2409.16739v2 [cs.SE] 11 Feb 2025

arxXiv

Automated Unit Test Refactoring

Y1 GAO, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China

XING HU?, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China
XIAOHU YANG, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China
XIN XIA, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China

Test smells arise from poor design practices and insufficient domain knowledge, which can lower the quality
of test code and make it harder to maintain and update. Manually refactoring of test smells is time-consuming
and error-prone, highlighting the necessity for automated approaches. Current rule-based refactoring methods
often struggle in scenarios not covered by predefined rules and lack the flexibility needed to handle diverse
cases effectively. In this paper, we propose a novel approach called UTREFACTOR, a context-enhanced, LLM-
based framework for automatic test refactoring in Java projects. UTREFACTOR extracts relevant context from
test code and leverages an external knowledge base that includes test smell definitions, descriptions, and DSL-
based refactoring rules. By simulating the manual refactoring process through a chain-of-thought approach,
UTREFACTOR guides the LLM to eliminate test smells in a step-by-step process, ensuring both accuracy and
consistency throughout the refactoring. Additionally, we implement a checkpoint mechanism to facilitate
comprehensive refactoring, particularly when multiple smells are present. We evaluate UTREFACTOR on 879
tests from six open-source Java projects, reducing the number of test smells from 2,375 to 265, achieving an 89%
reduction. UTREFACTOR outperforms direct LLM-based refactoring methods by 61.82% in smell elimination
and significantly surpasses the performance of a rule-based test smell refactoring tool. Our results demonstrate
the effectiveness of UTREFACTOR in enhancing test code quality while minimizing manual involvement.

CCS Concepts: » Software and its engineering — Automatic programming; Software maintenance
tools.

Additional Key Words and Phrases: Test Smells, Test Refactoring, Large Language Models

ACM Reference Format:
Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia. 2025. Automated Unit Test Refactoring. Proc. ACM Softw. Eng. 2,
FSE, Article FSE033 (July 2025), 21 pages. https://doi.org/10.1145/3715750

1 Introduction

During the software testing process, test code often suffers from test smells, which originates
from a lack of sufficient domain knowledge by software engineers and the adoption of poor
design practices when writing test code. Recent studies [21, 33] have shown that developers tend to
prioritize production code over test code, which further contributes to the decline in test code quality.
From a software maintenance perspective, test smells in a software system can complicate the test

*Corresponding Author

Authors’ Contact Information: Yi Gao, gaoyi01@zju.edu.cn, The State Key Laboratory of Blockchain and Data Security,
Zhejiang University, Hangzhou, China; Xing Hu, xinghu@zju.edu.cn, The State Key Laboratory of Blockchain and Data
Security, Zhejiang University, Hangzhou, China; Xiaohu Yang, yangxh@zju.edu.cn, The State Key Laboratory of Blockchain
and Data Security, Zhejiang University, Hangzhou, China; Xin Xia, xin.xia@acm.org, The State Key Laboratory of Blockchain
and Data Security, Zhejiang University, Hangzhou, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2994-970X/2025/7-ARTFSE033

https://doi.org/10.1145/3715750

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0000-2554-2381
HTTPS://ORCID.ORG/0000-0003-0093-3292
HTTPS://ORCID.ORG/0000-0003-4111-4189
HTTPS://ORCID.ORG/0000-0002-6302-3256
https://doi.org/10.1145/3715750
https://orcid.org/0009-0000-2554-2381
https://orcid.org/0000-0003-0093-3292
https://orcid.org/0000-0003-4111-4189
https://orcid.org/0000-0002-6302-3256
https://doi.org/10.1145/3715750

FSE033:2 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

code, making it harder to read, understand, and update. This complexity can ultimately lead to a
decline in software product quality and reduced developer productivity. Test smells can be removed
through test refactoring—a process of improving the internal structure of the code without altering
the software’s external behavior [23, 33, 36]. Numerous empirical studies [21, 26, 29, 32, 33, 36, 37]
have highlighted the importance of test refactoring, and developers widely accept the refactored
tests, and both developers and testers are increasingly recognizing the negative impact of test
smells. They widely agree that test quality improves significantly once test smells are eliminated.
Additionally, many studies [18, 19, 22, 25, 30, 31, 34, 38—40] have proposed test smell detection
tools across programming languages such as Java, Scala, and Python, while also evaluating the
impact of test smells on the software development process.

However, manual refactoring of test code remains time-consuming, inefficient, and is prone
to errors, underscoring the need for automated tools to address a broader range of test smells.
Although there is a clear demand for such tools, only a few open-source options exist for automatic
test refactoring [23]. Those tools primarily handle basic and limited types of test smells, leaving
many types unaddressed. At present, no tool is capable of efficiently and automatically eliminating
all types of test smells.

Given the remarkable capabilities of large language models (LLMs) in understanding, generating,
and reviewing code, they might have the potential to play a key role in test refactoring tasks.
In this paper, we explore the potential of open-source LLMs to automate unit test refactoring
and propose an approach for automatically eliminating test smells in software projects. However,
several challenges must be addressed to achieve this goal:

Challenge 1: How to guide the LLM to eliminate test smells in an expected way? Refactor-
ing aims to optimize code structure without altering the original functionality and logic. However,
LLMs may generate hallucinations during the refactoring process, producing random code segments
that introduce syntax or semantic errors. Thus, the first challenge is how to direct the LLM to
follow predefined steps for refactoring, ensuring it remains consistent and produces the intended
results.

Challenge 2: How to eliminate multiple test smells simultaneously? Since there are many
types of test smells, and multiple smells may exist within a single test method, different removal
orders can lead to different refactoring outcomes. The challenge lies in ensuring that all identified
test smells are accurately and comprehensively eliminated.

In this paper, we propose a context-enhanced, LLM-based automatic test refactoring approach
for Java projects. Our proposed approach, named UTREFACTOR, first extracts the project’s test code
and related context information, such as the methods and classes under test. We then build an
external knowledge base that supports test smell elimination, which includes test smell definitions
and descriptions, DSL-based refactoring rules, and other relevant contextual information. Next, we
simulate the manual refactoring process typically followed by developers or testers. Using a chain-
of-thought approach, we guide the LLM through understanding the test’s intent, identifying the
test smells, and following the DSL-defined refactoring steps to refactor the test code. Additionally,
we design a checkpoint mechanism to ensure more thorough smell elimination, particularly when
multiple test smells are present in a single test.

We evaluate UTREFACTOR on six popular Java open-source projects collected from GitHub. In
our experiments, we detect 879 tests with smells out of 9,149 tests and apply smell elimination
refactoring to them. The results show that UTREFACTOR reduces the number of test smells from 2,375
to 265, achieving a reduction rate of 89%. This represents a 61.82% improvement in performance
compared to directly using an LLM for test refactoring. The main contributions of this paper are as
follows:

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:3

Original Test Refactored Test1
@Test
@est . X X X public void testJsonObjectHasPropertyInitiallyFalse() {
public void testAddingAndRemovingObjectProperties() { JsonObject jsonObj = new Jsunob]ectlj
JsonObject jsonObj = new JsonObject(); String propertyName = "proj
String rupertyName = property B assertThat(jsonObj. has(propertyNameD) as("Property should not exist
[_assertThat | (jsonObj.[has | (“propertyName |))-isFalse(); initially").isFalse();
[assertThat | (350003 . get | (CpropertyName |)) - isNull(); assertThat(jsonObj.get(propertyName)).as("Property value should be null

initially").isNull();
JsonPrimitive value = new JsonPrimitive(“blah”); ki
son0b [add |(propertyName, value); Refactored Test2

(]sunob] [Cget [([propertyName])) - isEqualTo(value);

JsonElement removedElement = jsonObj. remove | (propertyName);
(removedElement).isEqualTo(value);

@Test
public void testJsonObjectAddProperty() {
JsonObject jsonObj = new JsonObject();

! : : String propertyName = "property;

(json0bj [has | (propertyName |)) . isFalse(); JsonPrimitive value = new JsonPrimitive("blah");

(350n0b3 .[“get | ([propertyName |)) - 1sNulL(); json0bj .add (propertyName, value);

i assertThat(jsonObj.get(propertyName)).isEqualTo(value);

[assertThat | (json0bj . remove | ([1)) isNull(); E }

+ N
Refactored Test3
Eager Test jalest
o) . . public void testJsonObjectRemoveProperty() {
The test invokes several methods of the production object. This JsonObject json0bj = new JsonObject();

String propertyName = "property”;
JsonPrimitive value = new JsonPrimitive("blah");
json0bj.add(propertyName, value);

smell results in difficulties in test comprehension and maintenance.

