almost 40 years, and it is still the indispensable
core system of a company.” The respondent expressed that their
experience made them realized the benefit of writing proper code
comments in the long term and made them optimistic about the
future of the comment generation tools.

• Comments areunnecessary. A fraction of developers thought
code comments were unnecessary and writing self-explanatory
code was much more important. As a participant stated: “Source
code is the best comments. It is more important to write code that
is easier to understand. Maintaining the source and comments at
the same time is time-consuming and reduces efficiency.”

0%10%20% 10% 20% 30% 40% 50% 60% 70% 80%

Importance

Tool Importance

Unwise Unimportant Worthwhile Essential

0%10%20% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of Valid Responses

This tool can improve
my development efficiency [T1]

This tool can help me to understand code [T2]

This tool can improve code readability [T3]

This tool can help me to check
consistency between code and comments [T4]

This tool can help me to check
if the code is self-explanatory [T5]

Importance Factors

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 3: Tool importance and the importance factors

 Finding 1. Junior practitioners find it harder to read source
code without comments. The quantity and quality of com-
ments in software projects are limited and few teams conduct
comment reviews.

3.1.2 Commenting Issues. Figure 2 showed respondents’ ratings of
comment-related issues they faced during software development.
69% and 62% respondents considered lack of comments and generic
comments as the main issues, respectively. Without code comments,
practitioners tend to read the source code and resorted to exter-
nal sources of information to understand the source code [5]. One
participant stressed the issue by using her/his personal experience:
“Without code comments, the source code is not only unreadable by oth-
ers, but also may not be understood by myself after a period of time”.
Generic comment was another issue during software development.
Participants cannot get useful information from the code comments
without more details. Outdated comments were perceived as a fre-
quent issue by almost half (i.e., 47%) of the surveyed practitioners.
This issue often occurs during software development. Developers
may forget or ignore the updates of comments when changing
source code [29]. Inconsistency between code and comment were
also perceived as a frequent issue by practitioners (31%). 27% of the
participants thought that redundant comment was a frequent issue.
As one participant stated: “The more noise, the harder it is to notice
valuable information in comments. ... Redundant comments are far
less intuitive than looking at the code...” In terms of the length of code
comments, only 16% of participants regarded too long comments as
an issue. This issue may increase the time to understand the source
code, as one participant stressed: “Too long comments may affect the
efficiency, and I prefer precise and concise comments.”
 Finding 2. Lack of comments and generic comments that

do not provide much information are the most frequently
encountered issues.

3.2 RQ2: Tool Importance
Figure 3 illustrated the percentages of ratings of various categories
(i.e., Essential, Worthwhile, Unimportant, Unwise) and importance
factors. We could notice that most respondents (i.e., 80%) gave
“Essential” and “Worthwhile” ratings. Around 18.5% of respondents
rated comment generation tool as an “Essential” tool and would use
it every day during software development.

We further investigated the factors that affected the importance
of the code comment generation tools. All factors received simi-
lar agreement from participants. As shown in Figure 3, improving

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmermann

code readability (78% Agree or Strongly Agree) was the most im-
portant factor among all importance factors. Comment generation
tools could help to improve development efficiency, understand the
source code, and improve code readability. As participants stated:
(1) “Automated comment generation tool can improve efficiency and
productivity”; (2) “If the tool can automatically extract the meaning
of the program, it will greatly improve the efficiency of code com-
prehension and to a certain extent can assist in determining whether
the program is correct;” (3) “... It improves code readability and at
the same time improve developers’ coding ability, which can help
developers write more logically clear code.”

In addition, a good comment generation tool could also help
to check the consistency between code and comments (supported
by 75% of respondents) and check whether a code snippet is self-
explanatory (supported by 75% of respondents). Inconsistency be-
tween the source code and its comment was a critical issue. A good
comment generation tool indicated that it could understand the
meaning of the source code. Participants could check the consis-
tency by comparing the generated comments and existing com-
ments. On the other hand, a well-generated comment also indicated
that the given source code could be well understood by the machine,
thus it was very self-explanatory.

We also analyzed the reasons why participants thought the tool
was unwise or unimportant (140 participants). The reasons given
by them could be grouped into the following categories:

• Useless. Some participants (40) thought this tool was not mean-
ingful. As one participant stated: “Comments of this sort, which
just restate *what* the code does, in ‘natural language’, are not
useful. They are redundant with the code itself, which a program-
mer should be able to understand at this level on its own, and once
created, they risk becoming out of date and inconsistent with the
actual code. Comments are useful when they include the human
insight that is *not* embodied in the code itself.”

• Not trustworthy. Some participants (32) doubt the accuracy of
the tool. As one participant stated: “The generated code comments
are probably incorrect and developers who do not write comments
will not revise the generated comments. It will further affect the
readability of the code”

 Finding 3. 80% of the survey respondents think code com-
ment generation tools have the potential to be useful for
them. While this finding does not show much these tools
would actually help, it shows that most developers do not,
out of hand, dismiss the idea of code generation as unneeded.

