
Identify and Update Test Cases when Production
Code Changes: A Transformer-based Approach

Xing Hu∗, Zhuang Liu∗, Xin Xia†§, Zhongxin Liu†, Tongtong Xu‡, Xiaohu Yang†
∗School of Software Technology, Zhejiang University, Ningbo, China

†College of Computer Science and Technology, Zhejiang University, Hangzhou, China
‡Software Engineering Application Technology Lab, Huawei, Hangzhou, China

{xinghu,liuzhuang,liu zx,yangxh}@zju.edu.cn, xin.xia@acm.org,xutongtong9@huawei.com

Abstract—Software testing is one of the most essential parts of
the software lifecycle and requires a substantial amount of time
and effort. During the software evolution, test cases should co-
evolve with the production code. However, the co-evolution of test
cases often fails due to tight project schedules and other reasons.
Obsolete test cases improve the cost of software maintenance
and may fail to reveal faults and even lead to future bugs.
Therefore, it is essential to detect and update these obsolete test
cases in time. In this paper, we propose a novel approach CEPROT

(Co-Evolution of Production-Test Code) to identify outdated test
cases and update them automatically according to changes in the
production code. CEPROT consists of two stages, i.e., obsolete test
identification and updating. Specifically, given a production code
change and a corresponding test case, CEPROT first identifies
whether the test case should be updated. If the test is identified
as obsolete, CEPROT will update it to a new version of test case.
To evaluate the effectiveness of the two stages, we construct
two datasets. Our dataset focuses on method-level production
code changes and updates on their obsolete test cases. The
experimental results show that CEPROT can effectively identify
obsolete test cases with precision and recall of 98.3% and 90.0%,
respectively. In addition, test cases generated by CEPROT are
identical to the ground truth for 12.3% of samples that are
identified as obsolete by CEPROT. We also conduct dynamic
evaluation and human evaluation to measure the effectiveness
of the updated test cases by CEPROT. 48.0% of updated test
cases can be compiled and the average coverage of updated cases
is 34.2% which achieves 89% coverage improvement over the
obsolete tests. We believe that this study can motivate the co-
evolution of production and test code.

Index Terms—Test code maintenance, Mining Software Repos-
itories, Software Evolution

I. INTRODUCTION

Software testing is generally considered as one of the most

crucial parts of the software development lifecycle [1], [2]. It

helps to identify potential faults and ensure software system

quality [3]. Generally, the source code continuously changes to

satisfy new requirements or cope with possible issues during

the software evolution [4]. To ensure the software quality,

the corresponding test cases should co-evolve alongside the

changed production code. Unfortunately, the co-evolution of

the production code and test code is often missing during the

software evolution due to the lack of time to maintain tests

or enough knowledge to identify whether tests need to be

updated [5]. To illustrate the influence of the obsolete test

§Corresponding author

��

�� public static String apiKey;
�� public static String apiBase = "https://api.conekta.io";
�� � public static String apiVersion = "1.1.0";
�� � public static final String VERSION = "2.0.4";

�� 	 public static String apiVersion = "2.0.0";

�� 	 public static final String VERSION = "2.1.0";

�
 public static String locale = "es";

�� public void testSuccsessfulPrevious() throws JSONException, Error, ErrorList{
�� 	 setApiVersion("2.0.0");
�� Order last = (Order) list.get(0);
�� JSONObject paginateParams = new JSONObject("{ 'limit': 10 }");
�� ConektaList lastWindow = Order.where(paginateParams);

�������	�
 ���� ��	���� �
������������ �������

���� ���� ��	���� �
������������ �������

����������������������	���

�����������������������
��������	���

Fig. 1. An example with obsolete test code.

cases, we show an example of project Conekta [6] in Figure

1. We can find that the API version in the production code was

updated to 2.0.0 on 16 Feb 2017. However, it was only on 18

Oct 2019, the API version used in the corresponding test cases

was set to 2.0.0. Although the production code passed the test

and did not report failures, the new version APIs were never

tested during this period and might fail to reveal faults in the

production code. Just as the description in the test updating

commit, “The java library Junit test needed to be fixed. Many
of the tests where failing due to an encapsulating error with
the method SetApiVersion. Also, other minor bugs where
fixed regarding outdated references in the test”, and many bugs

may be introduced from obsolete test cases.

Therefore, many techniques are proposed to mine and

analyze the production and test code co-evolution rules and

patterns [7], [8], [5], [4]. For example, Zaidman et al. [7]

mined the data from version control systems to study the

co-evolution of production and test code. Some studies use

association rule mining techniques to generate co-evolution

patterns [4], [9]. Recently, Wang et al. [8] conducted an

empirical study to understand the practice of production-

test co-evolution. Then, they proposed an approach named

SITAR to facilitate the co-evolution of production and test

code by extracting features and leveraging machine-learning

techniques. According to their findings, updating existing test

code with the production code changes is significantly more

frequent than other co-evolution types, e.g., adding/deleting

test code. However, their approach SITAR performed worst on

predicting whether existing test code should be updated with

1111

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00165

20
23

 3
8t

h 
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
ut

om
at

ed
 S

of
tw

ar
e 

En
gi

ne
er

in
g 

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

16
5

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



the production code changes than other types. Besides, the test

co-evolution is a difficult task since even minor changes in the

production code can significantly affect test code [10].
Inspired by their study, if existing test cases that need to be

updated can be automatically identified and co-evolved, it is

possible to reduce and even avoid the introduction of obsolete

test cases. Different from Wang et al. [8] that only propose to

identify obsolete test cases, in this paper, we further propose

updating the identified obsolete test cases.
We propose a novel approach named CEPROT to automate

the task, i.e., co-evolution of the production and test code

(shorted as production-test co-evolution task in the rest of this

paper). It includes two stages: � CEPROT identifies whether a

test case should be updated while the production code changes;

� it updates the test case according to the production code

changes simultaneously. However, the co-evolution task of

identifying and updating a test case is non-trivial. Existing

techniques usually define heuristic rules and extract features

manually to associate the production and test code changes [4].

It is time-consuming and labor-intensive to construct rules and

features. Moreover, there is a lack of effort to combine the

detection and updating of obsolete test cases as a whole and

perform automatic end-to-end production-test co-evolution.
To build a more effective tool that helps developers co-

evolve production code and test code, we propose to learn

from code changes of production code and update existing test

code. However, making such a tool is difficult with respect to

the following challenges:

• Representing production code changes. Identifying and

updating obsolete test cases should understand production

code changes. Code changes include two versions of pro-

duction code that consist of a sequence of code tokens.

Each position of the code token has its corresponding edit

action, such as, “add”, “delete”, and “replace”. Therefore,

we should learn fine-grained code changes from edit actions

to determine whether the corresponding test should be

updated and how to update.

• Identifying and updating obsolete test based on code
changes. In this study, we should learn from two versions

of production code, code change edits, and the existing

test to resolve the co-evolution of the production-test code

task. This task includes two stages, the obsolete test cases

identification in stage 1 and updating them in stage 2. We

need to capture semantic correlations among code changes

and test cases to identify whether they are obsolete or not.

Considering stage 2, we need to update obsolete tests for

production code changes. Thus, we should learn where and

how to update them during the obsolete test updating stage.