JsonElement removedElement = jsonObj.remove(propertyName);
(2] Duplicate Assert assertThat (removedElenent) .as ("Renoved element should match added
The test contains more than one assertion statement with the same value").isEqualTo(value);
. N . assertThat(jsonObj.has(propertyName)).as("Property should not exist after
parameters. (jsonObj.get (propertyName) occurs three times.) removal®). isFalse();
assertThaﬂJsonObj.get(propertyName)).as(“Pmperty value should be null after
i removal”).isNull();
o PesEiiion RenltEiia assertThat(json0bj . remove(propertyName)).as("Removing non-existent property
The test has multiple non-documented assertions. ;’“’“1" return null®)-dsNuLL();

Fig. 1. An example of test refactoring within the Gson.

e We propose a novel approach that leverages code context information and integrates refactoring
DSL rules to enhance the test refactoring capabilities of LLMs, enabling the automatic elimination
of test smells and improving the quality of unit tests.

o We develop UTREFACTOR, a tool that assists developers and testers in automatically refactoring
test code in Java projects. It supports various levels of granularity, including single tests, test
files, and entire projects.

o We evaluate UTREFACTOR on 879 tests across six open-source projects, reducing the number of
test smells from 2,375 to 265, outperforming baselines in effectiveness.

2 Motivation

Developers often prioritize maintaining production code while neglecting the maintenance of test
code, which can lead to increased maintenance costs, such as those associated with regression
testing. [33]. To illustrate the quality issues in test code, we analyze the Gson project [8], a popular
Java library developed by Google, which has over 23.2k stars on GitHub and continues to be
actively maintained, including its test code. Figure 1 presents an intuitive example from the Gson’s
JsonObjectTest class. According to the test smell types defined by tsDetect [15], this test has been
identified with three distinct smells:

@ Eager Test: This is a common and challenging type of smell to refactor. It occurs when a test
method invokes several methods from the production code, making it harder to understand, main-
tain, and modify the test code effectively, as the test’s purpose becomes less clear. In this example,
this test suffers from the Eager Test smell because it is testing multiple behaviors—adding(add), re-
moving(remove), and checking(has and get) properties—within a single test method. This violates
the principle of Single Responsibility Principle (SRP) [14]. Each test method should focus on testing
a specific behavior or function. Otherwise, it becomes harder to pinpoint the root cause of failures
and reduce test clarity. To address this, each of these behaviors should be split into separate test
methods to ensure that the test remains focused and maintainable.

® Duplicate Assert: In this example, the repeated use of the same parameter propertyName
across multiple assertions leads to the identification of a Duplicate Assert smell. Eliminating this

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:4

Stepl. Preprocessing

=

Source Project
v

Test Extraction
v

Test Files Split Tests

Test Smell Detection

Step2. Test Refactoring Knowledge Base

Construction

Test Case Filtering

Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

Step3. Refactoring Test Generation

Refactoring Prompt Template
Generation

Bad Smell Tests

=

Removed Tests

Rewrite
Test

,—match

Assertion Roulette
A test nethod contain_

Test Smell Documey
Rule, Rule, Rule;

feedback Qsmell, Check @
+~————OQsmell, Check @

Qsmell,_Check

LLM Check Point
1 P e Refactoring Rules DSL
Test Smell Collection Rule, Rule; Rule, q generate
. build
Rules Sorting =—— refine %
9 <> |
Test Context \ @'g '° v
Construction Test Refactoring Knowledge Base Generated Test Refactored Test

Fig. 2. Overview of our approach.

smell can be achieved by either splitting the original test or transforming it into a Parameterized
Test, which removes the need for duplicate assertions by declaring parameterized values in an
annotation and executing the test method multiple times.

® Assertion Roulette: This is another common smell, indicating that multiple assertions in
a test lack clear identification of the reasons for failure, and make it difficult to locate the failing
assertion. To address this, each assertion should be supplemented with descriptive information that
clarifies its purpose. This allows developers to quickly identify and fix issues when the test fails.

These test smells demonstrate the potential risks in test code that can compromise its quality
and maintainability, highlighting the importance of systematically eliminating the existing smells.
Our tool, UTREFACTOR, is designed to automatically refactor unit tests and eliminate test smells,
thereby improving the quality of test code in existing software projects. Figure 1(right) shows tests
refactored using UTREFACTOR, which have successfully removed the three identified test smells.
Developers or testers can use UTREFACTOR to refactor individual unit tests, single test files, or all
tests in a project at once to eliminate smells and improve the overall quality of the software’s code.

Another potential benefit of automated test refactoring lies in its impact on LLMs, many of which
are trained on data from open-source communities. By improving the quality of the test code that
serves as training data, we can enhance the performance of LLMs in tasks such as test generation.
For instance, during the data preprocessing phase, we can refactor test code that contains smells
and use the cleaned, refactored code as training data. This approach may lead to more effective and
reliable LLM-generated tests.

3 approach

This section presents the details of our proposed approach UTREFACTOR. As shown in Figure 2, it
can be divided into three main steps:

Step @ Preprocessing. We begin by extracting the test code from the project and detecting
all test smells present. For tests that need to be refactored due to the presence of smells, we also

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:5

Table 1. Extracted test-related context information from the project.

Items Description

Package Name The name of the package where the focal method is lo-
cated, eg., org. jsoup.parser

Focal Class The name of the class containing the focal method.

eg., public class Parser

Focal Method Signature The signature of the focal method.
eg., public static Document parse(String html,
String baseUri)

Focal Method Comment The code comment for the focal method.
eg.,Parse HTML into a Document.

Other Invoke Methods The signatures of other methods invoked in the test.
eg., public static String unescapeEntities(
String string, boolean inAttribute).

extract relevant code context (such as the tested methods and classes) during this step, treating this
context as external knowledge for the LLM.

Step ® Test Refactoring Knowledge Base Construction. In this step, we design the types and
definitions of test smells to serve as external knowledge that the LLM can reference. Additionally,
we use a Domain-Specific Language (DSL) [28] to define corresponding refactoring rules for each
type of test smell, constructing a comprehensive refactoring knowledge base.

Step © Refactored Test Generation. This step focuses on generating the refactored test code.
We design a specialized prompt template tailored for the test refactoring task. Moreover, we employ
the Chain-of-Thought (CoT) [6] reasoning approach and propose a checkpoint mechanism to
improve the LLM’s performance in refactoring test code.

3.1 Preprocessing

As shown in Figure 2, this step involves three key processes: extracting the test code, identifying
test smells, and gathering relevant contextual information about the tests.

3.1.1 Test Extraction. First, UTREFACTOR automatically gathers all test files from the test directory
(e.g., src/test) within a given Java project. To avoid unnecessary detection of code smells and
refactoring overhead, during the extraction process, we analyze whether the test files contain
at least one method annotated with @Test and automatically filter out files that do not have the
@Test annotation. Besides, to analyze the focal methods in a fine-grained approach and meet the
requirements of test smell detection, we collect the corresponding classes under test in this step.
Specifically, we strip the prefix and suffix Test from the test file names (e.g., ParserTest—Parser),
and use this as an index to search for matching class files in the src/main directory. If a match is
successful, the test file and the corresponding class under test are paired and collected together.

3.1.2 Test Smell Detection. To detect test smells present in the project, we integrate the tsDetect [31],
an automated test smell detection tool for Java projects.

Refining Detection Granularity. Our UTREFACTOR performs refactoring at the level of indi-
vidual test methods, refactoring one test at a time. However, the tsDetect operates at a file-level
granularity, meaning it can detect test smells in a test file as a whole but cannot pinpoint smells
within specific test methods. To support the detection of smells at the level of individual test

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:6 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

methods, we refine the test smell detection granularity. Specifically, we employ a split-and-merge
approach: before smell detection, we split each test file into multiple sub-files, with each sub-file
containing a single test method and its necessary context. This ensures that tsDetect can analyze
each test method independently. After the refactoring process is completed, these sub-files are
merged back together into a complete test file based on the original split index.

3.1.3 Test Context Collection. Since refactoring operations are aimed at optimizing the code
structure without altering its functional logic, it is crucial to ensure that the LLM has a sufficient
understanding of the test code’s functionality before refactoring. Moreover, Yuan et al. [41] have
demonstrated that providing additional test context can significantly enhance the performance
of LLMs in test code generation tasks. Inspired by these findings and applying them to the task
of refactoring test code, we extract relevant contextual information from tests that exhibit smells
and use it as external knowledge to help the LLM better comprehend the original test’s intent, as
shown in Table 1.

In this step, we extract the contextual information for each test that requires refactoring. During
the subsequent refactoring steps, this information is integrated into the refactoring prompt template
as a knowledge source to assist the LLM in accurately understanding the test’s original intent.

3.2 Test Refactoring Knowledge Base Construction

In this step, we design the test smell types and corresponding refactoring rules as applicable external
knowledge, aiming to enhance the LLM’s understanding of test smells and effectively eliminate
those present in unit tests.

3.2.1 Test Smell Knowledge. In the smell detection step, we integrate tsDetect, which uses the 19
types of test smells defined by Peruma et al. [31]. Although they define test smells and provide
relevant code examples, the definition of test smells is not standardized across existing research,
and the types and numbers of smells can vary between studies.