Although most participants thought such a comment generation
tool was useful, few of them had used such a tool. According to the
16 interviewees, only 3 of them have used such tools to generate
comments or documentation for source code. These tools help them
to generate comment templates and they fill the comment content.
Other interviewees have never heard of such comment generation
tools or techniques: (1) “...I used a tool named Doxygen to generate
documentation according to the comments and I never heard of a tool
that can generate comments. -I7” (2) “I just used the tool built-in the
IntelliJ to manage my comments. When I typed /**, it can generate a
template and I write the comment in the template. -I11”

0 100 200 300 400 500 600 700
Count

Class-Comment

Method-Comment

Statement-Comment

G
ra

nu
la

rit
y

le
ve

ls

447 (62%)

614 (85%)

202 (28%)

Figure 4: The number of respondents specifying various pre-
ferred granularity levels

0%10%20%30%40% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Valid Responses

Functionality [C1]

How to use this class [C2]

Implementation details [C3]

Business background [C4]

Workflow diagram [C5]

Technical Debt [C6]

Class with complex logic [C7]

User-defined Exceptions [C8]

Class with design patterns [C9]

Utility Classes [C10]

W
here to Com

m
ent

W
hat to Com

m
ent

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 5: Expectations on class-level comments

3.3 RQ3: Practitioners’ Expectations
Different comment generation techniques generate comments for
different granularity levels, e.g., class, method, and statements.
Figure 4 illustrated participants’ preferred granularity levels on
generated comments. Among all participants, 62%, 85%, and 28%
participants preferred generating class-level, method-level, and
statement-level comments, respectively. Note that the percentages
did not add up to 100% since a respondent could indicate more
than one preferred granularity level. Among the three granularity
levels, method-level comments were the most needed comments to
be generated and a small number of participants need statement-
level comments. In the following part of this section, we will report
practitioners’ expectations on these three levels of granularity of
comments from different aspects, e.g., “what to comment”, “where to
comment”, and the preferred length. “What to comment” corresponds
to the information that generated comments should include before
participants adopt this tool. “Where to comment” corresponds to
the location that participants expect the tool to generate comments.
Preferred length aims to investigate practitioners preferences on the
lengths of generated comments.
 Finding 4.Method-level comments is the most needed type

of comments. A small part of participants (28%) expect tools
to generate statement-level comments.

3.3.1 RQ 3.1: Expectations on class-level comments. Figure 5 illus-
trates participants’ expectations on class level comments, including
“What to comment” and “Where to comment”.
What to Comment.We noticed that the top-3 most information
needed to be commented was: functionality, how to use a class,
and technical debt. 94% of them expected the functionality was
included in the generated comments. Functionality description was
important for developers, as one participant stated: “The comment is
the functionality description of the source code. It can help developers
to understand what the code does...”. The second top information
was how to use a class which usually described the expected set-up
of using the class. The Technical Debt such as TODO comments

Practitioners’ Expectations on Automated Code Comment Generation ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

0%10%20%30%40% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Valid Responses

Functionality [M1]
How to use this method [M2]
Implementation details [M3]

Example cases [M4]
Input&Output [M5]

Design Rationale [M6]
Workflow diagram [M7]

Technical Debt [M8]
Complex method [M9]

Tricky method [M10]
Deprecated Method [M11]

Key logic or algorithm method [M12]
Methods in Interfaces [M13]

Non self-explanatory methods [M14]

W
here to Com

m
ent

W
hat to Com

m
ent

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6: Expectations on method-level comments

could be used to track problems developers saw and ideas in the
class. To comment on a class, the workflow description was also
important for developers and 62% participants expected tools to
generate workflow diagrams for them. A clear workflow diagram
could help developers organize and understand the business logic
just like one respondent stressed: “For a business project, it is more
important to describe the workflow diagram and the version updates.”
The implementation details received the least agreement among all
statements. As one participant stated: “... If the tool is just translating
the code implementation logic, there is no different from reading the
source code...”.
Where to Comment. Commenting at suitable locations was impor-
tant for code readability and code comprehension. Commenting for
classes with complex logic received the most agreements (more than
91% respondents). According to interviewees, complex classes were
challenging to understand as they usually (1) have long code length;
(2) have many loops and conditional statements (e.g., if/switch state-
ments); (3) have many API invocations. It is time-consuming for
developers to read these classes and comments are essential for
understanding. The other three types of classes received similar
agreements, i.e., 86%, 85%, and 82% respondents agree that com-
ments are needed for classes with design patterns, utility classes, and
user-defined exceptions, respectively. Classes with design patterns
usually had special solutions and algorithms. Utility classes pro-
vided many methods for multiple other classes (shared code) and
could be reused many times in a codebase. They should be well-
commented for ease of code reuse. User-defined exceptions should
be commented the trigger conditions in exceptions.
 Finding 5. For class-level comments, functionality and how

to use a class are the most important information that partic-
ipants expect automated comment generation tool to gener-
ate. Classes with complex logics and design patterns should
be well-commented.