To address the above challenges, we first construct edit

sequences from two versions of the production code. The

edit sequence consists of tokens of the original version, new

version production code, and the edit action in a specific token

position. Then, we leverage the pre-trained encoder-decoder

Transformer model CodeT5 [11] that has shown remarkable

performance on learning from source code and generating code

to learn the semantic correlations to identify and update the

obsolete test cases. Transformer leverages the self-attention

techniques [12] that can learn fine-grained correlations among

inputs. We fine-tune the model on the identification and up-

dating stages, respectively. In the online application, CEPROT

combines the two stages. To build and evaluate our model,

we build two datasets, one for method-level production-test

co-evolution identification, and the other one used to update

the obsolete test cases. We compare CEPROT with different

baselines for the two tasks. Evaluation results show that: 1)

CEPROT outperforms its three baselines in the production-test

co-evolution identification task in terms of Precision, Recall,

and F1-score. 2) CEPROT performs better than its two base-

lines in terms of Accuracy and CodeBLEU [13] by substantial

margins in the updating stage. The experimental results show

that CEPROT can help developers better understand where and

how to perform production-test co-evolution.

Except for static evaluation, we also conduct dynamic evalu-

ation on the CEPROT updated test cases. We build five popular

Java projects and execute updated test cases. The experimental

results show that 48.0% generated test cases by our approach

CEPROT can be compiled and and the average coverage

of updated cases is 34.2% which achieves 89% coverage

improvement over the obsolete tests. To explore the quality

of generated test cases from the developers’ perspective, we

conduct a human evaluation. Each practitioner is asked to

evaluate the updated test cases from two aspects, the quality of

the updated test cases and whether the updating is co-evolved

with production code changes. Experiments show that our

approach can generate high-quality test cases that co-evolve

with production code.

To summarize, our work makes the following contributions:

• We propose a novel two-stage approach, i.e., CEPROT, to

automatically identify obsolete test cases and update them

for production code changes. It can effectively maintain the

co-evolution of production-test code on method level.

• We construct two datasets to identify and update obsolete

test cases for the production code changes. We conduct

extensive experiments on the dataset. CEPROT is shown

to outperform baselines in both two tasks. In addition,

it outperforms baselines by combining two stages by a

substantial margin.

• We provide our replication package [14] to help researchers

and practitioners to repeat our work and verify their studies.

II. BACKGROUND

In this section, we briefly introduce the task definitions of

the two stages of CEPROT and its usage scenarios. Then, we

illustrate the details of code change representation and CodeT5

that we exploit in this paper.

A. Task Definition

This work aims to identify and update obsolete test cases

given code changes at method level. A code change contains

two versions of production code, namely, x and x′. Similarly,

their associated test cases have two versions, namely, t and t′.
The obsolete test identification task can be formulated as:

1112

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



Identify(x, x′, t) =
{
1 if t �= t′

0 otherwise
(1)

If t �= t′, CEPROT will update the obsolete test case t:

Update(x, x′, t) = t′ (2)

We refer x, x′, t and t′ as original method, updated

method, original test, and updated test in the following parts

of our paper. Note that the updated test t′ is unknown before

identifying and updating in the practical application.

B. Usage Scenarios

In this paper, our tool aims to co-evolve the production-

test code at method-level. It consists of two stages, i.e., an

obsolete test identification stage and an obsolete test updating

stage. The typical usage scenario of our tool is to provide test

updating suggestions when a developer makes production code

changes. Consider Alice is a developer in a large project team.

Daily, she performs the development and makes some changes.

Without our tool, she ignores to check whether the test cases

for the changed production code need to be updated. Further,

the obsolete test would not be updated due to her neglect. The

obsolete test cases may fail to test the corresponding code

changes and might even introduce bugs.

However, with our tool, there are several usage scenarios for

Alice while committing the production code change: (1) The

original test fails. In this scenario, Alice can realize from the

failure that the test case is out of date and should be updated

without our tool. However, our tool can accurately remind

her whether the original test case needs to be updated before

compiling and running. It can reduce her time waiting for

compilation and test results and avoid Alice from switching

the development context. Besides, our tool can generate a new

test case and reduce her edits on updating. (2) The original

test passes but becomes inadequate for quality assurance on

the new production code. With our tool, it can automatically

check whether the test needs to be updated. If the answer

is yes, CEPROT will update it subsequently. In summary, with

the help of our tool, Alice can successfully identify and update

obsolete test cases with fewer efforts, which can increase the

maintenance of the system and decrease the likelihood of

introducing bugs from production code changes.

C. Code Change Representation

To better represent fine-grained production code changes,

we follow existing studies [15], [16] to construct code edits.

The code edit is represented as e = {xi
ai→ x′

i}Ni=1 where

xi and x′
i are the token of original version and new version

production methods in the position of i, respectively. ai
indicates the edit action that converts xi into x′

i. There are

four types of edit actions, i.e., insert, delete, equal, and replace.

To get the code change representation, we first tokenize the

original method and the modified method into sequences of

code tokens, and use them to construct the edit sequence. We

compute word-level alignment to get an edit triple in position

i, i.e., 〈xi, x
′
i, ai〉. Finally, these edit triples form the edit

sequence e for a production code change. For example, the edit

sequence e for x: l.push(1) → x′: l.pop() is e = {<l, l,
equal>, <., ., equal>, <push, pop, replace>, <(, (, equal>,
<1, ∅, delete>, <), ), equal>}.

D. CodeT5

In this paper, the identification task and updating task can be

formulated as binary classification and sequence-to-sequence

learning problems, respectively. In recent years, CodeT5 has

shown outstanding ability in code learning and generation

tasks, such as code clone detection and code completion.

In this paper, we leverage the Transformer-based model

CodeT5 [11] for modeling the production code and test cases,

and identifying and generating the updated test cases. CodeT5

is a unified pre-trained encoder-decoder Transformer model.

Different from CodeBERT [17] which relies on encoder pre-

training, or GPT [18] which relies on decoder pre-training,

CodeT5 uses an encoder-decoder architecture. Existing studies

show that the CodeT5 has achieved effective results in code-

related tasks, such as code generation and defect detection.

Thus, we exploit the CodeT5 to initialize our model and

finetune it on the two tasks.

III. APPROACH

In this section, we first introduce the overall framework of

CEPROT, then we describe the details of the main modules in

CEPROT including the outdated test identifier and updater.

A. Overall Framework

The goal of CEPROT is to automate the production-test

co-evolution task. Figure 2 shows the overall framework of

CEPROT, which consists of three phases, i.e., input construc-
tion, model training, and online production-test co-evolution
application. In the input construction phase, we convert the

input tokens into embeddings before feeding them into the

neural network. The model training phase consists of two

stages, i.e., outdated test identification and outdated test up-
dating. In the outdated test identification stage, we train a

neural network classifier to identify outdated tests that are

needed to be updated. In the outdated test updating stage, we

train the updater model to generate new test cases. Different

from the identification stage, the updating stage only uses the

positive samples for training and considers the new test cases

as ground truth to be generated. In the application phase, given

a code change (with two versions of production code and edit

sequence) and its associated old test, CEPROT first leverages

the trained identifier to predict whether the old test case needs

to be updated. If the answer is yes, the trained updater will

be used to generate a new test to replace the old one. We

elaborate on the details of each phase as follows:

B. Input Construction

The input of the model includes an original production

method x, an updated production method x′, and an original

test t. As shown in Figure 2, for each code segment, we first

tokenize it into a sequence of tokens, i.e., x = {x1, ..., xm},

1113

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



����� ���	�
������

������

���	�
�� �����

������
�����

���	�
�� ���

������ ��� � �

�� �� �� ���

��� ��� ��� ����

�� �� �� ���

��� ��� ��� ��	�

���� � 	� �

���� �
������


���������� ������ 	�
����

�� �� �� ���
��� ��� ��� ����
�� �� �� �����

��� 	���

�� ��������

�����

��	
���

�������
�
���

������
�� ���
�����

����

����
�	���

����
��

������

�������	

����

�������

����

�������	
����

��� ����

�
����������	�
������������

����������� ������ �������

����������� ������ 	������

����� � � �� � �

� � �

��
�	

�
�

��
��
��

�

�

��

��

�
��

��
��
��
��

��
�	

�
�

��
��
��

�

�

��

��
��
��

�	

Fig. 2. The overall framework of our proposed approach CEPROT.

x′ = {x′
1, ..., x

′
n}, and t = {t1, ..., tl}, in which m, n and

l represent the lengths of the original method, the updated

method, and the original test, respectively. We exploit the

Roberta [19] tokenizer to get these tokens. Different from

building tokens by separating source code according to the

whitespace, it leverages the Byte-Pair Encoding (BPE) [20]

to alleviate the Out-of-Vocabulary (OoV) issues. In addition,

we also build edit sequences e for code changes. For an edit

ei = 〈xi, x
′
i, ai〉, we concatenate these three parts to represent

the edit ei. We get ai by comparing the token xi and x′
i

at position i. The inputs of x, x′, e, t are then concatenated

into one input I and are used to predict the probability

distributions in target. For the identification task, the target

l = {0, 1} represents that a test does not need to be updated

or needs to be updated, respectively. For the updating task,

the target is the updated test cases for positive samples. The

model aims to generate the new test case t′ as accurately as

possible. In this work, we concatenate different inputs into

one input instead of using multi-encoders to encode each input

separately. Compared to multi-encoders, one input is beneficial

to the self-attention mechanism used in CodeT5 to capture the

relationship across different inputs.

C. Outdated Test Identification

At this stage, we propose an obsolete test identifier to

identify if a test case needs to be updated. It includes an

encoder and a classifier.

1) Encoder: The encoder is responsible for acquiring the

contextual representative embedding of the input sequence.

In this paper, we exploit the pre-trained CodeT5 encoder

to initialize the input I . The CodeT5 has shown promising

results in code understanding and generation due to its strong

ability to capture code semantics conveyed from the developer-

assigned identifiers. CodeT5 is a pre-trained model based on

the Transformer [12]. The encoder of the Transformer converts

the input I into the contextual vector representation R.

For each input token Ii, the Transformer generates three

embeddings for it, i.e., a query vector qi, a key vector ki, and

a value vector vi. The Transformer encoder exploits the dot

products to calculate the attention scores for Ii by using the

query vector qi and the key vector kj of each token in the

input, as follows: αi,j =
qi·kj√

d
in which d is the dimension

of qi and kj . The attention score represents how much focus

to place on the jth input as we encode the ith input. Then,

CEPROT gets the normalized scores by a softmax function:

α̂i,j = softmax(αi) =
exp(αi,j)∑
t exp(αi,t)

(3)

To learn relevant/irrelevant tokens, softmax is used to multiply

each value vector and these vectors are summed up:

zi =
∑
j

α̂i,jvj (4)

We use the last hidden state z|I| as the contextual vector

representation R of the input I .
2) Classifier: This step aims to make binary classification

according to the learned representation R. To better capture the

relationships of these four input information (Ii = {x, x′, e, t})

from R, we use a dense layer equipped with a non-linearity

function to learn latent interactions between them. Then, the

output of the dense layer is used to predict the likelihood of the

final label l = {0, 1}. More precisely, the classifier is defined

as follows:

f = tanh(WR+ b)

P (l|〈x, x′, e, t〉) = Softmax(f)
(5)

W and b denote the weight matrix and bias vector, respec-

tively. tanh is an activation function for the dense layer’s per-

ceptron. The Softmax function will output the final probability

of the label l between 0 and 1. For the probability score, we

want this score to be high if the original test needs to be

updated and to be low if the test does not need to be updated.

1114

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



D. Obsolete Test Updating

At this stage, we propose an obsolete test updater to update

obsolete test cases that need to be updated. It also includes

two parts, an encoder and a decoder.
1) Encoder: We exploit the same encoder as the outdated

test identifier. The input of the updater also includes four parts,

i.e., I = {x, x′, e, t}. As different parts of the input contribute

to different parts of the test to be generated, we should learn

the correlation between each token of the input I and the target

updated test t′. Therefore, different from the identification

task, we use the attention scores z = {z1, ..., z|I|} of I instead

of the last hidden state as the input to the decoder.
2) Decoder: Different from the identification task, the

outdated test updating should generate new test cases given

the input. The decoder learns to generate the corresponding

new test t′ one token at a time based on the input and all

preceding tokens that have been generated so far. Mathemati-

cally, the test updating task is defined as finding t
′
, such that:

t
′
= argmaxt′Pθ(t

′|I) where Pθ(t
′|Iu) is:

Pθ(t
′|I) =

w∏
i=1

Pθ(t
′
i|t′1, ..., t′i−1;x, x

′, e, t) (6)

Pθ(t
′|I) can be seen as the conditional log-likelihood of the

predicted new test case t′ given the input I . This model can

be trained by minimizing the negative log-likelihood of the

predicted test cases and the ground truth.

Specifically, the architecture of the decoder consists of two

parts, namely, the self-attention layer and the encoder-decoder

attention layer. The calculation of the self-attention layer is

similar to the encoder except that it only deals with the words

generated so far. The encoder-decoder attention layer learns

the correlation between the output sequence and the input

sequence. When calculating the attention scores between the

encoder and the decoder, the key vector K is from the outputs

of the encoder z = (z1, ..., z|I|). The attention distribution

αj between the target words yj and the source code tokens

w1, ..., wm is:

αj = softmax(
QjK

T

√
dk

) (7)

Specifically, the identifier and updater are initialized by

CodeT5 and fine-tuned on the two tasks, respectively.

E. Online Production-Test Co-Evolution

After the training process, the two models can be combined

together to maintain the co-evolution of production-test code.

When the developer makes changes to the production code,

CEPROT can be applied to these changes and identify whether

the test case should be updated. If the test is identified as

obsolete, CEPROT will then generate a new test case that can

test the new production code.

IV. EXPERIMENTAL SETUP

In this section, we introduce the details of the dataset

construction process. Then, we describe the baselines and

evaluation metrics. Finally, we show the experimental settings

of different approaches.

A. Dataset Construction

In this study, we aim to identify and update obsolete test

cases for method-level production code. We build two datasets

for training and evaluating CEPROT on two stages. This dataset

is constructed from Java projects that contains a large amount

of high-quality unit tests. To build such a dataset, we need

to collect co-evolution Java methods and their corresponding

test cases annotated with the @Test annotation, i.e., <original
method, updated method, original test, updated test> quadru-

ples. We notice that Liu et al. [16] collected a large scale high-

quality dataset that consists of 6,106K method-level changes

from Top 1,500 popular Java projects provided by Wen et

al. [21]. These method-level changes include non-test methods

and unit tests. Thus, we ask them for the dataset and use it to

construct our dataset.