Additionally, LLMs are trained on data
from various sources, such as blogs and
GitHub repositories, which can lead to signif- ., cxpertin the field oftest code refactoring, please cnumerate the types of
icant differences between LLMs in terms of ~ testcode smells along with their definitions.

training data. This variability leads to incon-

sistencies in how LLMs interpret test smells, - Missing Assertion
. . . A test that lacks assertions, making it impossible to verify the expected behavior.
which in turn affects the effectiveness of the Rt Test
. . .. ¢ Rigudity les
refaCtOrlng process. To illustrate this 1ssue, A test that is difficult to modify or extend, making it hard to adapt to changing

requirements or new functionality.

we use LLaMA-70b [12]. As shown in Figure 3,

when asked about the meaning of specific Atest is(c,‘;su:;:nplex or unclear setup/teardown, making it hard to

test smells, the LLM’s responses deviate from understand the test's purpose.

our expectations. For example, tsDetect does

not include Fragile Test in its list of smells. Fig. 3. An example of test smell explanation of the LLM.
Additionally, for the Mystery Guest smell,

LLaMA-70b provides a vague explanation, whereas tsDetect defines it as the presence of unused
variables in the setup/teardown method. There are also instances where the definitions are similar,
but the naming conventions differ. For example, Missing Assertion refers to a test method that
lacks a test oracle, but in tsDetect, this is categorized as Unknown Test.

To mitigate the impact of these inconsistencies on the refactoring process, we provide the LLM
with a clear and standardized set of test smell definitions before refactoring. Given that Peruma et
al. [31] provide comprehensive definitions, explanations, and code examples for 19 test smells in
Java, we use these to build part of the external knowledge base for test smells, providing it to the

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:7

LLM to eliminate inconsistencies in smell interpretation that could impact the refactoring process.
Due to space limitations, the detailed definitions of these smells are available in our replication
package [16]. For each smell type, we provide a structured definition, including a description of the
test smell, its impact, and a pseudocode example to illustrate the concept. During the refactoring
process, these standardized smell definitions guide the LLM’s interpretation of the smells present
in the test, ensuring consistent and accurate refactoring results.

3.2.2 Test Refactoring Rule DSL. To eliminate the smells present in tests, we design corresponding
refactoring rules for each type of smell. We draw on previous manual approaches to eliminating
test smells and empirical research on test smell refactoring [17]. Based on these insights and best
testing practices, we formalize DSL rules for each type of test smell, which form the foundation
of the entire refactoring process. In designing these DSLs, we exclude simple smell types such as
Default Test, which refers to default test classes automatically created by Android Studio when a
project is initialized and do not require refactoring. Similarly, we handle Ignored Test (tests marked
as ignored) and Empty Test (tests with empty method bodies) by simply removing the unit tests
that exhibit these smells. Finally, we define 13 method-level DSLs for Java test smells, aimed at
eliminating smells in unit tests. Due to space limitations, the complete set of DSLs is available in
our replication package [16]. Since these DSLs determine the methods and steps for eliminating
test smells, which is crucial for unit test refactoring, we evaluate the correctness of the DSL design
by assessing whether the refactored tests successfully eliminate the smells without introducing
new issues. This will be discussed in detail in subsequent sections.

We leverage LLMs to refactor tests with iden-
tified smells according to the provided refac- Rgefactorrule ::= {
toring rules. A common approach is to de- SmellType: String, # Corresponds to the type of test smell

Description: String, defined in the tsDetect tool.
scribe these refactoring rules in natural lan- Eigﬁzlefséizﬂple
guage as prompts for the LLM. While this ap- _ Variable: Variable
proach is straightforward and easy to under- itep -
stand, it presents challenges in practice: natural ~ Description: String,

. . . . Action: ActionType,
language can be ambiguous or imprecise, which ~ parameters: {ParameterName: Parametervalue}
may lead the LLM to generate code that does ’
not meet expectations, especially when multi- Adquecasperorssert | Exiraciiethod | RenoveConditional |
ple smells are present ina single test. Without a ConvertToParameterizedTest | RefactorMethod
clear strategy to guide the refactoring Process, ParameterName ::= TargetType | Annotation | TargetMethod
the LLM’s behavior can become unpredictable, éxzﬁzlggjmzzﬁzgtfe;gsLaégggztelns"““epatte'"" !
resulting in inconsistent outcomes. Moreover,
the lengthy natural language descriptions re-
quired for such complex cases can hinder the
LLM’s effectiveness in refactoring tests.

To address this issue, we propose using a
more precise Domain-Specific Language (DSL)
to express the test smell refactoring rules. The
advantage of using a DSL is that it allows for more precise and standardized descriptions of
refactoring steps, thereby reducing the risk of misinterpretation. Additionally, DSLs are typically
structured, which facilitates the extension and maintenance of new refactoring rules. In practice,
developers can easily add and update refactoring rules within the defined DSL structure. This
structured approach ensures that refactorings are consistent, predictable, and less prone to errors,
providing a clear framework for expanding the tool to accommodate new test smells and evolving

best practices in refactoring.

Example ::= {Before: String, After: String}
Variable ::= {VariableName: String, VariableValue: String}

Fig. 4. A hierarchical definition of the DSL structure
for test refactoring rules.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:8 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

Assertion Roulette

SmellType: Assertion Roulette Original Code Example Refactored Code Example
Description: Add descriptive
messages to assert statements. @Test @Test
Steps: public void testRoot() { public void testRoot() {
-Step: .// define span, el, el2 .// define span, el, el2
Action: AddMessageToAssert assertEquals("<a>Hello",
Description: Add descriptive assertEquals("<a>Hello</span | el.outerHtml(), "Element outerHtml should match
message to each assert statement. >", el.outerHtml()); expected output.”);
Parameters: assertNotNull("Selected span element should not be
MessagePattern: assertNotNull(span); null.", span)
{assertionMessage} assertSame(el, el2); assertSame("Root of span should be the initial
element.", el, el2);

(a) The definition of DSL rules for eliminating AR (Assertion Roulette) smell

Magic Number Test
SmellType: Magic Number Test Original Code Example Refactored Code Example
Description: Extract magic numbers and assign
meaningful names. @Test @Test
Steps: public void testIteratorRemovable(){ public void
-Step: X .) testIteratorRemovable_hasKeyAfterRemove
Action: IdentifyMagicNumbers . Attributes a = new Attributes(); 0 AL
Description: Identify magic numbers in a.put("Tot", "a&p"); Attributes a = new Attributes();
assertions. a.put("Hello", "There"); a.put("Tot", "a&p");
Parameters: a.put("data-name", "Jsoup"); a.put("Hello", "There");
SourcePattern: I,) a.put("data-name", "Jsoup");
assert({magicNumber}, {variable}) Iterator<Attribute> iterator = Iterator<Attribute> iterator =
-Step: . a.iterator(); a.iterator();
Action: ExtractVariable) Attribute attr = iterator.next(); Attribute attr = iterator.next();
Description: Extract number to a variable assertEquals("Tot", attr.getKey()); assertEquals("Tot", attr.getKey());
with meaningful name.
Parameters:
SourcePattern: | . iterator.remove();
assert({magicNumber}, {variable}) iterator.remove(); int expectedSize = 2;
ReplacementPattern: | assertEquals(2, a.size()); assertEquals(expectedSize, a.size(),
. int {meaningfulName} = ¥ “After removing 'Tot', there should be
{magicNumber}; » 2 attributes left");
assert({meaningfulName},
{variable})

(b) The definition of DSL rules for eliminating MNT (Magic Number Test) smell

Duplicate Assert

SmellType: Duplicate Assert) Original Code Example Refactored Code Example
Description: Eliminate duplicate assertions

with parameterized tests.

Steps:
-Step:) . @Test @ParameterizedTest
Action: ConvertToParameterizedTest public void testWholeText() { @CsvSource({
Description: Convert test method to a Document doc = Jsoup.parse('<p> "<p> Hello\nthere </p>,
parameterized test method. Hello\nthere </p>"); Hello\nthere ",
Parameters: “<p>Hello \n there</p>, Hello
TargetType: Method assertEquals(" Hello\nthere ", \n there",
-Step: doc.wholeText()); “<p>Hello <div>\n

Action: AddAnnotation . there</div></p>, Hello \n there"
Description: Declare parameterizable doc = Jsoup.parse(“<p>Hello \n 1)
values in @CSVS?WCG annotation. there</p>"); public void testWholeText(String input,
Parameters:) String expected) {
TargetType: Method assertEquals("Hello \n there",

Annotation: | doc.wholeText ; Document doc = Jsoup.parse(input);
@CsvSource({ "{paramValues}" }) 0); PP (input);

-Step:

o . doc = Jsoup.parse("<p>Hello <div>\n assertThat("The whole text does
Action: ModifyAssert . there</div></p>"); not match the expected value.",
Description: Use parameterized values. doc.wholeText(), is(expected));
. , ;

Parameters: . assertEquals("Hello \n there",

SourcePattern: | doc.wholeText()); +

public void TQ) { {stmts} }
ReplacementPattern: | }

public void T({params}) {{refactoredStmts}}

(c) The definition of DSL rules for eliminating DA (Duplicate Assert) smell

Fig. 5. DSL rules for refactoring three types of test smells, accompanied by code examples illustrating the
test code before and after refactoring.