3.3.2 RQ 3.2: Expectations on method-level comments. Figure 6
illustrated participants’ expectations on method-level comments.
What to Comment. Similar to expectations on class-level com-
ments, functionality and how to use a method were the top-2 pre-
ferred information that should be included in method-level com-
ments. Participants also provided the least support to comments
documenting Implementation details. Compared to class-level com-
ments, fewer participants agreed to generate comments that in-
cluded a workflow diagram and highlight technical debt. 86% partic-
ipants agreed to generate comments with Input and Output infor-
mation. Parameters and return types were two important parts of

0%10%20% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Valid Responses

Functionality [S1]

Implementation details [S2]

Design Rationale [S3]

Technical Debt [S4]

Warning [S5]

Complex Statement [S6]

Harding Coding [S7]

Tricky Statement [S8]

Special Statement [S9]

Lambda Expression [S10]

Regular Expression [S11]

W
here to Com

m
ent

W
hat to Com

m
ent

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 7: Expectations on statement-level comments

methods. Generating the Input and Output information was helpful
for developers to call methods correctly. 66% participants expected
a code comment generation tool to generate comments with the
design rationale that included authors’ intent and why a method
exists. As one participant stated: “Comments have to be insightful
and not just describing what the code is doing. Comments are meant
to provide background to what the code is doing and why.” 62% of
all respondents supported comments that included example cases.
Example cases provided concrete details on how a method should
be used.
Where to Comment. Similar to class-level comments, almost all
respondents (92%) supported commenting complex methods. The
next important methods requiring comments were those that were
non self-explanatory (supported by 91% respondents). The next im-
portant types of methods requiring comments were tricky method,
key logic or algorithm method, and interfaces. There was no clear
winner among these three types of methods. Tricky methods (e.g.,
check numbers are equal or not using bitwise XOR operators in-
stead of comparison operators) usually had special algorithms and
others might be confused by authors’ intent behind the source code.
Key logic or algorithm methods were mainly for processing busi-
ness logic and good comments were helpful. Commenting methods
in interfaces was essential as they were often invoked by others.
Commenting deprecated methods was also considered helpful (as
supported by 71% of the respondents).
 Finding 6. For method-level comments, information about

functionality, how to use, input and output, and design ratio-
nale are considered important. A high proportion of respon-
dents expect automated comment generation tool to generate
such pieces of information. In other words, comments should
explain code from “what”, “how”, and “why” aspects. All the
different kinds of methods except the deprecated methods
received a similar level of support from respondents.

3.3.3 RQ 3.3: Expectations on statement-level comments. Figure 7
illustrated practitioners’ expectations on statement-level comments.
What to Comment. Similar to class-level comments and method-
level comments, the most information should be included was func-
tionality and design rationale. The implementation details were also
the least important among all statements. Technique debt and warn-
ing (e.g., “Don’t input int-type values”) received similar agreements.
Where to Comment. 93% of participants agreed to add comments
on complex code statements. 89% participants expected this tool
generate comments for special statements. These statements usually
processed special business logic, such as, a statement only accepted

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmermann

0% 25% 50% 75% 100%
Percentage of Valid Responses

Class-level
Method-level

Statement-level

1 line
2-3 lines
4-5 lines
>5 lines
Other

Figure 8: Participants’ expectations on lengths for different
granularity comments

0%10%20% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Valid Survey Responses

Fluency and grammaticality [A1]

Content Adequacy [A2]

Conciseness [A3]

Similarity between generated and
human-written comments [A4]

The amount of information beyond
self-explanatory information in Code [A5]
Overlapped N-grams between generated

and human-written comments [A6]

Strongly Disagree Disagree Neutral Agree Strongly Agree

(a) Evaluation criterion

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Valid Survey Responses

Minimum Turning test rate [A7]
Maximum revised rate [A8]

Minimum content coverage rate [A9]
Minimum time saving rate [A10]

20% 40% 60% 80% 100%

(b) Effectiveness

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of Valid Survey Responses

Maximum Runtime [A11]

1s 5s 10s 30s 1min Other

(c) Minimum efficiency
Figure 9: Factors that affect practitioners’ likelihood to
adopt a code comment generation technique.

strings with a special format. Hard coding and tricky statement
received 88% and 89% agreements, respectively. 81% and 73% par-
ticipants rated the regular expressions and lambda expressions that
should be commented.
 Finding 7. For statement-level comments, most respondents

require such comments to include functionality and design
rationale information. All the types of statements, except
the Lambda expressions statement, received similar level of
support from respondents.

3.3.4 RQ 3.4: Preferred Length. Figure 8 demonstrated practition-
ers’ expectations on comment length of comments for code units
of different levels of granularity (classes, methods, and statements).
We could observe that most respondents support 2-3 lines to be the
most suitable length. For class-level comments, many participants
also agreed to generate comments with 4-5 lines.
 Finding 8. Expect tools to generate comments with 2-3 lines

for the three levels of granularity (class, method, statement).

3.3.5 RQ 3.5: Adoption Factors. Figure 9 illustrated factors that
affect practitioners’ likelihood to adopt a code comment generation
tool, including evaluation criterion, effectiveness, and efficiency.
Evaluation Criteria. We asked participants’ opinions on evaluat-
ing code comment generation tools. We observed that the top-3