1) Construct Co-Evolve production-test samples: Then,

we extract co-evolution method-level production-test samples

from the extracted modified methods above. As the quality of

dataset is essential for deep learning models, we regard that

a method and its corresponding test change within the same

commit as a co-evolving production-test pair. For each non-test

method (without @Test annotation), we check if there exists

a co-changed unit test in the same commit for it. According

to Wang et al. [8] and Tufano et al. [22], test names are often

similar to the corresponding production methods and can be

matched according to the naming convention. We follow them

to define heuristic rules to extract unit tests for methods by

name matching that is widely leveraged to associate production

and test code [8], [22], [7], [23].

For the identification task, we need to build a dataset

with positive samples and negative samples. If a test case

should be updated along with the changes of its corresponding

production code, we label it as a positive sample. Otherwise,

we will label it as a negative sample. For test updating task,

we only use the positive samples whose test cases need to

be updated in the identification task to construct the dataset.

The details of positive/negative samples construction and test

updating dataset are shown as follows:

Positive Samples Construction. First, we extract changed

test cases with @Test annotation (i.e., t and t′) from the

collected method-level code changes in Section 4.1.1. Second,

we extract the test case names by using Tree-Sitter [24]. Third,

we conduct name matching to find the production code. If the

production code is in the same project and also changed in

the same commit, we regard it as a positive sample. Finally,

we get 9,985 positive samples and each sample includes four

parts, i.e., <original method, updated method, original test,
updated test>.

Negative Samples Construction. To construct the negative

samples, we should extract changed methods with test cases

that do not need to be updated. First, we exclude methods in

the positive samples and extract test cases for the remaining

changed methods. For each candidate changed method, we

search its test case as follows:

• Path Matching: According to best practices for JUnit

1115

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
STATISTIC INFORMATION OF OUR DATASET

Set
Identification task

Updating task
# Positive # Negative

Training 4,676 16,496 4,676
Test 520 1,833 520
Total 5,196 18,329 5,196

testing, production code, and its corresponding test cases are

in the mirrored folder. Thus, we heuristically find test classes

by path matching. We get the filename where the method is

located and identify the file path of the test cases. For ex-

ample, the test file for /src/main/java/Connect.java

is usually in /src/test/java/ConnectTest.java or in

/src/test/java/TestConnect.java.

• Name Matching: After the path matching, we extract

corresponding tests for the candidate method. Similar to the

construction of positive samples, we match the production

code and test by name matching.

Then, we exclude samples whose test cases have changes and

get 52,565 negative samples and each sample includes three

parts, i.e., <original method, updated method, original test>.

2) Data filtering, splitting, and processing: Generally, a

commit may contain duplicate change samples since devel-

opers may perform systematic or recurring code changes in

one commit [25]. To avoid the bad performance of duplicate

samples, we remove duplicated production method samples

from the collected dataset. Finally, we get 5,196 positive

samples and 18,329 negative samples, respectively. Then, we

construct training data and test set for the two tasks. For

the obsolete test identification task, we randomly select 90%

positive samples and negative samples to train the model

and the rest samples are used to test the effectiveness of

CEPROT. Each sample includes four parts, i.e., <original
method, updated method, original test, label>. For obsolete

test updating task, we only use the positive samples and

each sample consists of <original method, updated method,
original test, updated test>. The detailed information of our

dataset is shown in Table I.

B. Baselines

1) Baselines for Identifier: To assess the effectiveness of

CEPROT on identifying obsolete test cases, we compare it with

SITAR, K-Nearest Neighbor (KNN), and LSTM:

KNN K-Nearest Neighbor (KNN) is an IR-based approach. In

this paper, we refer to the idea of NNGen [26] and build a

KNN classifier to identify obsolete test cases. For each case in

the test set, we compare it with each sample in the training set

using two versions of production code and edit sequence. We

return the top-k samples that have most overlapped 〈xi, x
′
i, ai〉

triples. After that, we use the cosine similarity to measure the

similarity between the original test of this case and that of

the returned top-k samples. Then, the label corresponding to

the most similar sample in the top-k data is regarded as the

predicted label. By default, we set k as 5.

SITAR is the state-of-the-art approach that aims to automati-

cally identify outdated unit tests. According to Wang et al. [8],

Random Forest [27] outperforms other classifiers in test update

prediction. Thus, we take Random Forest as the classifier and

replicate SITAR on our collected dataset.

LSTM. Long short-term memory is a widely used recurrent

neural network. We use it to encode the input that is similar

to CEPROT. Then, the dot-product attention mechanism [28]

is adopted to fuse the input information. Similar to CEPROT,

we exploit the softmax to predict the probability of each label.

Specifically, due to the length limitation of LSTM, we truncate

the overlong input, the lengths of edit sequence and original

test are set to 300 and 150, respectively.

2) Baselines for Updater: To the best of our knowledge,

there is no prior work on automated outdated test case updat-

ing. We also use two baselines belonging to different types for

evaluating CEPROT updater, i.e., KNN and NMT. The details

of experimental settings are shown as follows:

KNN. We obtain predictions for samples in the test set the

same as the identification task. In the updating task, the KNN

method will return the updated test of the most similar training

sample as the final generation of KNN. In this task, k is also

set to 5 by default.

NMT. Neural Machine Translation model is a typical

sequence-to-sequence model. Similar to the Identification task,

we build the model based on the LSTM. Except for the

encoder, we use another LSTM to generate the new test case.

To better learn correlations from the decoder and the encoders,

we also use the attention mechanism. Similar to the identifier,

we truncate the overlong input and limit the generation length.

Specifically, the length of edit sequence is set to 300, and the

length of original test and updated test is set to 150.

3) Baselines for two-stage CEPROT: As CEPROT is a

two-stage approach, we compare it with above baselines by

combining identification stage and updating stage mentioned

above, i.e., KNN and NMT. The KNN includes a KNN

identifier and a KNN updater. The NMT consists of an LSTM

identifier and a NMT updater. For each baseline, we first

identify whether a test case should be updated and then we

update it with corresponding updating models.

C. Evaluation Metrics

1) Metrics for Identification: In this paper, the identifi-

cation of obsolete test cases can be formulated as a binary

classification task, i.e., it is a binary classifier. Therefore,

we adopt Precision, Recall, and F1, which are well-known

metrics for binary classification, to measure the performance

of CEPROT on outdated test detection.

2) Metrics for Updating: We use CodeBLEU [13] and

Accuracy to evaluate CEPROT and the baselines.

CodeBLEU. CodeBLEU is proposed to evaluate the code

synthesis task. It is implemented based on BLEU that is

originally proposed to evaluate the generated sentences for

neural machine translation task [29] and widely used in

software engineering tasks [30], [31], [32], [33]. However,

existing studies [13] show that it does not take into account

1116

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
OBSOLETE TEST IDENTIFICATION AND UPDATING EVALUATION

Obsolete Test Identification Obsolete Test Updating

Approaches Precision Recall F1 CodeBLEU Accuracy

KNN 83.4% 72.3% 77.5% 37.6% 3.9%
SITAR 78.3% 38.9% 52.0% - -
NMT 96.3% 89.2% 92.6% 32.3% 5.0%
CEPROT 98.3% 90.0% 94.0% 63.1% 12.3%

the grammatical and logical correctness, resulting in favoring

candidates with high n-gram accuracy and serious logical

errors. They propose CodeBLEU to better evaluate the code

generation tasks. Thus, we exploit CodeBLEU to evaluate the

effectiveness of CEPROT and more details can be found in [13].