The DSL we design for test smell refactoring is illustrated in Figure 4. Specifically, the SmellType
defines the specific category of test smell being addressed, ensuring that the appropriate refactoring
strategy is applied. The Description provides a concise explanation of how the refactoring will

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:9

be executed for this smell type. The Steps component breaks down the refactoring process into
a sequence of actions, enabling a fine-grained, step-by-step approach to modifying the test code.
Additionally, the Example provides before-and-after code snippets to demonstrate the practical
application of the refactoring, aiding in both understanding and verification. Finally, Variables
parameterize the refactoring logic, offering flexibility and reusability across different test cases. With
this structure, the DSL systematically defines and executes complex code refactoring operations,
which facilitates the automation of the test refactoring process.

Next, we present specific refactoring rules for test smells. Figure 5 illustrates three concrete
examples of these refactorings. For example, when a test contains multiple assert statements without
descriptive messages, it is flagged with the Assertion Roulette smell. During refactoring, the test
matches the DSL rule for the type Assertion Roulette. This rule guides the refactoring process by
specifying the action AddMessageToAssert, which involves adding meaningful descriptive messages
to each assert statement. Another example is when a test is identified with the Duplicate Assert
smell. In this case, the test matches the corresponding DSL rule for Duplicate Assert, which outlines
a three-step refactoring process to eliminate the smell: Step @ Replace the @Test annotation with
@ParameterizedTest to enable parameterized testing. Step ® Add the @CsvSource annotation.
This allows additional test cases to be added as parameters in @CsvSource, eliminating the need
for multiple assertEquals statements. Step ® Reduce duplicate code by writing the test logic
only once. Parameterized testing makes the test cases more intuitive and clearly expresses the
relationship between different inputs and expected outputs.

We put the details of DSLs on our replication package [16]. These rules are then provided to the
LLM as external knowledge during the refactoring process, guiding the LLM to refactor the test
according to the predefined rules.

3.2.3 Sorting Refactoring Rules. Considering that a single test often exhibits multiple types of
smells, it is crucial to determine the appropriate order of refactoring operations, as the sequence
can significantly impact the effectiveness of the final test code refactoring. To address this, we
categorize the test smell refactoring rules and assign them an execution priority. The LLM is then
instructed to eliminate test smells according to their priority, from highest to lowest.

We have classified refactoring operations into three categories based on their characteristics:
Removal, Structural Optimization, and Functional Optimization. @ Removal: This category includes
smells that require the test to be removed from the refactoring list rather than undergoing structural
adjustments. Examples include EmptyTest (test method with an empty body), Unknown Test (test
without assertions), and Default Test (automatically generated default tests). Prioritizing removal
operations helps to avoid unnecessary refactoring efforts for tests that do not contribute to code
quality. @ Structural Optimization: This category focuses on altering the existing structure of the
test code. Examples include Eager Test, where a test method calls multiple methods of the production
object, and Duplicate Assertion, where identical assertions are repeated within the same test method.
® Functional Optimization: This category targets improvements to assertion statements, such
as Assertion Roulette (where multiple assertions lack descriptive messages).

Structural Optimizations take precedence over Functional Optimization because a well-structured
test provides a solid foundation for functional improvements. For example, the Assertion Roulette
refactoring rule involves adding descriptive messages to assertions, and the Magic Number Test
refactoring rule extracts numeric literals into named variables. However, the Duplicate Assertion
refactoring rule eliminates duplicate assertions using parameterized tests, which could render the
optimizations of Assertion Roulette unnecessary if performed afterward. Therefore, it is crucial to
refactor Duplicate Assertion before applying other functional optimizations.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:10

Prompt Template

You are a Java testing expert, and now you need to refactor
the test code which contains bad test code smells.

Use a Chain-of-Thought approach to break down the
problem:

1. Understand the intent of the test,

2. Recognize the code smells present in the test code,
3. Comprehend the refactoring rules and measures, and
4. Refactor the test code accordingly.

Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

@Test public void testElementSiblingIndexSameContent() {
Document doc =

Jsoup.parse("<div><p>0ne</p>...<p>0One</p>...<p>0ne</p>");
Elements ps = doc.select("p");
assertTrue(0 == ps.get(0).elementSiblingIndex());
assertTrue(1 == ps.get(1).elementSiblingIndex());
assertTrue(2 == ps.get(2).elementSiblingIndex());

}

Package Name: org.jsoup.nodes

Focal Class: public class Element extends Node
Focal Method:
Get the list index of 1
public int elementSi

Other Used Method:
Parse HTML into a Do it
public static Document parse(String html)

The source code of the unit test is : [Test Code]

The context of the unit test contains : [Context] Duplicate_Assert Feature_: A test method that contains more than
one assertion statement with the same parameters.
SmellType: Magic Number Test
escription: Extract magic numbers and assign meaningful names
. . . tep:
This test contains the following code [SMELL] “Step
Action: IdentifyMagicNumbers
smells : Description: Identify magic numbers in assertions
SmellType: Duplicate Assert
. . . . D otion: EL ate dupl te assertions with pa t d tests.
To eliminate the code smells in this test, Steps: o eeTEns MR AT :
the corresponding DSL is: [psL] nt ConvertToParameterizedTest
Description: Convert test method to a parameterized test

Fig. 6. The Prompt Template used for test smell elimination, along with corresponding examples of prompts.

By following this prioritized refactoring approach, we ensure that the test code is improved in
an orderly manner, starting with essential removals, followed by structural enhancements, and
concluding with functional refinements.

3.3 Refactoring Test Generation

In this final step, we generate the refactored test code using the specially designed prompt template.
The template guides the LLM in applying the refactoring rules to eliminate the identified smells
from the test code.

3.3.1 Test Refactoring Prompt Design. Typically, when a developer or tester refactors a test, they
follow a process that involves: @ Understanding the intent of the test code, including what the
focal method does and how the assertions verify its behavior. @ Identifying the quality issues in
the current test, specifically recognizing any smells present. ® Most importantly, determining how
to refactor the test to eliminate these smells. @ Rewriting the test code accordingly. Our approach
is designed around these steps and is divided into four steps. This four-step strategy is based on the
Chain-of-Thought (CoT) paradigm, which enhances LLM reasoning capabilities by encouraging
step-by-step thinking, leading to better outcomes in tasks such as extraction and reasoning [24].

As illustrated in Figure 6, the complete prompt template based on CoT is designed to improve
the LLM’s ability to refactor tests. In guiding the LLM through the refactoring process, we simulate
the actual steps a developer takes. First, to understand the test’s intent, we provide the LLM with
the test code along with relevant context, such as the tested class and method signatures. Next, we
present the identified smells in the test and their corresponding definitions. Crucially, we supply the
DSL-defined refactoring rules tailored to each smell type. Finally, with this external knowledge, the
LLM proceeds to refactor the test. This structured approach ensures that the LLM closely follows a
logical and thorough process, much like a human developer or tester, resulting in more effective
and accurate test refactoring.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:11

3.3.2 Checkpoint Mechanism. When a test contains multiple smells, even with sufficient infor-
mation provided, the LLM may still miss eliminating some of the smells during refactoring. For
example, in the testSizeWhenHasInternal method from the Jsoup project, the test has four identi-
fied smells: Assertion Roulette, Eager Test, Duplicate Assert, and Magic Number Test. Despite explicitly
instructing the LLM to address all four types of smells in the prompt, in practice, the LLM often
fails to fully refactor tests with multiple smells.

To address this issue and mitigate incomplete refactoring by the LLM, we design a checkpoint
mechanism that allows the LLM to self-verify the completeness of its refactoring process. Specifically,
for each smell in the test, we set up a checkpoint that asks whether the refactored test still exhibits
the given issue. If the issue persists, the LLM continues refining the refactoring to eliminate the
smell. For tests with multiple smells, we construct a chain of smell checkpoints, as illustrated in
Figure 2. In the case of the test containing four smells, we collect the corresponding four checkpoints
and integrate them into the prompt. The LLM uses this list to systematically check whether the
smells have been fully removed. If any issues remain, the LLM will further adjust its refactoring
until the test is completely free of the identified smells. This checkpoint mechanism ensures that
even in complex cases with multiple smells, the LLM can perform thorough and effective refactoring,
ultimately leading to higher-quality test code.

3.3.3 Refactoring Test Generation. It is essential for developers or testers to understand which
tests have been refactored and the reasons behind these changes. To address this, we generate a
detailed test refactoring report in this step. This report includes a list of refactored tests, specifying
the file locations and test method names. It also outlines the detected smells for each test and
the corresponding refactoring methods applied. Additionally, to facilitate subsequent testing and
compilation, we organize the refactored test files and methods according to the original project’s
test structure.