preferred evaluation criteria were: amount of additional information
(i.e., amount of information beyond what can be easily gleaned
from scanning the source code), content adequacy (i.e., the amount
of content carried over from the input code to the generated com-
ments), and conciseness. More than 88% participants rated agree or
strongly agree for these three criteria. 82% participants cared about
the fluency and grammaticality of the generated comments. 76%
participants thought the similarity between machine-generated
comments and human-written comments was important, while the
overlapped N-grams between them received the least support (63%).
Effectiveness. Figure 9(b) showed the percentages of respondents
who were satisfied with different rates. The satisfaction rate would
be 80% if at least 60% generated comments could pass the Turing
Test. If the generated comments contained 60% content of the source
code, the satisfaction rate would be 80%. If the revised content in
the generated comments was no more than 40%, the satisfaction
rate would be 82%. Compared to writing comments, if a participant
could save 60% of time using the tools, the satisfaction rate would
be 89%.
Efficiency. Figure 9(c) showed the maximum amount of time prac-
titioners were willing to wait for a comment generation technique
to provide a recommendation. Few respondents were willing to
wait more than one minute for a comment generation technique to
do its job (less than 6%). Most participants expected this tool can
finish its computation in less than 5 seconds.
3.4 RQ4: Current state-of-the-art research
At the end of our literature review process, we totally identified
25 papers from the premier publication venues in software engi-
neering and artificial intelligence communities. Table 3 showed the
capabilities of the state-of-the-art code comment techniques. The
Likert score was the average score of different agreements: Strongly
Disagree (1 score), Disagree (2 scores), Neutral (3 scores), Agree (4
scores), Strongly Agree (5 scores).
Granularity Level: From Table 3 we could observe that only one
paper (i.e., [32]) worked at class-level, which was the second most
preferred option. Most papers worked at the method-level granu-
larity that was the most preferred option. Several papers worked at
the statement-level. We provided more detailed information below:
• Class-level comments: Only Moreno et al. [32] proposed a

class-level comment generation technique. This work generated
functionality descriptions for complex classes (e.g., class that con-
sists of accessors and mutators) and classes with design patterns.

• Method-level comments: 17 papers proposed approaches to
generate comments for methods. Most of the proposed tools
mainly generated functionality comments that described what a
method does. Two papers generated comments to describe how to
use a method. In addition, three papers could generate comments
to explain the design rationale and answer why a method exists.
Although implementation details were not preferred by a large
majority of our respondents, four papers proposed techniques to
generate comments with implementation details. Only one paper
aimed to generate comments for complex methods, i.e., methods
with many API invocations.

• Statement-level comments: There were four papers generat-
ing comments for statements. These tools generated comments
that described the functionality of statements. Among them, two

Practitioners’ Expectations on Automated Code Comment Generation ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Capabilities of Current State-of-Research.

Statement Likert
score Papers

What to Comment
Functionality [C1] 4.35 [32]

How to use this class [C2] 4.28 -
Implementation details [C3] 3.43 -
Business background [C4] 3.79 -
Workflow diagram [C5] 3.69 -

Technical Debt [C6] 3.88 -
Where to Comment

Complex Class [C7] 4.34 [32]
User-defined Exception [C8] 4.09 -

Class with design patterns [C9] 4.25 [32]C
la
ss
-l
ev

el
co

m
m
en

ts

Utility classes [C10] 4.17 -
What to Comment

Functionality [M1] 4.36 [6, 7, 14, 19, 20, 22, 25, 26, 29, 37, 38, 42, 49, 50]
How to use this method [M2] 4.24 [30][31]
Implementation Details [M3] 3.44 [38][29] [30][31]

Example cases [M4] 3.76 [31]
Input&Output [M5] 4.20 [44][34]

Design Rationale [M6] 3.81 [42][30][31]
Workflow diagram [M7] 3.52 -

Technical debt [M8] 3.79 -
Where to Comment

Complex Method [M9] 4.36 [21]
Tricky Method [M10] 4.18 -

Deprecated Method [M11] 3.93 -
Key logic and algorithm method [M12] 4.24 -

Methods in interfaces [M13] 4.22 -
Non Self-explanatory methods [M14] 4.30 -

M
et
ho

d-
le
ve

lc
om

m
en

ts

Other - - [6, 7, 14, 19, 20, 22, 25, 26, 34, 37, 38, 42, 44, 48–50, 53]
What to Comment

Functionality [S1] 4.17 [52][43][11][22]
Implementation details [S2] 3.86 -

Design Rationale [S3] 4.17 -
Technical debt [S4] 3.91 -

Warning [S5] 4.04 -
Where to Comment

Complex Statement [S6] 4.39 [52][43]
Harding Coding [S7] 4.21 -
Tricky Statement [S8] 4.28 -
Special Statement [S9] 4.28 -

Lambda Expression [S10] 3.93 -
Regular Expression [S11] 4.12 -St

at
em

en
t-
le
ve

lc
om

m
en

ts

Other - [11][22]
1 line - - [7, 11, 14, 19–22, 25, 26, 29, 42–44, 48–50, 52, 53]

2-3 lines - - [32]
4-5 lines - - [30][31]
>5 lines - - -Le

ng
th

Other - - [37, 38]
Fluency and Grammaticality [A1] 4.06 [32][50][22]

Content Adequacy [A2] 4.21 [32][50][42][52][30][31][22]
Conciseness [A3] 4.22 [32][42][52][30][31]
Similarity [A4] 4.03 [50][20][53]

Amount of additional information [A5] 4.27 -Ev
al
ua

ti
on

Overlapped N-grams [A6] 3.74 [6, 7, 11, 14, 19–22, 25, 26, 29, 34, 48–50, 53]

papers aimed to generate comments for complex statements, e.g.,
API invocation statements.