Accuracy. Accuracy aims to measure the ability of CEPROT to

generate correct test cases that are identical to the references.

3) Metrics for the two-stage framework: Our proposed

approach CEPROT is the combination of identification and

updating models. We evaluate the performance of CEPROT and

baselines in terms of #TPC/#TP and #FPC/#FP. #TP and #FP

represent the numbers of true positive (TP) samples and false

positive samples (FP), respectively. #TPC refers to the number

of TP samples that are correctly updated by an approach.

#FPC denotes the number of FP samples that are not updated

by an approach, i.e., the generated tests are the same as the

corresponding original tests.

D. Experimental Settings

In this paper, we exploit the PyTorch framework [34]

to implement CEPROT. The hidden size of the dense layer

before classifier is 768. During the fine-tuning process, we

use AdamW [35] with shuffled mini-batches to optimize the

parameters of our model. We use the CodeT5-base model

that includes 12 layers of the Transformer in our model. The

learning rate of the AdamW is set to 1e-5 and the batch size

is 2. The training process lasts 15 epochs. Both two tasks

are trained separately and aim to minimize the cross entropy.

Our experiments are conducted on Ubuntu 20.04.3 LTS 64bits,

with an NVIDIA GeForce RTX 2080 Ti 12GB.

V. RESULTS

We investigate the following research questions:

RQ1: How effective is CEPROT on obsolete test identification?

RQ2: How effective is CEPROT on obsolete test updating?

RQ3: Can CEPROT effectively co-evolve production-test code

with two-stage given code changes?

RQ4: How efficient is CEPROT?

A. RQ1: The effectiveness of CEPROT identifier

To answer this research question, we evaluate CEPROT on

the collected dataset in terms of Precision, Recall, and F1.

The left part of Table II illustrates the evaluation results

on the obsolete test identification task. We can observe that

CEPROT achieves a precision of 98.3%, a recall of 90.0%, and

an F1 score of 94.0%. Specifically, CEPROT outperforms all

baselines in terms of all metrics. Among all baselines, LSTM

TABLE III
EVALUATION RESULTS ON THE TWO-STAGE APPLICATION

Approach #TPC/#TP #FPC/#FP

KNN 20/376 (5.3%) 2/75 (2.7%)
SITAR - -
NMT 11/464 (2.4%) 4/18 (22.2%)
CEPROT 62/468 (13.2%) 6/8 (75.0%)

(i.e., the NMT in Table II) performs best and SITAR performs

worst among all baselines. SITAR is designed for file-level

code changes and may not perform well on method-level code

changes. Although its precision is 78.3%, its recall is very low.

Since the co-evolution of production-test code is a two-stage

task, we should take into account both precision and recall. On

one hand, we should ensure that obsolete tests are identified

as many as possible. On the other hand, we should ensure that

the identified tests are indeed obsolete to avoid the redundant

update in the updating stage. If an approach achieves 100%

Recall but to find one obsolete test cases developers need to

inspect many candidates, developers may not be happy to use it

in practice. Considering that CEPROT achieves improvements

of 21.3%, 80.8%, and 1.5% in terms of F1 when compared

to KNN, SITAR and LSTM, respectively, our approach can

effectively identify obsolete test cases.

B. RQ2: The effectiveness of CEPROT updater

The right part of Table II shows the results on updating ob-

solete test cases. We compare CEPROT with two baselines (i.e.,

KNN and NMT) in terms of Accuracy and CodeBLEU. We

can observe that CEPROT outperforms all baselines in terms

of all metrics with large improvements. The high CodeBLEU

of CEPROT demonstrates that many generated test cases are

syntactically correct with higher AST match and data-flow

match. When compare it with baselines in terms of Accuracy,

the KNN and the NMT can update 3.9% and 5.0% test cases

correctly. The experimental results show that KNN and NMT

can hardly generated correct test cases. As for CEPROT, it can

correctly update 12.3% test cases and has improvements of

215.4% and 146.0% compared to KNN and NMT, respectively.

C. RQ3: Two-stage Evaluation

This research question aims to investigate how effective

CEPROT can be by combining the identification and the

updating of obsolete test cases. We evaluate and compare the

CEPROT with baselines on a two-stage setting, i.e., identifying

the obsolete test case and then updating them. We compare

them in terms of #TPC/#TP and #FPC/#FP. Table III illustrates

the evaluation results.

We can observe that CEPROT outperforms these two base-

lines in terms of all metrics by substantial margins. At the

obsolete test identification phase, first, CEPROT identifies

more obsolete tests with much higher precision. Then, at the

updating stage, CEPROT updates true positive samples and

false positive samples with higher Accuracy. We can find that

the #FP of KNN and NMT is much higher than CEPROT. In

1117

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
TRAINING AND INFERENCE TIME CEPROT

Approach Identification Updating

Training Inference Training Inference

KNN 36m 0.269s 2m 0.221s
SITAR 1.62s 0.002ms - -
NMT 40m 0.025s 55m 0.175s

CEPROT 1h21m 0.062s 2h44m 0.975s

TABLE V
PROJECT INFORMATION IN DYNAMIC HUMAN EVALUATION

Projects Stars #Versions #Cases

springside/springside4 [36] 5.8k 2/2 3
openmrs/openmrs-core [37] 3.1k 21/34 22
apache/commons-lang [38] 1.4k 5/5 8
datumbox/datumbox-framework [39] 1.1k 7/7 9
dayatang/dddlib [40] 0.5k 2/4 8

Total - 37/52 50

addition, the #TPC of CEPROT is 3.1 and 5.6 times of KNN

and NMT, respectively.

In detail, CEPROT achieves an accuracy of 13.2% (62/468)

on its predicted true positive samples, which is much better

than those of KNN (5.3%: 20/376) and NMT (2.4%: 11/464)

with improvements of 149% and 450%. We can observe that

although the NMT model can identify obsolete test cases

effectively, it fails to update them. On the other hand, although

there are eight negative samples predicted as positive, six of

the generated new test cases are the same as original test

cases. In addition, CEPROT has less FP and more FPC when

compared to KNN and NMT. We admit that the performance

of CEPROT is not perfect, but we argue that CEPROT is

still useful for developers, because: First, CEPROT has high

precision and recall that can help developers to find as many

as obsolete test cases and reduce the false positives. Second,

it tries to update obsolete test cases correctly and does not

update false positive tests to reduce redundant update.

D. RQ4: Time efficiency

To measure the time complexity of our approach and other

baselines, we record the start time and the end time of their

training process and the test process. We train and evaluate

all models on the same machine containing an NVIDIA

GeForce RTX 2080 Ti GPU with 12 GB memory for a fair

comparison. Table IV shows the time costs of training and

average inference per sample. The training time varies as

it depends on the size of dataset. Once models have been

trained, it only takes a few microseconds to identify and update

obsolete test cases. CEPROT can identify and update obsolete

tests within 0.062s and 0.975s, respectively. Considering the

performance in obsolete tests identification and updating, the

experimental results demonstrate that our approach is efficient

for practical uses.