4 Evaluation
Our experiments are designed to address the following research questions:

e RQ1: How is the quality of the test code after the refactoring of UTREFACTOR?
e RQ2: How effective is the refactoring of UTREFACTOR?

e RQ3: How effective is UTREFACTOR in eliminating each category of Test Smell?
e RQ4: What is the time efficiency of UTREFACTOR in test refactoring?

4.1 Experimental Setup

Dataset. We collect projects from GitHub, including those from well-known organizations (e.g.,
Apache [1]) and popular projects (e.g., Jsoup [11] with 10.9k stars). To facilitate the test refactoring
process, we set the following criteria for collection: first, to simplify test smell detection and make
refactoring easier to validate, we collect projects written in Java and managed by Maven. Second,
the source code of the project must compile successfully, and all unit tests are required to pass.
Finally, each project must exhibit at least 100 test smells as detected by the tsDetect [15]. Ultimately,
we select six open-source projects for our test refactoring experiments. As shown in Table 2,
UTREFACTOR’s integrated tool tsDetect identifies 879 unit tests with smells across these projects,
with a combined total of 2,375 test smells detected.

Baselines. For the baseline comparison of refactoring tools, we choose two tools for our unit
test refactoring benchmarks. First, TESTAXE [23], a tool implemented using the Rascal [13] meta-
programming language, primarily designed to automatically upgrade projects from jUnit 4 to JUnit
5 to automatically detect and eliminate test smells in Maven-managed Java projects. It is rule-based
and leverages features in the JUnit 5 testing framework to remove test smells. Second, considering

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:12 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

Table 2. Test refactoring dataset (#TSmell - number of tests with smells, #TS Num - number of test smells).

Project Tests #TSmell #TSNum LOC
Commons-cli [3] 334 85 149 5,716
Commons-compress [4] 1,585 37 263 29,249
Commons-math [5] 2,723 101 196 65,530
Gson [8] 1,348 293 788 21,416
Jfreechart [10] 2,291 148 324 40,354
Jsoup [11] 868 215 655 12,145
Total 9,149 879 2,375 174,510

that large language models (LLMs) inherently have the capability to refactor test code, we employ
a default open-source LLM (Llama3-70B) with a generic prompt as another comparison baseline. As
depicted in Figure 7, we use a standard prompt template, which provides the Llama3-70B with the
original test code and all detected test smell types. The LLM is then tasked with removing these
smells and generating the refactored test code.

Role: You are a Java testing expert, and now you need to refactor the test code which contains
bad test code smell.

User: Given the following Unit Test, and the Test Smells it contains, eliminate the smells
present in this test without altering the original functionality and logic of the test, and provide
the refactored test code.

Code and Smells: [Unit Test] [Test Smells]

Fig. 7. Prompt Template for default LLM used to eliminate smell in tests.

4.2 RAQ1: How is the quality of the test code after the refactoring of UTREFACTOR?

Since the test refactoring process must eliminate test smells without altering the original test
functionality, we first verify the quality of the refactored test code to ensure effective refactoring.
This includes checking for code errors and ensuring that the functionality remains unchanged.
Specifically, we first assess the syntax correctness of the refactored test code. To achieve this, we
calculate the compilation pass rate and test execution pass rate of all refactored tests, evaluating
whether UTREFACTOR introduces any errors during the structural changes that lead to compilation
or runtime failures.

Table 3 presents the quality of the refactored test code across all open-source projects. As shown,
UTREFACTOR refactor 879 unit tests with identified test smells from six open-source projects. The
#CPR column represents the compilation pass rate of the refactored tests. We manually compile
all refactored tests and calculate that the average compilation pass rate is 95%, with the highest
rate being 97% in the Jsoup project. #EPR represents the execution pass rate of the refactored
tests. Similarly, we manually execute all refactored tests and calculate an average #EPR of 89%,
with the highest rate reaching 92% in the Gson and Jsoup projects. This indicates that while the
refactoring process did introduce some errors, it remains largely effective, with the overall results
demonstrating a solid level of reliability.

We analyze the tests where UTREFACTOR introduces errors after refactoring. In the Gson project,
testStrictComments contains three assertions (assertStrictError) without descriptive infor-
mation, resulting in the detection of an AR (Assertion Roulette) smell. During the refactoring process,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:13

Table 3. Quality of refactored test code generated by UTREFACTOR (#RTests - number of tests after refactoring,
#CPR - test compilation pass rate, #EPR - test execution pass rate).

. Line Coverage | Branch Coverage
Project #RTests | #CPR | #EPR cov.(unchg dg.) cov.(unchg d.)g
Commons-cli 126 93% 89% 98% (V) 95% (V')
Commons-compress 65 92% 83% 84% (V) 75% (V)
Commons-math 144 95% 88% 92% (V') 85% (V')
Gson 469 94% | 92% 87% (V) 85% (V)
Jfreechart 314 95% 81% 54% (V') 45% (V')
Jsoup 404 97% | 92% 86% (V) 80% (V)
Total 1,522 | 95% | 89% 77% (V) 67% (V)

UTREFACTOR generates descriptive messages for each of the three assertions. However, a parameter
mismatch error occurs during compilation. Upon further analysis, we find that assertStrictError
is a built-in assertion in Gson, different from the standard jUnit assertions. This assertion only ac-
cepts two parameters: an exception describing the expected behavior and an expectedLocation
parameter. It does not support an additional message parameter. This conflicts with UTREFACTOR’s
DSL rule for refactoring AR smells, which requires assertions to include a message parameter,
leading to a compilation error and causing the smell to remain.

We calculate the coverage of tests that still pass after refactoring by using the Jacoco [9] test
coverage tool in each project. As shown in Table 3, we observe that UTREFACTOR does not alter
the original line coverage or branch coverage of the tests after refactoring. This indicates that
UTREFACTOR only restructures the code, such as refactoring assertions or breaking down test
methods, without changing the original functionality. It avoids introducing new calls to the project’s
production APIs or omitting existing conditions or function calls within the tests. This outcome
aligns with our expectations, as the goal of UTREFACTOR is to eliminate test smells and improve
test code quality, rather than modifying the underlying functionality.

Consistency of Refactoring. Given the challenge of determining functional and behavioral
consistency of test code before and after refactoring, we employ a more advanced model (GPT-40)
to evaluate the functional consistency of test code pre- and post-refactoring, supplemented by a
manual secondary review of the evaluation results. Specifically, we provide GPT-40 with all 879
pairs of test code that can be executed successfully before and after refactoring to assess whether
the changes involve only structural adjustments while maintaining functional consistency.

Table 4 indicates that 32 cases (approximately 4%)
Table 4. Classification of test inconsistencies be- are flagged as Inconsistent, which can be catego-

fore and after refactoring,. rized into three types: Firstly, regarding differences
in exception handling (18 cases), although GPT-40

Inconsistent Type Num identifies a behavioral change between the original
Exception Handling 18 test code’s throws exception handling and the DSL-
Redundant Assertion 9 refactored JUnit assertDoesNotThrow method, this
Redundant Variable Declaration 5 refactoring actually aligns with the design philos-

ophy of the JUnit 5 framework, providing a more
standardized exception verification mechanism.
Secondly, in terms of redundant assertion handling (9 cases), the current DSL strategy of directly
deleting redundant assertions is marked by GPT-4o as a potential behavioral change, prompting
us to plan an optimization of the refactoring rules to comment out redundant assertions and add

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:14 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

developer prompts. Lastly, concerning redundant variable declarations (5 cases), variables defined
during the setup phase are redundantly declared in subtests when splitting the original test into
multiple subtests. Although there is still room for improvement in UTREFAcTOR’s handling of
redundant assertions and duplicate variables, it performs excellently overall in maintaining test
functional consistency.

4.3 RQ2: How effective is the refactoring of UTREFACTOR?

We are next interested in evaluating the extent to which UTREFACTOR eliminates bad smells in
refactored test code that still passes execution, thus validating the effectiveness of UTREFACTOR in
test refactoring. Additionally, we compare and analyze UTREFACTOR’s effectiveness against two
baseline tools. To assess refactoring effectiveness, we focus on two key metrics in this research
question (RQ): the number of passing tests after refactoring and the number of remaining smells in
those tests. We also measure the change in the total number of smells before and after refactoring.
A higher reduction rate indicates greater effectiveness of our automated refactoring approach in
minimizing test smells across the project.

Table 5 shows the effectiveness of UTREFACTOR and the two baseline tools in refactoring tests
across six Java open-source projects. Out of the 2,375 test smells present across the six projects,
UTREFACTOR reduced the number to 265 after refactoring, achieving an average reduction rate
of 89%. The Commons-compress project shows the highest reduction rate, reaching 94%. This
demonstrates that UTREFACTOR is highly effective in reducing test smells. In particular, for the most
prevalent smell, AR (Assertion Roulette), UTREFACTOR had the most significant impact, completely
eliminating this smell by successfully adding descriptive messages to all assertions that lacked
them. The effectiveness of UTREFACTOR in addressing different types of test smells will be discussed
further in RQ3.