 Finding 9.Most papers generate comments to describe what
a code snippet does (e.g., functionality and implementation
details), while a few papers describe how to use and why
it exists. Considering the types of code units that need to
be commented on, most studies generate comments for all
types of code units. However, commenting at the right place
is far better than commenting anywhere.

Preferred Lengths:As Table 3 showed, most proposed tools aimed
to generate one line code comments. Only 5 papers proposed tools
to generated comments with more than one line. However, 2-3 lines
comments were supported by most participants.
 Finding 10. There is a great discrepancy between the cur-

rent tools (1 line) and most practitioners expect (2-3 lines)
on the length of comments.

Evaluation:We could find that most papers evaluate the quality
of generated comments by computing the overlapped N-grams be-
tween generated comments and human-written comments, such as
BLEU [35], METEOR [10], and ROUGE [27]. These criteria usually
involved automated evaluation of generated comments. Unfortu-
nately, evaluating overlapped N-grams was not preferred by a large
majority of our respondents. No paper evaluated the amount of
additional information beyond what can be easily gleaned from

scanning the source code, which most respondents expected to be
used to evaluate the generated comments. There are 6, 5, 3, and
3 papers that evaluated the effectiveness of the proposed tools in
terms of content adequacy, conciseness, similarity, and fluency and
grammaticality, respectively.
 Finding 11.Most papers focus on measuring the overlapped

N-grams between generated comments and human-written
comments that is not preferred by a large majority of our
respondents. The criterion amount of additional informa-
tion (i.e., amount of information beyond what can be easily
gleaned from scanning the source code) that practitioners
valued most is ignored by all studies.

4 DISCUSSION
4.1 Implications
Our results highlight a number of points to be further discussed
and several implications for the research community:

4.1.1 Comment completion tools. In addition to generating com-
ments from source code, many developers also expect a tool that
can complete comments while they are writing comments. One con-
cern of practitioners about comment generation tools is that they
have to spend additional effort to check if the generated comments
can express the source code. In fact, our participants mentioned
this concern, e.g., “I don’t believe this tool can generate correct com-
ments, thus I have to double-check the generated comments. Compared
with writing comments myself, the checking process is more time-
consuming. - I2” A comment completion tool can alleviate this issue,
and developers can choose comment recommendations (e.g., the
next token, phrase and even sentence) while writing comments. It
can not only speed up the commenting process, but also allow the
developer to choose the content of the comments. As one practi-
tioner stated: “Instead of a comment generation tool, I expect a tool
that can complete comments during the development, just like the
code completion tools in IDE. In this way, I can write comments more
efficiently. - I2”

4.1.2 Identifying where to write comments. According to the re-
ply of our interviewees and respondents of our survey, too many
comments are also harmful to code readability and understand-
ing. From the literature review, we can observe that most papers
generate comments for any code snippets except constructors or
test cases [19, 26]. However, respondents expect tools to generate
comments for complex and non self-explanatory code instead of
any pieces of code. They point out that it is unnecessary to gen-
erate comments for source code that is easy to understand. It is
challenging for existing techniques to generate accurate comments
for a complex piece of code with long lengths, many API invoca-
tions, and many conditional statements. Thus, comment generation
techniques should by improved to generate accurate comments for
particular locations that practitioners expect.

4.1.3 Describing why a code snippet exists. In addition to describing
what a code snippet does and how to use it, code comments should
describe why a code snippet exists, i.e., the design rationale and the
intent of a developer. However, few studies can generate comments
with this information. This is also an important factor as one partic-
ipant stated: “A good comment explains "why" not "how." A computer

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmermann

is not able to explain "why." Only a human can do that. To generate a
comment automatically means that a program must understand the
author’s intent. This would require artificial intelligence.” Thus, to
improve the trustworthiness of comment generation techniques,
these techniques should have to mine the intent behind the source
code.

4.1.4 Evaluation Criterion. Evaluation criterion is another impor-
tant factor that should satisfy practitioners’ expectations. Existing
studies usually evaluate the generated comments by comparing the
generated comments with human-written comments in terms of
overlapped N-grams (such as BLEU scores and ROUGE). However,
the overlapped N-grams is the least important among all evaluation
criteria. Practitioners expect to evaluate the amount of additional in-
formation, whereas none of the collected papers has mentioned this
metric. In addition, other metrics, such as Turing Test passing rate,
revised rate, and time-saving rate, are also missing in publications.

4.1.5 Detecting inconsistencies between comments and source code.
Among all commenting issues we highlighted in our survey, in-
consistency between comments and source code is not the most
frequently encountered issues, but is the most serious issue. Accord-
ing to Tan et al. [46], many software bugs are caused by a mismatch
between programmers’ intention and code’s implementation. From
our survey, 74% respondents agree that a good comment genera-
tion tool can help to check the consistency between comments and
code. A tool that can detect inconsistency and recommend a good
comment simultaneously is needed by practitioners.