TABLE VI
DYNAMIC EVALUATION AND HUMAN EVALUATION RESULTS

Approach Compilability Cov. Quality Co-Evolvability

Obsolete Test 40% 18.1% 4.53 6%
KNN 44% 6.5% 3.11 4%
NMT 30% 22.2% 2.22 22%

CEPROT 48% 34.2% 3.81 38%

Human-Updated 100% 62.3% 4.74 66%

VI. DYNAMIC AND HUMAN EVALUATION

Although static metrics, e.g., Accuracy and CodeBLEU, can

evaluate the gap between the updated test cases by CEPROT

and tests written by humans, it cannot reflect the effectiveness

of updated test cases dynamically and human perceptions on

them. Thus, we further conduct a dynamic evaluation and a

human evaluation on it. Table V shows detailed information on

these projects. We randomly select five Java projects (all have

more than 500 stars) and manually build different versions of

them. #Versions means the number of versions we successfully

build and versions we need to build. These projects have

52 versions in total in which each version corresponds to

a code change. Except for openmrs/openmrs-core and day-

atang/dddlib, we successfully build all versions for the other

projects. In total, we successfully build 37 versions and there

are 50 test cases that should be updated. Then, we conduct

dynamic evaluation and human evaluation on these 50 cases.

A. Dynamic Evaluation

The dynamic evaluation measures CEPROT from two as-

pects, including the compilability and coverage. The compil-
ability measures how many updated test cases can be compiled

after building projects. The converage evaluates how much of

the updated production code is tested by running generated

test cases. As shown in Table VI, 48% (i.e., 24) updated

test cases by CEPROT can be compiled successfully. We

manually inspect test cases updated by CEPROT and find that

all updated test cases of dayatang/dddlib can be successfully

compiled and most compilation failed test cases (in projects

openmrs/openmrs-core and datumbox/datumbox-framework)

are caused by incomplete long test cases that are truncated

while generating.

We then measure the coverage of updated cases by using

JaCoCo [41] which is a free code coverage library for Java.

Table VI reports the average statement coverage of these cases.

The average coverage of CEPROT is 34.2%, which outperforms

baselines by a large margin and improves the coverage of

the obsolete tests a lot. Although the coverage of test cases

updated by our approach is lower than human-updated, our

approach has an 89% improvement over the obsolete tests.

B. Human Evaluation

We then conduct a human evaluation to evaluate the updated

test cases that passed compiling from two aspects, quality and

co-evolvability. We invite three senior engineers with more

than five years of Java development experience to conduct the

1118

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



������� ����� 	
 �����
@Test public void testNotEqProp() {

assertEquals(new NotEqPropCriterion("id", "name"),
instance.notEqProp("id", "name").getQueryCriterion());
}

������	
 �� �����������	
� ���	 ������������

@Test public void testNotEqProp() {
assertEquals(Criteria.notEqProp("id", "name"),

instance.notEqProp("id", "name").getQueryCriterion());
}

�	������ ���� ����

�	������ ���� ����
@Test@Category(Smoke.class)public void getUser() {

GetUserResponse response =
accountWebServiceClient.getUser(1L);

assertEquals("admin",
response.getUser().getLoginName());
}

@Test@Category(Smoke.class)public void getUser() {
GetUserResult response =

accountWebServiceClient.getUser(1L);
assertEquals("admin",

response.getUser().getLoginName());
}

������� ����� 	
 �����

�	������ ���� ����
@Test public void testNextLong()throws Exception {

long result = RandomUtils.nextLong(33L, 42L);
assertTrue(result >= 33L && result < 42L);

}

������� ����� 	
 �����
@Test public void testNextLong()throws Exception {

final long result = RandomUtils.nextLong(33L, 42L);
assertTrue(result >= 33L && result < 42L);

}

��� � criterion = criterion.and(criterionBuilder.notEqProp(propName, otherProp));

��� 	 criterion = criterion.and(Criteria.notEqProp(propName, otherProp));

��� return this;

criterionBuilder

Criteria

�������  !�������"�� ���� ����"���� ��� # ��� $# % %&&'%%� ��
�����(����"	

������� $! ������"�� ���� ����"���� ��� $ ��� $# $ )�*��''� ���"���"��(���"���"��)
�� � public GetUserResponse getUser(Long id) {
�� � GetUserResponse response = new GetUserResponse();

�� 	 public GetUserResult getUser(Long id) {
�� 	 GetUserResult result = new GetUserResult();
�� try {

GetUserResponse

GetUserResponse response GetUserResponse
GetUserResult
GetUserResult result GetUserResult

��� � public static long nextLong(long startInclusive, long endExclusive){

��� 	 public static long nextLong(final long startInclusive, final long endExclusive){

��� Validate.isTrue(endExclusive >= startInclusive,

final final

�������*! ������"�� ���� ����"���� ���$+ ��� $# ) ,&�*#�$ ������(�������-����

Fig. 3. Updating Examples

human evaluation. The quality measures a test case whether

it follows testing practices [42], e.g., including necessary

asserts for production code. The quality score ranges from

1 to 5 (the higher the better). Each engineer gives a score

for the updated test case by reading the updated test and the

corresponding new version of production code. We report the

average quality scores among these three annotators. The co-
evolvability measures whether updated test cases are co-evolve

with production code. The answer co-evolvability of each case

is Co-Evolved or Not Co-Evolved. The annotator reads the

production code changes, old test cases, and updated test cases

and determines whether the updated test cases are co-evolved

with production code changes. The human evaluation results

are shown in Table VI. The Fleiss’ kappa among the three

annotators is 0.97. The average quality score is 3.81 and

66% test cases are co-evolved with production code changes.

The obsolete tests are written by humans, thus the quality of

obsolete tests is higher than that of CEPROT. However, the co-
evolvability of tests updated by CEPROT is much higher than

obsolete ones or those generated by other approaches.

To better understand how test co-evolves with production

code changes, we manually inspect the results. As Figure 3

shows, the updating mainly includes the following types:

API Updating: CEPROT can update the API invocations

along with the production code change. For example,

an API invocation in production code is change (i.e.,

criterionBuilder.notEqProp→Criteria.notEqProp

in the project dayatang/dddlib), the test code is co-evolved as

new NotEqPropCriterion → Criteria.notEqProp.

Identifier Updating: Identifiers are often changed during the

software evolution. Updating the corresponding identifiers in

the test is important for developers. Through the manual

inspection, we find that CEPROT can effectively update these

identifiers, e.g., GetUserResponse → GetUserResult in

TABLE VII
TIME SERIES EVALUATION

Obsolete Test Identification Obsolete Test Updating

Approaches Precision Recall F1-score CodeBLEU Accuracy

KNN 58.9% 61.2% 60.1% 27.2% 1.5%
SITAR 39.9% 17.0% 23.9% - -
NMT 89.1% 79.2% 83.9% 40.6% 2.0%
CEPROT 94.4% 81.6% 87.6% 59.3% 8.8%

springside/springside4 project.

Modifier Updating: Modifiers are one of the most important

parts in Java projects. CEPROT can add corresponding mod-

ifiers along with the production code. For example, develop-

ers add final keyword into the production code (in project

apache/commons-lang), it also adds a corresponding modifier.

In summary, we find that CEPROT performs well on learning

fine-grained code changes from edit actions. To the best of our

knowledge, CEPROT is the first work focusing on production-

test co-evolution in two stages. The task itself is not easy

considering the difficulties of “understanding” code changes

and “updating” tests. In addition, CEPROT has outperformed

the baseline in all metrics by substantial margins and has good

performance during dynamic evaluation and human evalua-

tion. Based on these facts, we believe CEPROT can reduce

developers’ efforts on test maintenance. Also, it can promote

the development of this research direction and inspire other

researchers to tackle this important task.