Comparison with TESTAXE. As shown in Table 5, TESTAXE achieves a 19% smell reduction
rate in the Commons-math project, while in the Commons-compress and Jsoup projects, the reduction
rate is less than 1%. In the Commons-cli, Gson, and Jfreechart projects, TESTAXE fails to eliminate
any test smells. TESTAXE primarily aims to upgrade projects from JUnit 4 to JUnit 5. During
this process, it uses JUnit 5 features to refactor existing tests and eliminate test smells. TESTAXE
relies on a set of built-in syntax matching and replacement rules for test refactoring. However, it
includes only five rules related to smell elimination, limiting its effectiveness. For example, it cannot
handle AR (Assertion Roulette), one of the most common test smells. Additionally, TESTAXE’s
replacement rules require strict matching with the original test code, meaning that any code
not covered by these rules remains unchanged. The biggest limitation of their approach is its
poor adaptability. For example, in handling ECT (Exception Catching Throwing) smells, TESTAXE
uses the ExpectedExceptionTransformation rule, which only matches patterns like throws in
function signatures. However, test cases often involve exceptions handled in try-catch blocks that
require refactoring, and since TESTAXE’s rules do not cover these patterns, it cannot eliminate such
exception smells. These limitations significantly reduce TESTAXE’s time efficiency in eliminating
and refactoring test smells.

Comparison with Llama3-70B. 1t is evident that when only providing the test code and
corresponding smell types to Llama3-70B for refactoring, it reduces a total of 1,080 smells across the
six projects, with an average reduction rate of 55%. This is lower than that achieved by UTREFACTOR.
This shows that while the LLM has the ability to refactor test smells, its effectiveness is limited.
After manual inspection of the LLM-refactored tests, we find that it performs best in handling AR
(Assertion Roulette) smells. In tests with AR smells, the LLM successfully adds descriptive messages
to assertions that lack them, which is attributed to its inherent code understanding capabilities.
However, it does not eliminate all AR smells. When multiple smells are present in a test, using

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:15

Table 5. Comparison results of test smell elimination effectiveness(#TS Num - number of Test Smells).

. UTREFACTOR | Llama3-70B TESTAXE
Project #TS Num aft. | rate aft. rate aft. rate
Commons-cli 149 21 | | 86% 94 137% - -
Commons-compress 263 16 | | 94% 55 179% | 261 || <1%
Commons-math 196 28 | | 86% 107 | [45% | 158 | | 19%
Gson 788 87 | 189% | 375 | [52% | - -
Jfreechart 324 4 | | 86% 197 | | 39% - -
Jsoup 655 69 | 191% | 252 | 162% | 635 | | <1%
Total 2,375 69 189% | 1,080 | | 55% | 2,315 | | <1%

the default prompt (as shown in Figure 6) often leads to incomplete smell elimination, leaving AR
smells unresolved. This issue is mitigated in UTREFACTOR by using a checkpoint mechanism, which
ensures that each smell is checked and eliminated after refactoring. For other types of smells, the
default LLM’s ability is also limited. For example, in handling exception-related smells, without the
structured refactoring DSL rules designed in UTREFACTOR, the Llama3-70B often tends to simply
replace throws statements with try-catch blocks, which does not effectively remove the smell.
Overall, the default LLM exhibits more randomness in test refactoring. This characteristic becomes
more prominent when multiple smells are present in a single test, resulting in unpredictable
refactoring outcomes. In contrast, UTREFACTOR, with its integration of external knowledge and
structured refactoring rules, consistently delivers more effective and stable smell elimination.

Effectiveness of Assertion Roulette Elimination. Adding any string message to assertions can
eliminate the Assertion Roulette (AR) smell. However, the generated messages should clearly convey
the intent of the assertion. To evaluate the quality of these messages, we conduct an experiment us-
ing GPT-40, which is tasked with evaluating messages based on two criteria: @ Is the message clear
and explicit? ® Does the message align with the intent of the assertion? In this experiment,
we collect all 1,230 generated assertion messages. The results show that only 43 messages (3.5%) are
flagged as Unclear, and all of these messages fail to meet criterion @ (clarity of the message). After
manual review, we find that these cases share a common feature: they lack sufficient context. For
example, numerical variables (such as Magic Numbers) are extracted as constants with meaning-
ful names. assertEquals(expectedDatasetIndex, 1li.getDatasetIndex(), "The dataset
index of the legend item should be 1"), GPT-40 marks the message as unclear because it
misinterprets expectedDatasetIndex as a variable rather than a constant. However, the generated
message is reasonable, as the intent behind it is clear. Therefore, we conclude that LLMs can
generate clear and descriptive assertion messages that align with the intent of the assertion.

Ablation of the DSL. We conduct an ablation study by comparing the effectiveness of UTRE-
FACTOR with a version excluding the DSL, while keeping all other aspects the same (e.g., detailed
descriptions of test smells, test context, and the smell checkpoint mechanism). The results show
that without the DSL the reduction rate of test smells is 67%, which is an improvement over using
LLM alone (55%) but significantly lower than the 89% achieved with the DSL.

Additionally, the natural language descriptions of test smells allow the LLM to partially address
them effectively. For example, in 509 cases of Exception Catching Throwing, 175 cases (34%) suc-
cessfully eliminate the smell using assertDoesNotThrow or assertThrow. However, the remaining
cases show randomness, such as removing try-catch blocks or replacing throws with try-catch. In
contrast, the DSL clearly defines rules for eliminating such smells, covering different scenarios (e.g.,
adding exception descriptions), leading to more consistent results.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:16 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

B Before
600] 585 [After

Smell count reduced from 2,375 to 265.

Top3 most common smells significantly
reduced by UTRefactor.

00

Test Smell Count

I
2
3

100]

AR CTL DA ECT T ETa IT MG MNT R RO SE uT
Test Smell Types

Fig. 8. Changes in the number of each type of test smell before and after test refactoring in UTREFACTOR
(MG=Mystery Guest, RO=Resource Optimism, MNT=Magic Number Test, SE=Sensitive Equality, ETa=Eager
Test, DA=Duplicate Assert, CTL=Conditional Test Logic, ECT=Exception Catching Throwing, AR=Assertion
Roulette, RA=Redundant Assertion, IT=Ignored Test, UT=Unknown Test, ET=Empty Test).

Finally, we analyze all refactored tests that fail at runtime after successful compilation. Most
failures occur when handling Duplicate Assertions, as our DSL refactors the original tests into JUnit
5 parameterized tests. The LLM occasionally introduces errors in the parameterized data provided
via @CsvSource, causing runtime failures. We find that the LLM struggles with converting tests
into the parameterized format.

4.4 RQ3: How effective is UTREFACTOR in eliminating each category of Test Smell?

In this research question, we focus on UTREFACTOR’s ability to eliminate different types of test
smells. Refactoring based on the type of code smells can lead to the same test being refactored
multiple times, as many smells often coexist within a single test. Additionally, the order in which
refactoring is performed can influence the final outcome (sec 3.2.3). To address these challenges,
our refactoring process targets individual tests and simultaneously eliminates all smells. We first
detect and collect all types of test smells present in the six open-source projects. We then analyze
how effectively UTREFACTOR removes these smells.

As noted in RQ2, UTREFACTOR successfully reduces the total number of test smells from 2,375
to 265. Figure 8 provides detailed data on UTREFACTOR’s ability to eliminate each type of test
smell. From the figure, we observe that UTREFACTOR completely eliminates the most prevalent
type, i.e., AR (Assertion Roulette) smell. This success is due to UTREFACTOR’s integration of LLM
code understanding capabilities, enabling it to infer appropriate descriptive messages based on the
specific assert statements and surrounding code context. These messages help developers quickly
identify the cause of errors when tests fail. Additionally, UTREFACTOR shows significant refactoring
results for the two other high-frequency smells, ECT (Exception Catching Throwing) and ETa
(Eager Test), reducing their numbers from 526 and 509 to 54 and 20, respectively.

We manually review the refactored tests generated by UTREFACTOR and analyze its effectiveness
in eliminating each type of smell. Taking ETa (Eager Test) as an example, this smell occurs when a
test includes assertions for multiple production functions, making the test’s purpose unclear and
violating the best practice of the single responsibility principle. The refactoring approach for this

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:17

smell is to split the test based on the production functions it verifies. UTREFACTOR’s advantage in
eliminating ETa is demonstrated in two ways. First, its ETa DSL clearly defines how to identify API
assertions, split the test, and generate new test methods. Second, with the help of LLM, UTREFACTOR
can understand and reason based on context, effectively handling complex code structures while
avoiding the randomness typically associated with LLM-generated tests.