4.1.6 Checking if the source code is self-explanatory. Writing self-
explanatory code is a common practice for developers. During the
development process, developers usually check if the code is self-
explanatory. I3 stressed that a good comment generation tool can
also help her/him to check the code automatically: “For me, a com-
ment generation tool could not only help me to write comments and
understand programs, but also can check if my code is self-explanatory.
If the generated comments can express my code, it means that my
code can be comprehended by machines, thus indicates that the code
is self-explanatory.-I3 ”

4.2 Threats to Validity
It is possible that some of our survey respondents do not understand
code comment generation techniques or our questions well, and
thus their responses may introduce noise to the data that we col-
lect. To reduce this threat, we drop responses submitted by people
who are neither professional software engineers nor participants of
open source projects. We also drop responses by respondents who
complete the survey in less than two minutes. Still, we cannot fully
ascertain whether participant responses are accurate reflections
of their beliefs. This is a common and tolerable threat to validity
in many past studies about practitioners’ perceptions and expecta-
tions, e.g., [24], which assume that the majority of responses truly
reflect what respondents truly believe. Another threat is that our
participants may not be representations of typical software engi-
neers and that as result our findings may not apply to others. Since
we surveyed employees of many software companies as well as
open source, we believe this is a minor threat for our study.

5 RELATEDWORK
The two major lines of research related to our work are (i) develop-
ing tools and approaches to automatically generate code comments
and (ii) empirically investigating software documentation practices.

5.1 Automated Code Comment Generation
There has been much work proposing techniques to support the
automated generation of code comments. These techniques vary
from manually-crafted templates [31, 32, 42], IR techniques [13, 51]
to deep-learning-based models [19, 22]. Sridhara et al. [42] and
Moreno et al. [32] define heuristics and stereotypes to select the
information and create summaries through manually-crafted tem-
plates. IR-based approaches [17] usually leverage IR techniques,
such as LSI and VSM, to choose top terms from given code snippets.
Some researchers [51, 52] retrieve a similar code snippet from a
codebase and use its comment to generate comments. Many neural
networks have been proposed to generate comments by training
on large-scale code corpora in recent years. Iyer et al. [22] propose
an encoder-decoder framework to generate comments for C# and
SQL statements. Inspired by the neural machine translation, Hu et
al. [19] propose the DeepCom to generate comments for Java meth-
ods by the seq2seq model. To integrate the structure-information of
the source code, Hu et al. [19, 20] and Leclair et al. [26] propose com-
bining the sequential AST information and semantic information
together to generate comments. Chen et al. [12] exploited comment
categories to boost code summarization. In addition, some stud-
ies [53] [50] combine these three techniques, includes, templates,
IR, and neural networks.

5.2 Studies on documentation practices
Studies on documentation practices are highly related to this work [4,
5, 8, 15, 18, 40, 41, 45, 47]. Some studies focused on empirical re-
search of general software documentation aspects, including tuto-
rials, logs, and code comments [4, 5]. Table 4 shows an overview
of empirical studies on software documentation practices. For ex-
ample, Aghajani et al. [5] analyzed the issues in different types of
software documentation by mining open source software reposito-
ries and artifacts related to software documentation. They [4] also
presented practitioners’ perspectives on software documentation
by surveying software practitioners. Some studies investigated a
specific type of documentation. For example, Head et al. [18] investi-
gated the information that may be missing from API documentation
and provided an understanding of trade-offs of improving miss-
ing documentation in header files. Sohan et al. [40] and Uddin et
al [47] also investigate the API documentation. Alsuhaibani et al. [8]
conduct a questionnaire with software developers to analyze the
method names. Safwan and Servant [39] investigated how devel-
opers decompose the rationale of code commits. Also related are
studies that investigated comment types [36]. Pascarella et al. [36]
focus on analyzing the comment types that developers write in
source code files and automating classifying code comments. These
studies mainly investigated the documentation practices and issues.
In addition, they are limited in analyzing “what” and “where” to
comment that developers expect for different types of comments.
Different from the aforementioned prior works, we not only reveal
the issues with code comments, but also provide detailed expec-
tations that developers have to improve the comment generation

Practitioners’ Expectations on Automated Code Comment Generation ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: Summary of previous works on software documentation practices

Study Artifacts Methodology Summary of findings

Fluri et al. [15] Code Comments Investigation with three open source sys-
tems

When code and comments coevolve, both are changed in the
same revision: 97% of comment changes are done in the same
revision as the associated source code change. But code and
comments rarely co-evolve

Uddin et al. [47] API documentation Questionnaire with 230 software profes-
sionals

Respondents prioritized addressing five content-related problems,
including incompleteness, ambiguity, unexplained examples, ob-
soleteness, and inconsistency

Pascarella et al. [36] Code comments Exploratory investigation on six major
Java OSS systems

Classify comments into 16 inner categories and 6 top categories
and the most prominent category of comments summarizes the
purpose of the code

Sohan et al. [40] Usage Examples in API
documentation

Study with 26 developers REST API client developers face productivity problems with
using correct data types, data formats, required HTTP headers
and request body when documentation lacks usage examples.

Head et al. [18] API Documentation for
C++

Interviews with 18 developers and 8 API
maintainers

Updating documentation may provide only limited value for
developers, while requiring effort maintainers don’t want to
invest.

Safwan and Ser-
vant [39]

Code Commits Interviews with 20 software developers
and questionnaire with 24 developers

Software developers decompose the rationale of code commits
into 15 separate components and the most frequent components
are committer, modifications, and location.

Aghajani et al. [5] Software Documentation Qualitatively analyze 878 artifacts from
open source software repositories

Built 163 types of documentation issues and frequent issues re-
lated to the correctness, up-to-dateness and completeness of the
information reported in the documentation.