VII. DISCUSSION

A. Time Series Evaluation

To evaluate the ability of CEPROT on the future co-evolution

of production and test code, we also conduct an experiment

on a time series setting. We reconstruct a dateset according

to the commit time. For each project, we use the historical

data to train the model and apply the trained model to make

predictions for new production code changes. For each project,

we sort its commits in the ascending order of commit creation

time, put the first 90% commits into the training set, and

take the remaining 10% commits as the test set. Then, we

retrain the models on the time series dataset using the same

parameters. Table VII shows the results of different approaches

on the time series experimental setting. We can observe that

the performance of baselines decreases dramatically, especially

the KNN and the SITAR. In addition, both KNN and NMT can

hardly update the test cases correctly.

B. Effectiveness of different variants of CEPROT

To identify and update obsolete test cases, we take be-

fore/after versions of production code and edit sequences

as inputs. Each part of input has different impacts on the

effectiveness of CEPROT. To investigate the effectiveness of

each input, we compare CEPROT with its two variants, i.e.,

CEPROT-w/o code and CEPROT-w/o edit. CEPROT-w/o edit

uses two versions of production code and the original test

to identify and update obsolete tests without edit sequence.

1119

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



TABLE VIII
THE EFFECTIVENESS OF EACH COMPONENT OF CEPROT

Variants
Identification Updating Combination of two phases

Precision Recall F1 CodeBLEU Accuracy #TPC/#TP #FPC/#FP

CEPROT-w/o code 97.6% 86.2% 91.5% 61.9% 4.4% 23/448 (5.1%) 9/11 (81.8%)
CEPROT-w/o edit 96.4% 86.3% 91.1% 62.6% 10.8% 51/449 (11.4%) 9/17 (52.9%)
CEPROT 98.3% 90.0% 94.0% 63.1% 12.3% 62/468 (13.2%) 6/8 (75.0%)

CEPROT-w/o code only exploits the edit sequence to realize

this task. Table VIII shows the results of CEPROT and its

variants. The performance of CEPROT-w/o edit is similar

to CEPROT-w/o code and decreases when compared with

CEPROT on the identification task. The F1 decreases about

3.3% of CEPROT when removing the production code or edit

sequence. For the updating task and two-stage setting, the

performance of both CEPROT-w/o code decreases dramatically

when compared to CEPROT. Specifically, the #TPC/#TP of

CEPROT decreases 158.8% when removing the production

code. The production code provides the semantic information

of the method to be tested, which helps CEPROT generate

correct tests.

In addition, both CEPROT-w/o code and CEPROT-w/o edit

outperform baselines by substantial margins. It demonstrates

that both production code and edit sequence contribute to

obsolete test updating. The production code provides the

semantic information of the method to be tested and edit

sequence helps CEPROT learn fine-grained code changes.

C. Why does CEPROT Fail?

We also investigate why CEPROT fails to co-evolve the

test cases with changes in production code. We manually

inspect samples that CEPROT fails to make correct predictions.

The failure is mainly caused by truncated updated test cases.

During the identification stage, there are some false positive

cases. These cases are mainly caused by value updating in

the production code, e.g., updating a string value. During

the updating stage, CEPROT fails to update long test cases.

Deep neural models are limited in generating too-long test

cases. We find 270 incorrect updated test cases by CEPROT are

incomplete in the test set. Updating long test cases effectively

is an interesting and promising direction for future work.

D. Why updating test code instead of generating?

According to Wang et al. [43], developers update existing

production code and its corresponding test code frequently.

Besides, this behavior is much more frequent than adding

new test code. Thus, compared to generating test code from

scratch, updating existing test code with explicit production

code changes is more helpful for developers.

E. Threats to Validity

Internal Vality. Threat to internal validity refers to the

errors and bias in our experiments. Existing outdated test

identification studies mainly rely on heuristic rules and feature

extractions. We find that they do not provide replication

packages. We try our best to replicate their approaches and

they may not the same as theirs. Besides, there is no work

focus on updating test cases and two-stage production-test

co-evolution. Therefore, we construct baselines that are intro-

duced in Section IV. As these baselines include both IR-based

and DL-based approaches, we believe this threat is limited.

Data Validity. The quantity of our dataset (especially the

obsolete test cases, i.e., positive data) is a threat in this study.

Wang et al. [8] extract co-evolution production-test pairs from

commits within 48 hours. To guarantee the quality of our

dataset, we only extract the co-evolved pairs as positive ones.

It may ignore some positive cases (co-evolved within 48h).

We randomly check some code changes within 48h manually

and find that some test changes within 48h are not co-evolved

with production code. Thus, we use co-evolved pairs within

the same commit instead of commits within 48h. Although it

guarantees the high quality of collected data, some positive

samples may be ignored in our study.

External Validity. Threats to external validity concern the

generalization of CEPROT. Our dataset is built only from Java

projects. It may not be representative of all programming

languages. However, Java is one of the most popular pro-

gramming languages. Instead of extracting code features and

building heuristic links between co-evolve product-test cases,

our approach is trained on the code tokens and is independent

of code features. Thus, our approach is language-agnostic and

we believe it can be easily adapted for other languages.

VIII. RELATED WORK

A. Co-Evolution of Production-Test Code

Co-Evolution of the source code and test code is an essential

part for software maintenance. Wang et al. [8] investigate

975 open-source Java projects and mine factors (i.e., the

complexity of the production code changes) that can determine

whether the test code should be updated. They also propose an

ML-based approach SITAR to identify whether a test should be

updated while the source code is changed. In addition, various

techniques are proposed to build links between the source

code and test code [4], [44], [9]. They focus on mining co-

evolution patterns, e.g., aggregating fine-grained changes [4]

and introducing new class in commits [44]. Generally, these

approaches define heuristic rules to build traceability links

between production code and test code. Different from them,

our approach cannot only identify obsolete test cases but

update them automatically.

1120

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



B. Test Generation

Considering the importance of software testing, several

automated tools are proposed to generate tests automatically,

such as EvoSuite [45] and Randoop [46]. EvoSuite [45] is a

typical search-based unit test generation tool. Randoop [46]

is a feedback-directed test generation technique that is based

on random testing. Considering the effectiveness of deep

learning techniques in learning the source code, researchers

have proposed some techniques to generate test cases. Tufano

et al. [22] propose an approach named ATHENATEST that

leverages the pre-trained model BART [47] to generate test

cases. To alleviate the uninformative identifiers issues in the

generated test cases, Roy et al. [1] introduce the DeepTC-

Enhancer that generates meaningful identifier names to en-

hance the readability of automatically generated test cases.

Recent studies also point out that the generated assert

statements are often incomplete or lacking the necessary

complexity to capture a designated fault [2], [48]. Watson et

al. [2] propose a NMT based approach to generate meaningful

assert statements for test cases. Similar to ATHENATEST,

Tufano et al. [48] exploit the pre-trained model BART [47]

and finetune it on the task of generating assert statements

for unit test cases. Dinella et al. [49] propose a transformer-

based approach TOGA to infer exceptional and assertion test

oracles. These studies generate meaningful assert statements

for test cases. They perform well on generating single assert

statements.

Our work is different from them, we focus on updating

preexisting tests instead of generating test cases from scratch,

and it considers both the old test and the corresponding code

change instead of only the new code. Also, the goal of this

work is to combine obsolete test identification and updating,

instead of generating tests.