For the cases where smell elimination failed,

we conducted a manual review and analysis. TG

BN UTREFACTOR

From the Figure 8, UTREFACTOR’s ability to Hams-703 s

— TestAXE

handle certain less frequent smells is some-
what limited. A notable example is SE (Sen- .
sitive Equality), which occurs when the de- 2
fault toString method is used in assertions. The
refactoring approach for this smell requires ei-
ther the project to have overridden the toString
method or to provide an equivalent method
for object comparison. In other words, if the ’ Clii Compress Mah Gson Jfcechant Jsoup
project neither overrides toString nor offers a

functionally equivalent method, UTREFACTOR Fig.9. Comparison of time costs between UTREFACTOR
is unable to remove this type of smell. Overall, and two baseline tools across each project.

across the six open-source projects, UTREFAC-

TOR shows less effectiveness in addressing this smell type, primarily due to the lack of overridden
toString methods or alternative methods in the project.

:::::

4.5 RQ4: What is the time efficiency of UTREFACTOR in test refactoring?

In this research question, we focus on the time efficiency of UTREFAacTOR during the test refactoring
process. We first collect the time data for each step of UTREFACTOR and then compare the total
time with the two baseline tools.

Table 6 illustrates the time spent by UTREFACTOR
Table 6. Time consuming(s) for each step of refac- at each refactoring step. Across all six open-source

toring tests in UTREFACTOR. projects, the total time from detecting test smells
to refactoring the 879 tests with identified smells is
Project Step1 Step2 Step3 4,379 seconds, averaging 3.8 seconds per test. This
Chi ” 1 221 highlights UTREFACTOR’s efficiency in terms of time
Compress 69 3 101 consumption. Moreover, to accommodate various
Math 258 6 235 real-world refactoring scenarios, such as automat-
Gson 64 4 988 ically refactoring test smells immediately after de-
Jireechart 90 5 697 velopers write a test or refactoring the entire test
Jsoup 31 2 1,127 code of an existing project, UTREFACTOR supports
Total 536 (12%) 24 (<1%) 3,369 (87%)

refactoring at different levels: a single test, a single
test file, or all test files within a project.

5 Discussion
5.1 Strengths of UTREFACTOR

In UTREFACTOR, we explore how LLMs perform automatic test refactoring tasks, guided by rules
described in DSLs. This approach simulates the process that developers or testers follow during
refactoring, from understanding the test’s intent and identifying test smells to following step-by-
step instructions outlined in the DSL. Compared to directly using an LLM for test refactoring,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:18 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

UTREFACTOR significantly reduces the risk of random errors, which can make the refactoring
process unpredictable.

To further illustrate this issue, we randomly select 100 cases where the LLM fails to eliminate
smells and conduct an analysis. Among them, 65 cases fail due to the LLM’s arbitrary refactoring
behavior, such as removing throws declarations or try-catch blocks without resolving the Exception
Catching Throwing smell. 22 cases fail due to hallucinations during the elimination of the Eager
Test smell, where the LLM introduces non-existent functions or variables into split tests. 23 cases
fail because the LLM generates helper methods with empty bodies and comments instructing users
to complete them.

5.2 Integration of UTREFACTOR with LLMs

Closed-source LLMs often come with high token usage costs, and their large parameter sizes
lead to significant deployment expenses. To address this, UTREFACTOR uses the open-source and
free Llama3-70B model. However, considering the tool’s extensibility, UTREFACTOR also supports
replacing Llama3-70B with other LLM models. ChatGPT [2] is a widely recognized model and the
current stable version GPT-4o [7]. We design an experiment to demonstrate that UTREFACTOR
effectively eliminates test smells using alternative LLM models. As shown in Table 7, we compare
two setups: one using the default GPT-40 with the general prompt (as illustrated in Figure 7) and
another using UTREFACTOR with Llama3-70B replaced by GPT-40. We randomly select 100 tests
with smells from six open-source datasets, containing a total of 251 test smells. After refactoring
the tests, Table 7 shows that using GPT-4o with the default prompt achieves a smell reduction rate
of 55%, whereas UTREFACTOR achieves a reduction rate of 91%.

We manually review the test refactoring results us-
Table 7. Effectiveness of UTREFACTOR integrated ing GPT-4o0. Without guidance from external knowl-

with GPT-40 in eliminating test smells. edge on test smells, the default GPT-40 encounters
issues in eliminating smells. For example, in the

Tool #TS Num | aft.(rate) testFindRangeBounds of the jfreechart, where four
Default GPT-40 251 108 (157%) types of smells are present. GPT-40 removes only
UTREFACTOR (GPT-40) 251 23(I91%) three smells but fails to eliminate the most common

smell, Assertion Roulette. In other cases, we observe
that GPT-4o attempts to address Assertion Roulette by adding comments to assertion statements
instead of explicitly adding a message, which does not properly resolve the smell.

In contrast, UTREFACTOR leverages its DSL to clearly instruct the addition of a message to
assertions and ensure that all smells are addressed during refactoring, avoiding the issues caused
by the default LLM approach. In another example, the testDrawWithNullInfo contains a complex
try/catch structure detected as Exception Catching Throwing. GPT-4o simply removes this block
and adds an explicit throw in the method signature, but this fails to eliminate the smell. By contrast,
guided by UTREFAacTOR’s DSL, the tool uses assertNotThrow to replace the try/catch block and
successfully resolves the smell. This demonstrates that UTREFACTOR effectively eliminates smells
even when using other LLMs like GPT-4o.

5.3 Threats to Validity

Threats to internal validity. To minimize hallucinations and reduce errors during the test smell
elimination process, we provide LLMs with sufficient context related to test refactoring and design
a refactoring DSL to guide the LLM step by step in removing test smells. However, the DSL in
UTREFACTOR may not cover every possible scenario, which can impact the overall effectiveness
of the test refactoring. Our refactoring DSL is designed as a flexible, external configuration file,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

Automated Unit Test Refactoring FSE033:19

making it easy to extend. For example, new smell types can be addressed by simply adding or
updating DSL files, modifying refactoring steps to accommodate a broader range of scenarios.

Threats to external validity. We integrate the tsDetect tool into our process for test smell
detection. This tool uses a built-in Java parser to analyze test code and identify smells, currently
supporting Java versions up to 13. For incompatible Java versions, tsDetect may encounter syntax
parsing errors during detection, which could prevent the identification of test smells, thus impacting
the effectiveness of smell elimination. Given that test smell detection tools are continually evolving,
UTREFACTOR is designed to be highly extensible, allowing for the replacement of the built-in test
smell detection tool. When encountering incompatible Java versions, a more robust detection tool
can be integrated to address undetected smells, thereby improving the overall performance of the
test refactoring process.

6 RELATED WORK

The Impact and Refactoring of Test Smells. Several studies [20, 21, 26, 27, 29, 32, 33, 35-37]
have focused on the impact of test smells, including how they affect the development process,
software maintenance, and comprehension. To investigate how much developers acknowledge
the presence of test smells, Soares et al. [36] conducted a study with 73 experienced open-source
developers across 272 projects. They analyzed preferences and motivations related to 10 identified
test smells by comparing the original and refactored versions of test code. The results showed
that 78% of developers acknowledged the negative impact of test smells and preferred refactored
tests. Besides, they explored the use of new JUnit 5 features to eliminate and prevent test smells in
another study [37]. In an empirical study on 485 popular Java open-source projects from GitHub,
Soares et al. found that only 15.9% of projects used the JUnit 5 library. By applying seven JUnit 5
features to address test smells, they conducted a survey of 212 developers and submitted 38 pull
requests, achieving a 94% acceptance rate among respondents.

Test Smell Detection. There are many research methods and tools [18, 19, 22, 25, 30, 31, 34,
38-40] available for detecting test smells across different programming languages. Palomba et
al. [30] developed TASTE, an automated textual-based tool for detecting several types of test smells.
Compared to previous structure-based detection methods, this tool improved smell detection
effectiveness by 44%. Peruma et al. [31] recently developed a tool called tsDetect, capable of detecting
19 test smells in Java. It used a set of detection rules to locate existing test smells in test code.
Wang et al. [39] proposed a tool called PYNOSE, designed to detect 17 types of test smells within
Python’s standard Unittest framework, and introduced a new test smell type called Suboptimal
Assert. PYNOSE was available as a plugin for PyCharm, and in an empirical study conducted across
248 Python projects, they found that 98% of projects contained at least one type of test smell. Unlike
work focused on test smell detection, our research aims to explore how the latest large language
models could improve the performance of eliminating detected smells.

7 Conclusion and Future Work

This paper introduces UTREFACTOR, a tool that focuses on the automatic detection and refactoring of
test smells. In this work, we explore how leveraging refactoring DSLs and incorporating test context
knowledge optimize and enhance the ability of open-source LLMs to automatically refactor test
code. UTREFACTOR supports multiple test smell types and eliminates smells at varying granularities.
Compared to existing methods, UTREFACTOR demonstrates greater effectiveness in eliminating
various types of test smells from code. In the future, we plan to extend our refactoring rules to
support additional programming languages, such as Python and C/C++. Additionally, we intend to
investigate the impact of using different LLM sizes and parameters on the test refactoring process.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

FSE033:20 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia

8

Data Availability

Our tool is available at [16].