Stapleton et al. [45] Code Comments Human study involving 45 both univer-
sity students and professional developers

participants performed significantly better using human-written
summaries versus machine-generated summaries.

Aghajani et al. [4] Software Documentation Questionnaire with 146 professional soft-
ware practitioners

Code Comment and Contribution Guideline were the two doc-
umentation types considered as more useful for the different
tasks.

Alsuhaibani et al. [8] Method Names Questionnaire with 1,604 software devel-
opers

Developers are supportive of clearly articulating method naming
standards and feel it has a positive impact to code comprehension.

Sondhi et al. [41] Javadoc comments Study method documentation and com-
mits logs of 11 open-source projects

62% of the studied Javadoc comments being dependent on other
entities

Arafat and Riehle [9] Code Comments Investigation on density of comments in
open source software code

Successful open source projects follow a consistent practice of
documenting their source code and the comment density is inde-
pendent of team and project size.

Nielebock et al. [33] Code Comments Questionnaire with 277 developers Comments seem to be considered more important in previous
studies and by their participants than they are for small program-
ming tasks.

tools. Moreover, we identify and present the gap between practi-
tioners’ expectations and capabilities of existing tools proposed by
various studies. Our findings show the code comment generation
tools have the potential to be useful for developers.

6 CONCLUSION AND FUTUREWORK
Code comment generation is a popular area of research in recent
years. In this work, we interviewed 16 professionals and surveyed
720 practitioners on commenting practices and issues they face
and their expectations on code comment generation tools. Prac-
titioners are enthusiastic about research in comment generation
techniques and expect tools to generate comments for different
granularity levels (especially class and method levels). Practitioners
expect a comment generation to satisfy factors in terms of comment
content, comment locations, evaluation criteria, effectiveness, and
efficiency. We also compare capabilities of current state-of-research

in comment generation with practitioners’ expectation for adop-
tion to identify discrepancies. We point out the limitations of the
current state-of-research and avenues for future work to make code
comment generation techniques well-adopted by practitioners. Fu-
ture studies could put more effort into generating comments at the
right locations instead of generating comments for all types of code
units. Besides, studies could put more effort into investigating the
evaluation criteria that practitioners valued most.

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
of China (No. 62141222 and No. U20A20173) and the National Re-
search Foundation, Singapore under its Industry Alignment Fund –
Prepositioning (IAF-PP) Funding Initiative. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the views of National
Research Foundation, Singapore.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmermann

REFERENCES
[1] 2021. Nvivo qualitative data analysis software.
[2] https://github.com/xing-hu/Practitioners-Expectations-on-Automated-Code-

Comment-Generation.
[3] https://www.wjx.cn.
[4] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C Shepherd. 2020. Software documentation:
the practitioners’ perspective. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 590–601.

[5] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documenta-
tion issues unveiled. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1199–1210.

[6] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A
Transformer-based Approach for Source Code Summarization. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. 4998–
5007.

[7] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Gen-
erating sequences from structured representations of code. arXiv preprint
arXiv:1808.01400 (2018).

[8] Reem S Alsuhaibani, Christian D Newman, Michael J Decker, Michael L Collard,
and Jonathan I Maletic. 2021. On the Naming of Methods: A Survey of Profes-
sional Developers. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 587–599.

[9] Oliver Arafat and Dirk Riehle. 2009. The Commenting Practice of Open Source. In
Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications (Orlando, Florida, USA) (OOP-
SLA ’09). Association for Computing Machinery, New York, NY, USA, 857–864.
https://doi.org/10.1145/1639950.1640047

[10] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65–72.

[11] Ruichu Cai, Zhihao Liang, Boyan Xu, Yuexing Hao, Yao Chen, et al. 2020. TAG:
Type Auxiliary Guiding for Code Comment Generation. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. 291–301.

[12] Qiuyuan Chen, Xin Xia, Han Hu, David Lo, and Shanping Li. 2021. Why my
code summarization model does not work: Code comment improvement with
category prediction. ACM Transactions on Software Engineering and Methodology
(TOSEM) 30, 2 (2021), 1–29.

[13] Brian P Eddy, Jeffrey A Robinson, Nicholas A Kraft, and Jeffrey C Carver. 2013.
Evaluating source code summarization techniques: Replication and expansion.
In 2013 21st International Conference on Program Comprehension (ICPC). IEEE,
13–22.

[14] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2018. Structured
neural summarization. arXiv preprint arXiv:1811.01824 (2018).

[15] Beat Fluri, Michael Wursch, and Harald C Gall. 2007. Do code and comments
co-evolve? on the relation between source code and comment changes. In 14th
Working Conference on Reverse Engineering (WCRE 2007). IEEE, 70–79.

[16] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to
Comment “Translation”: Data, Metrics, Baselining & Evaluation. In 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 746–757.

[17] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
use of automated text summarization techniques for summarizing source code.
In 2010 17th Working Conference on Reverse Engineering. IEEE, 35–44.

[18] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight.
2018. When not to comment: questions and tradeoffs with api documentation
for c++ projects. In Proceedings of the 40th International Conference on Software
Engineering. 643–653.

[19] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment gener-
ation. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 200–20010.