IX. CONCLUSION AND FUTURE WORKS

In this paper, we propose CEPROT to motivate the co-

evolution of production-test code. To the best of our knowl-

edge, we are the first to use a two-stage framework to identify

and update obsolete test cases. We build CEPROT on a pre-

trained model, i.e., CodeT5, and fine tune it on the two tasks.

To train and evaluate CEPROT, we construct two datasets. The

evaluation results show that CEPROT outperforms baselines on

the co-evolution production-test code by a substantial margin.

We also conduct dynamic evaluation and human evaluation

to investigate the quality of updated test cases. In the future,

we will investigate other techniques to improve our approach

by integrating contextual information or improving learning

techniques for code changes. In addition, we will extend our

approach to other programming languages, e.g., Python and

JavaScript, to improve the generalizability of our approach.

ACKNOWLEDGMENT

This research was supported by the National Key Research

and Development Program of China (No. 2021YFB2701102),

the Fundamental Research Funds for the Central Universities

(No. 226-2022-00064), the National Natural Science Foun-

dation of China (No. 62141222, No. 62202420, and No.

U20A20173).

REFERENCES

[1] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella, S. Panichella,
D. Gonzalez, and M. Mirakhorli, “Deeptc-enhancer: Improving the
readability of automatically generated tests,” ser. ASE ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 287–298.
[Online]. Available: https://doi.org/10.1145/3324884.3416622

[2] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,
“On learning meaningful assert statements for unit test cases,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1398–1409. [Online].
Available: https://doi.org/10.1145/3377811.3380429

[3] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[4] C. Marsavina, D. Romano, and A. Zaidman, “Studying fine-grained
co-evolution patterns of production and test code,” in 2014 IEEE
14th International Working Conference on Source Code Analysis and
Manipulation, 2014, pp. 195–204.

[5] V. Hurdugaci and A. Zaidman, “Aiding software developers to main-
tain developer tests,” in 2012 16th European Conference on Software
Maintenance and Reengineering, 2012, pp. 11–20.

[6] https://github.com/conekta/conekta-java/pull/92.
[7] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v. Deursen, “Mining

software repositories to study co-evolution of production & test code,”
ser. ICST ’08. USA: IEEE Computer Society, 2008, p. 220–229.
[Online]. Available: https://doi.org/10.1109/ICST.2008.47

[8] S. Wang, M. Wen, Y. Liu, Y. Wang, and R. Wu, “Understanding
and facilitating the co-evolution of production and test code,” in 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2021, pp. 272–283.

[9] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production amp; test code,” in 2009 6th IEEE
International Working Conference on Mining Software Repositories,
2009, pp. 151–154.

[10] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’01), ser.
ICSM ’01. USA: IEEE Computer Society, 2001, p. 170. [Online].
Available: https://doi.org/10.1109/ICSM.2001.972727

[11] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Online and
Punta Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 8696–8708. [Online]. Available: https:
//aclanthology.org/2021.emnlp-main.685

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[13] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[14] https://github.com/CEPROTest/CEPROT.git.
[15] P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and

A. Gaunt, “Learning to represent edits,” in ICLR 2019, May
2019, arXiv:1810.13337 [cs.LG]. [Online]. Available: https://www.
microsoft.com/en-us/research/publication/learning-to-represent-edits/

[16] Z. Liu, X. Xia, M. Yan, and S. Li, “Automating just-in-time comment
updating,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
585–597. [Online]. Available: https://doi.org/10.1145/3324884.3416581

[17] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020. Online:

1121

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 



Association for Computational Linguistics, Nov. 2020, pp. 1536–1547.
[Online]. Available: https://aclanthology.org/2020.findings-emnlp.139

[18] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[20] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, Aug. 2016, pp. 1715–1725. [Online].
Available: https://aclanthology.org/P16-1162

[21] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), 2019, pp.
53–64.

[22] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan,
“Unit test case generation with transformers and focal context,” 2020.

[23] B. V. Rompaey and S. Demeyer, “Establishing traceability links between
unit test cases and units under test,” in 2009 13th European Conference
on Software Maintenance and Reengineering, 2009, pp. 209–218.

[24] https://tree-sitter.github.io/tree-sitter/.
[25] M. Kim and D. Notkin, “Discovering and representing systematic

code changes,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. USA: IEEE Computer Society,
2009, p. 309–319. [Online]. Available: https://doi.org/10.1109/ICSE.
2009.5070531

[26] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang,
Neural-Machine-Translation-Based Commit Message Generation: How
Far Are We? New York, NY, USA: Association for Computing
Machinery, 2018, p. 373–384. [Online]. Available: https://doi.org/10.
1145/3238147.3238190

[27] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[28] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.0473

[29] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “OpenNMT:
Open-source toolkit for neural machine translation,” in Proceedings of
ACL 2017, System Demonstrations. Vancouver, Canada: Association
for Computational Linguistics, Jul. 2017, pp. 67–72. [Online]. Available:
https://aclanthology.org/P17-4012

[30] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New York,
NY, USA: Association for Computing Machinery, 2016, p. 631–642.
[Online]. Available: https://doi.org/10.1145/2950290.2950334

[31] M. Allamanis, E. Barr, P. Devanbu, and C. Sutton, “A survey of machine
learning for big code and naturalness,” ACM Computing Surveys, vol. 51,
09 2017.

[32] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen: A
tree-based transformer architecture for code generation,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8984–8991,
04 2020.

[33] P. Yin and G. Neubig, “A syntactic neural model for general-
purpose code generation,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Vancouver, Canada: Association for Computational
Linguistics, Jul. 2017, pp. 440–450. [Online]. Available: https:
//aclanthology.org/P17-1041

[34] https://pytorch.org/.
[35] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in

International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=Bkg6RiCqY7

[36] https://github.com/springside/springside4.git.
[37] https://github.com/openmrs/openmrs-core.git.
[38] https://github.com/apache/commons-lang.git.
[39] https://github.com/datumbox/datumbox-framework.git.
[40] https://github.com/dayatang/dddlib.git.
[41] https://www.jacoco.org/jacoco/.
[42] https://testing.googleblog.com/.
[43] S. Wang, N. Shrestha, A. K. Subburaman, J. Wang, M. Wei, and

N. Nagappan, “Automatic unit test generation for machine learning
libraries: How far are we?” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 1548–1560.

[44] L. Vidács and M. Pinzger, “Co-evolution analysis of production and
test code by learning association rules of changes,” in 2018 IEEE Work-
shop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE). IEEE, 2018, pp. 31–36.

[45] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 416–419. [Online].
Available: https://doi.org/10.1145/2025113.2025179

[46] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for java,” in Companion to the 22nd ACM SIGPLAN
Conference on Object-Oriented Programming Systems and Applications
Companion, ser. OOPSLA ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 815–816. [Online]. Available:
https://doi.org/10.1145/1297846.1297902

[47] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation,
and comprehension,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 7871–7880. [Online].
Available: https://aclanthology.org/2020.acl-main.703

[48] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Generating
accurate assert statements for unit test cases using pretrained transform-
ers,” 09 2020.

[49] E. Dinella, G. Ryan, T. Mytkowicz, and S. Lahiri, “Toga: A neural
method for test oracle generation,” in ICSE 2022. ACM, May 2022.

1122

Authorized licensed use limited to: Zhejiang University. Downloaded on May 28,2025 at 06:07:02 UTC from IEEE Xplore.  Restrictions apply. 