Acknowledgments

This work was supported by the National Key R&D Program of China (No. 2024YFB4506400) and
sponsored by CCF-Huawei Populus Grove Fund.

References

[1] [n.d.]. Apache. https://www.apache.org/.

[2] [n.d.]. ChatGPT. https://chat.openai.com/.

[3] [n.d.]. Commons-cli. https://github.com/apache/commons-cli.

[4] [n.d.]. Commons-compress. https://github.com/apache/commons-compress.

[5] [n.d.]. Commons-math-legacy. https://github.com/apache/commons-math/tree/master/commons-math-legacy.
[6] [n.d.]. CoT. https://arxiv.org/abs/2201.11903.

[7] [n.d.]. GPT-4o. https://openai.com/index/hello-gpt-4o/.

[8] [n.d.]. Gson. https://github.com/google/gson.

[9] [n.d.]. Jacoco. https://www.jacoco.org/jacoco/trunk/index.html.

[10] [n.d.]. Jfreechart. https://github.com/jfree/jfreechart.

[11] [n.d.]. Jsoup. https://github.com/jhy/jsoup.

[12] [n.d.]. Llama3-70B. https://huggingface.co/meta-llama/Meta-Llama-3-70B.

[13] [n.d.]. Rascal. https://www.rascal-mpl.org/.

[14] [n.d.]. SRP. https://en.wikipedia.org/wiki/Single-responsibility_principle.

[15] [n.d.]. tsDetect. https://github.com/TestSmells/TSDetect.

[16] [n.d.]. UTRefactor. https://github.com/testmigrator/testsmellrefactoring.

[17] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2023. Empirical analysis of security vulnerabilities in python
packages. Empirical Software Engineering 28, 3 (2023), 59.

[18] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mohamed Wiem Mkaouer, Ali Ouni, Christian D
Newman, Abdullatif Ghallab, and Stephanie Ludi. 2021. Test smell detection tools: A systematic mapping study. In
Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering. 170-180.

[19] Alexandru Bodea. 2022. Pytest-Smell: a smell detection tool for Python unit tests. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis. 793-796.

[20] Humberto Damasceno, Carla Bezerra, Denivan Campos, Ivan Machado, and Emanuel Coutinho. 2023. Test smell
refactoring revisited: What can internal quality attributes and developers’ experience tell us? Journal of Software
Engineering Research and Development (2023), 13-1.

[21] Humberto Damasceno, Carla Bezerra, Emanuel Coutinho, and Ivan Machado. 2022. Analyzing test smells refactoring
from a developers perspective. In Proceedings of the XXI Brazilian Symposium on Software Quality. 1-10.

[22] Phongphan Danphitsanuphan and Thanitta Suwantada. 2012. Code smell detecting tool and code smell-structure bug
relationship. In 2012 Spring congress on engineering and technology. IEEE, 1-5.

[23] Estevan Alexander de Paula and Rodrigo Bonifécio. 2022. TestAXE: Automatically Refactoring Test Smells Using JUnit
5 Features. In Congresso Brasileiro de Software: Teoria e Pratica (CBSoft). SBC, 89-98.

[24] Xueying Du, Geng Zheng, Kaixin Wang, Jiayi Feng, Wentai Deng, Mingwei Liu, Bihuan Chen, Xin Peng, Tao Ma, and
Yiling Lou. 2024. Vul-RAG: Enhancing LLM-based Vulnerability Detection via Knowledge-level RAG. arXiv preprint
arXiv:2406.11147 (2024).

[25] Daniel Fernandes, Ivan Machado, and Rita Maciel. 2022. TEMPY: Test smell detector for Python. In Proceedings of the
XXXVI Brazilian Symposium on Software Engineering. 214-219.

[26] Yutaro Kashiwa, Kazuki Shimizu, Bin Lin, Gabriele Bavota, Michele Lanza, Yasutaka Kamei, and Naoyasu Ubayashi.
2021. Does refactoring break tests and to what extent?. In 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 171-182.

[27] Luana Martins, Taher A Ghaleb, Heitor Costa, and Ivan Machado. 2024. A comprehensive catalog of refactoring
strategies to handle test smells in Java-based systems. Software Quality Journal (2024), 1-39.

[28] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to develop domain-specific languages.
ACM computing surveys (CSUR) 37, 4 (2005), 316—-344.

[29] Nicholas Alexandre Nagy and Rabe Abdalkareem. 2022. On the co-occurrence of refactoring of test and source code.

In Proceedings of the 19th International Conference on Mining Software Repositories. 122-126.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

https://www.apache.org/
https://chat.openai.com/
https://github.com/apache/commons-cli
https://github.com/apache/commons-compress
https://github.com/apache/commons-math/tree/master/commons-math-legacy
https://arxiv.org/abs/2201.11903
https://openai.com/index/hello-gpt-4o/
https://github.com/google/gson
https://www.jacoco.org/jacoco/trunk/index.html
https://github.com/jfree/jfreechart
https://github.com/jhy/jsoup
https://huggingface.co/meta-llama/Meta-Llama-3-70B
https://www.rascal-mpl.org/
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://github.com/TestSmells/TSDetect
https://github.com/testmigrator/testsmellrefactoring

Automated Unit Test Refactoring FSE033:21

[30] Fabio Palomba, Andy Zaidman, and Andrea De Lucia. 2018. Automatic test smell detection using information retrieval
techniques. In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 311-322.

[31] Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba.
2020. Tsdetect: An open source test smells detection tool. In Proceedings of the 28th ACM joint meeting on european
software engineering conference and symposium on the foundations of software engineering. 1650-1654.

[32] Adriano Pizzini. 2022. Behavior-based test smells refactoring: Toward an automatic approach to refactoring eager test
and lazy test smells. In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings. 261-263.

[33] Adriano Pizzini, Sheila Reinehr, and Andreia Malucelli. 2023. Sentinel: A process for automatic removing of Test
Smells. In Proceedings of the XXII Brazilian Symposium on Software Quality. 80-89.

[34] Valeria Pontillo, Dario Amoroso d’Aragona, Fabiano Pecorelli, Dario Di Nucci, Filomena Ferrucci, and Fabio Palomba.
2024. Machine learning-based test smell detection. Empirical Software Engineering 29, 2 (2024), 55.

[35] Railana Santana, Luana Martins, Tassio Virginio, Larissa Rocha, Heitor Costa, and Ivan Machado. 2024. An empirical
evaluation of RAIDE: A semi-automated approach for test smells detection and refactoring. Science of Computer
Programming 231 (2024), 103013.

[36] Elvys Soares, Marcio Ribeiro, Guilherme Amaral, Rohit Gheyi, Leo Fernandes, Alessandro Garcia, Baldoino Fonseca,
and André Santos. 2020. Refactoring test smells: A perspective from open-source developers. In Proceedings of the 5th
Brazilian Symposium on Systematic and Automated Software Testing. 50-59.

[37] Elvys Soares, Marcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and André Santos. 2022. Refactoring test smells with
junit 5: Why should developers keep up-to-date? IEEE Transactions on Software Engineering 49, 3 (2022), 1152-1170.

[38] Tassio Virginio, Luana Martins, Larissa Rocha, Railana Santana, Adriana Cruz, Heitor Costa, and Ivan Machado. 2020.
Jnose: Java test smell detector. In Proceedings of the XXXIV Brazilian Symposium on Software Engineering. 564-569.

[39] Tongjie Wang, Yaroslav Golubev, Oleg Smirnov, Jiawei Li, Timofey Bryksin, and Iftekhar Ahmed. 2021. Pynose: a test
smell detector for python. In 2021 36th IEEE/ACM international conference on automated software engineering (ASE).
IEEE, 593-605.

[40] Yanming Yang, Xing Hu, Xin Xia, and Xiaohu Yang. 2024. The Lost World: Characterizing and Detecting Undiscovered
Test Smells. ACM Transactions on Software Engineering and Methodology 33, 3 (2024), 1-32.

[41] Zhigiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, Xin Peng, and Yiling Lou. 2024. Evaluating and
improving chatgpt for unit test generation. Proceedings of the ACM on Software Engineering 1, FSE (2024), 1703-1726.

Received 2024-09-13; accepted 2025-01-14

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE033. Publication date: July 2025.

	Abstract
	1 Introduction
	2 Motivation
	3 approach
	3.1 Preprocessing
	3.2 Test Refactoring Knowledge Base Construction
	3.3 Refactoring Test Generation

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: How is the quality of the test code after the refactoring of UTRefactor?
	4.3 RQ2: How effective is the refactoring of UTRefactor?
	4.4 RQ3: How effective is UTRefactor in eliminating each category of Test Smell?
	4.5 RQ4: What is the time efficiency of UTRefactor in test refactoring?

	5 Discussion
	5.1 Strengths of UTRefactor
	5.2 Integration of UTRefactor with LLMs
	5.3 Threats to Validity

	6 RELATED WORK
	7 Conclusion and Future Work
	8 Data Availability
	Acknowledgments
	References