[20] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering 25, 3 (2020), 2179–2217.

[21] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summariz-
ing source code with transferred api knowledge.(2018). In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelli-gence (IJCAI
2018), Stockholm, Sweden, 2018 July 13, Vol. 19. 2269–2275.

[22] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2073–2083.

[23] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).

IEEE, 135–146.
[24] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An em-

pirical study of refactoringchallenges and benefits at microsoft. IEEE Transactions
on Software Engineering 40, 7 (2014), 633–649.

[25] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Im-
proved code summarization via a graph neural network. In Proceedings of the
28th International Conference on Program Comprehension. 184–195.

[26] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model
for generating natural language summaries of program subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
795–806.

[27] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[28] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation:
how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 373–384.

[29] Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li. 2020. Automating Just-In-
Time Comment Updating. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 585–597.

[30] Paul W McBurney and Collin McMillan. 2014. Automatic documentation gen-
eration via source code summarization of method context. In Proceedings of the
22nd International Conference on Program Comprehension. 279–290.

[31] Paul W McBurney and Collin McMillan. 2015. Automatic source code summa-
rization of context for java methods. IEEE Transactions on Software Engineering
42, 2 (2015), 103–119.

[32] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for java classes. In 2013 21st International Conference on Program Comprehension
(ICPC). IEEE, 23–32.

[33] Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger, Thomas Leich, and Frank
Ortmeier. 2018. Commenting Source Code: Is It Worth It For Small Programming
Tasks? Springer Empirical Software Engineering (EMSE) 24, 3 (2018), 1418–1457.
https://doi.org/10.1007/s10664-018-9664-z

[34] Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond
Mooney. 2020. Learning to Update Natural Language Comments Based on
Code Changes. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. 1853–1868.

[35] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[36] Luca Pascarella and Alberto Bacchelli. 2017. Classifying code comments in Java
open-source software systems. In 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, 227–237.

[37] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan. 2015. An Eye-Tracking
Study of Java Programmers and Application to Source Code Summarization.
IEEE Transactions on Software Engineering 41, 11 (2015), 1038–1054. https:
//doi.org/10.1109/TSE.2015.2442238

[38] Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and Sidney
D’Mello. 2014. Improving automated source code summarization via an eye-
tracking study of programmers. In Proceedings of the 36th international conference
on Software engineering. 390–401.

[39] Khadijah Al Safwan and Francisco Servant. 2019. Decomposing the rationale
of code commits: the software developer’s perspective. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 397–408.

[40] SM Sohan, Frank Maurer, Craig Anslow, and Martin P Robillard. 2017. A study
of the effectiveness of usage examples in REST API documentation. In 2017 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
53–61.

[41] Devika Sondhi, Avyakt Gupta, Salil Purandare, Ankit Rana, Deepanshu Kaushal,
and Rahul Purandare. 2021. On Indirectly Dependent Documentation in the Con-
text of Code Evolution: A Study. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 1498–1509.

[42] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. 43–52.

[43] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Automatically
detecting and describing high level actions within methods. In 2011 33rd Interna-
tional Conference on Software Engineering (ICSE). IEEE, 101–110.

[44] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Generating pa-
rameter comments and integrating with method summaries. In 2011 IEEE 19th
International Conference on Program Comprehension. IEEE, 71–80.

[45] Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart,Westley
Weimer, Kevin Leach, and Yu Huang. 2020. A Human Study of Comprehension
and Code Summarization. In Proceedings of the 28th International Conference on
Program Comprehension. 2–13.

https://doi.org/10.1145/1639950.1640047
https://doi.org/10.1007/s10664-018-9664-z
https://doi.org/10.1109/TSE.2015.2442238
https://doi.org/10.1109/TSE.2015.2442238

Practitioners’ Expectations on Automated Code Comment Generation ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

[46] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments?*. In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles. 145–158.

[47] Gias Uddin and Martin P Robillard. 2015. How API documentation fails. Ieee
software 32, 4 (2015), 68–75.

[48] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S Yu. 2018. Improving automatic source code summarization via deep rein-
forcement learning. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. 397–407.

[49] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a
dual task of code summarization. In Advances in Neural Information Processing
Systems 2019. Neural Information Processing Systems (NIPS).

[50] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and refine:
exemplar-based neural comment generation. In 2020 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE, 349–360.
[51] E. Wong, Taiyue Liu, and L. Tan. 2015. CloCom: Mining existing source code

for automatic comment generation. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). 380–389. https:
//doi.org/10.1109/SANER.2015.7081848

[52] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Mining question
and answer sites for automatic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 562–
567.

[53] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 1385–1397.

https://doi.org/10.1109/SANER.2015.7081848
https://doi.org/10.1109/SANER.2015.7081848

	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Stage 1: Interview
	2.2 Stage 2: Online Survey
	2.3 Stage 3: Literature Review

	3 Results
	3.1 RQ1: Commenting Practices and Issues
	3.2 RQ2: Tool Importance
	3.3 RQ3: Practitioners' Expectations
	3.4 RQ4: Current state-of-the-art research

	4 Discussion
	4.1 Implications
	4.2 Threats to Validity

	5 Related Work
	5.1 Automated Code Comment Generation
	5.2 Studies on documentation practices

	6 Conclusion and Future Work
	Acknowledgments
	References

